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During acute episodes of hypoxia, chemoreceptor-mediated

sympathetic activity increases heart rate, cardiac output,

peripheral resistance and systemic arterial pressure. However,

different intermittent hypoxia paradigms produce remarkably

divergent effects on systemic arterial pressure in the post-

hypoxic steady state. The hypertensive effects of obstructive

sleep apnea (OSA) vs. the depressor effects of therapeutic

hypoxia exemplify this divergence. OSA, a condition afflicting

15–25% of American men and 5–10% of women, has been

implicated in the pathogenesis of systemic hypertension and is

a major risk factor for heart disease and stroke. OSA imposes a

series of brief, intense episodes of hypoxia and hypercapnia,

leading to persistent, maladaptive chemoreflex-mediated acti-

vation of the sympathetic nervous system which culminates in

hypertension. Conversely, extensive evidence in animals and

humans has shown controlled intermittent hypoxia conditioning

programs to be safe, efficacious modalities for prevention and

treatment of hypertension. This article reviews the pertinent

literature in an attempt to reconcile the divergent effects of

intermittent hypoxia therapy and obstructive sleep apnea on

hypertension. Special emphasis is placed on research con-

ducted in the nations of the former Soviet Union, where

intermittent hypoxia conditioning programs are being applied

therapeutically to treat hypertension in patients. Also reviewed

is evidence regarding mechanisms of the pro- and anti-hyper-

tensive effects of intermittent hypoxia. Exp Biol Med 233:627–

650, 2008

Key words: angiogenesis; hypertension; intermittent hypoxia; nitric

oxide; obstructive sleep apnea; reactive oxygen species

Introduction

Obstructive sleep apnea (OSA), a chronic form of

sleep-disordered breathing afflicting millions of Americans,

has been implicated as a risk factor for an array of

cardiovascular diseases including hypertension, stroke,

coronary artery disease, and cardiac arrhythmias (1). Among

these comorbidities, evidence is most robust for a direct

mechanistic relationship between OSA and hypertension

(2–5). Extensive ongoing clinical and preclinical research is

attempting to decipher OSA’s hypertensive mechanisms,

including OSA’s impact on the carotid body chemoreflex.

The chief hallmark of OSA is the recurrent bouts of

arterial hypoxia during the brief asphyxiations imposed by

airway collapse. Indeed, OSA is the predominant patho-

logical cause of chronic, intermittent hypoxia (CIH)

affecting the adult population. Paradoxically, extensive

preclinical and clinical research, conducted primarily in

the nations of the former Soviet Union, has shown that

intermittent hypoxia can be applied therapeutically to lower
blood pressure (BP) in hypertensive animals and patients,

including those with a genetic predisposition to develop

hypertension. The central question addressed in this article

is why the intermittent hypoxia imposed by OSA vs. that

administered therapeutically can produce such divergent

effects on systemic arterial BP. This article reviews (1) the

OSA literature, emphasizing OSA’s hypertensive mecha-

nisms; (2) reports of clinical application of intermittent

hypoxia, particularly its use in treatment of hypertension;

and (3) research in animals to delineate the antihypertensive

mechanisms of intermittent hypoxia. Lastly, this article
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critically examines possible explanations for the divergent

impacts of OSA vs. therapeutic intermittent hypoxia on

hypertension.

Obstructive Sleep Apnea: Pathological Expression
of Chronic Intermittent Hypoxia

Obstructive sleep apnea (OSA) is characterized by

profound, episodic apneas during sleep (6), subjecting

patients to CIH. The apnea-hypopnea index (AHI), the

standard clinical measure of OSA severity, is defined as the

total number of episodes of apnea and hypopnea per hour of

sleep. An AHI value �5 is considered abnormal; AHI

values .30 are considered severe and are associated with

increased risk of cardiovascular mortality (7). Each apnea is

accompanied by some degree of arterial O2 desaturation and

the magnitude can range widely, achieving arterial blood O2

saturation (SaO2) values of 95% to ,60%. Consequently, a

more robust index of OSA severity is the duration or

number of apneic events occurring with SaO2 , 80%.

Another hallmark of OSA is the frequency and rapidity of

the blood gas fluctuations: desaturation occurs within 20–40

s and reoxygenation within 5 s, and these cycles often recur

within tens of seconds. Also, OSA events are associated

with hypercapnia of severity that depends on the duration of

the apnea.

Experimental Rodent Models of Obstructive
Sleep Apnea. Human and canine models of intermittent

(episodic) hypoxia (IH) have afforded the opportunity to

study hemodynamic and autonomic effects of IH in acute

settings (8). However, chronic effects of hypoxia may take

years to establish in these models, making it difficult to

study long-term effects of CIH. Most of the research

examining CIH’s cardiovascular effects is conducted in rats,

which share many autonomic and cardiovascular similarities

with humans. In addition, IH conditioning in rodent models

of hypertension can be studied in greater detail than in

human subjects.

Fletcher et al. (9, 10) developed a rat model of chronic

intermittent hypoxia that reproduced the episodic hypoxic

bouts seen in patients with sleep apnea. Rats in Plexiglas

chambers were exposed to abrupt changes in ambient

oxygen concentration which induced cyclic changes in

arterial blood oxygen saturation (SaO2) similar to those seen

in sleep apnea patients (11). During the rats’ usual sleep

cycle, N2 was distributed to the chamber for 12 s at a flow

adjusted to reduce the fraction of inspired oxygen (FIO2) to

3–5% for 3–6 s. The average nadir SaO2 was 70%. Infusion

of compressed air following the hypoxia returned FIO2 to

normal within 15–18 s. This cycle was repeated for 6 to 8

h/d over 35 d (11). This CIH program increased diurnal

mean arterial pressure by 10–14 mm Hg over that of sham

controls that breathed room air within the chamber, an effect

that persisted for several weeks (11, 12).

Similar rodent models of intermittent hypoxia have

been developed. For example, McGuire and Bradford (13)

placed rats in restrainers with their heads surrounded by

hoods, which facilitated exposure of the rats to mixtures of

N2 and CO2. To mimic the episodic asphyxiations imposed

by OSA, FIO2 was lowered to 6–8%, while FICO2 was

simultaneously increased to 12–14% within 15 s, then

compressed air was infused for 15 s to restore FIO2 and

FICO2. This 30 s cycle was repeated twice per min, 8 h/d, 5

d/week. Sham control rats received compressed air instead

of N2:CO2 mixtures. Within 5 weeks this program increased

diurnal mean systemic and pulmonary arterial pressures by

17 and 11 mm Hg, respectively, vs. sham rats.

Acute Hemodynamic and Autonomic Re-
sponses to Apnea and Hypoxia. During individual

apneic events there is a chemoreflex-mediated increase in

sympathetic nerve activity (SNA) that is directly related to

the duration of the apnea and the magnitude of hemoglobin

O2 desaturation. The increase in SNA is accompanied by

increases in systemic arterial pressure, often 50 mm Hg or

more, that subside once ventilation resumes. The heart rate

response varies and is a function of the chemoreflex

activation and the lack of ventilation. For example,

voluntary breathing of a hypoxic gas leads to increases in

heart rate mediated by vagal withdrawal (14–16); in

contrast, during prolonged apneas, significant vagal activity

occurs resulting in bradycardia (17).

Chronic intermittent hypoxia evokes sympathoexcita-

tion by augmenting peripheral chemoreflex sensitivity, i.e.,
hypoxic acclimatization (18). Moreover, hypoxia is pro-

posed to exert direct neuromodulation on circumventricular

sites of central sympathetic regulation, including the

subfornical organ and the hypothalamic paraventricular

nucleus (18), because these regions are responsive to

signalling molecules implicated in hypoxic sympathoregu-

lation. Indeed, initial reports suggest that the same

molecular mechanisms involving these neuromodulators,

including angiotensin II (19), and endothelin-1 (20), and

decreased nitric oxide (NO) formation (18, 21) may

influence both peripheral chemoreflex sensitivity and central

sympathetic activity.

Lusina et al. (22) studied the effects of a 10-day

program of daily 60-min hypoxia exposures (80% arterial

oxyhemoglobin saturation) on muscle sympathetic nerve

activity (peroneal nerve) and ventilation in response to acute

20 min isocapnic hypoxia in six healthy young men. Parallel

modulation of the ventilatory and sympathetic systems

following IH training (IHT) was also assessed. The IHT

intervention augmented the hypoxic ventilatory response.

Sympathetic activity also increased during the hypoxic

exposure, and remained above baseline after withdrawal of

the hypoxic stimulus, even though oxyhemoglobin satu-

ration, ventilation and BP had returned to pre-hypoxic

levels. When compared to the pre-IHT trial, burst frequency

increased without changes in burst amplitude, and muscle

sympathetic nerve activity trended toward higher values

during the post-IHT trial. Following IHT the rise in peroneal

nerve burst frequency was strongly related to the change in
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hypoxic ventilatory response, suggesting common central

control of the sympathetic and ventilatory responses.

Similar conclusions were reached both in early (23) and

recent (24) studies.

Nesterov (25) conducted spectral analyses of heart rate

in healthy young subjects breathing 8% O2 for 15 min, and

confirmed that such hypoxia increases sympathetic influ-

ence on the heart with simultaneous parasympathetic

withdrawal. Sympathovagal index increased more than

threefold during hypoxia, but returned to baseline during

10 min of recovery. Povea (26) conducted power spectral

analysis of heart rate variability in elite athletes trained for

13 days at 1200 m and dwelling either at 1200 m (live low,

train low) or at 2500–3000 m (live high, train low). The low

frequency spectral component and low:high frequency ratio

during exercise increased only in the latter group. These

results suggest that IHT by the live high, train low regime

increased the autonomic response to exercise primarily

through increased sympathetic activity.

Chronic Effects of OSA. The most common

comorbidity associated with OSA is hypertension. Repeti-

tive bouts of IH in humans as well as in animals result in

chronically elevated BP that outlasts the apneic stimulation

(27, 28). Epidemiologic data supports this concept,

suggesting that chronic airway obstruction predisposes to

hypertension. Analysis of the Wisconsin Sleep Cohort

Study revealed a dose-response relationship of sleep-

disordered breathing at baseline to the incidence of hyper-

tension 4 years later (3, 29). Similarly, the community-based

Sleep Heart Health Study showed that systolic and diastolic

BP and prevalence of hypertension increased with the

severity of OSA (4).

Numerous studies have examined the neural mecha-

nisms by which IH during sleep elevates during wakefulness

(6, 12, 30, 31). Morgan et al. (32) found that exposure to

combined hypoxia and hypercapnia evoked an increase in

sympathetic activity that outlasted the chemical stimuli.

Leuenberger et al. (33) and Cutler et al. (34, 35) found that

short-term exposure to IH or intermittent apnea resulted in

sustained sympathoexcitation and a transient elevation of

BP that persisted far beyond the hypoxic stimulus. In their

rat model of recurrent, episodic hypoxia, Fletcher et al. (36)

found that chemical sympathectomy with 6-hydroxy-

dopamine blocked the CIH-induced BP elevation. Similar

findings by Bao et al. (37) indicate that sympathetic activity

in the kidneys plays an integral role in the elevation in BP

seen in rats subjected to episodic hypoxia. Fletcher et al.
(12, 38) also tested the role of the renin-angiotensin system

in the hypertensive response to CIH. Chemical renal arterial

sympathectomy with phenol, blockade of angiotensin II

receptors with losartan, or chronic consumption of a high-

salt diet effectively prevented the CIH-induced BP response.

Collectively, these findings suggest that IH activation of the

sympathetic nervous system and the renin-angiotensin

system combine to increase BP during apneic events and

wakefulness.

It has been postulated that persistent elevation of BP in

OSA patients may in large part be mediated by persistent

facilitation of chemoreflex activation of the sympathetic

nervous system (34, 39–41). Further, studies comparing the

effects of continuous versus episodic hypoxia in rats showed

that sustained hypoxia did not elicit an enhanced cardiac

chemoreceptor response (42) nor long term facilitation of

carotid baroreflex sensitivity (40, 43), yet IH enhanced

chemoreflex sensitivity (40, 42, 43). Moreover, denervation

of the chemoreceptors prevented the development of

hypertension in CIH rats (36, 42). These results strongly

suggest that the physiological changes resulting in hyper-

tension may be mediated by the cardiovascular arm of the

chemoreceptor response, and that it is the intermittent rather

than sustained nature of the stimulus that manifests these

changes.

Effects of OSA Therapy on Diurnal Hyper-
tension. The most common and effective form of treat-

ment for OSA is continuous positive airway pressure

(CPAP), which utilizes a mask and flow generator to

maintain airway patency (44). Several studies have

examined the effect of CPAP on BP in OSA patients. For

example, Wilcox et al. (45) measured BP in OSA patients

before and after 8 weeks of CPAP treatment. There was a

significant decrease in both systolic and diastolic BP

independent of changes in body weight in patients

successfully treated with CPAP (45). Similarly, Mayer et
al. demonstrated that hypertension was reversible with 6

months treatment of sleep apnea with CPAP (46). More-

over, Saarelainen et al. reported reductions in BP after 3 wk

CPAP (47), and Lies et al. showed that CPAP regimens as

short as 1–3 d were sufficient to lower BP (48). The

reduction in BP with CPAP treatment is thought to be due to

a decrease in hypoxic episodes and subsequent sympa-

thoexcitation (49). Thus, OSA is an independent etiological

factor contributing to elevated nocturnal and diurnal BP, and

is responsive to CPAP treatment.

Arousal and Sleep Disruption. Arousal from non-

rapid eye movement (NREM) sleep causes sympathoexci-

tation (50, 51). Limited research in OSA patients indicates

that sleep disruption during nocturnal apneas could contrib-

ute to the chronic increases in BP independent of the arterial

hypoxemia. In a study of 16 OSA patients, Ringler et al.
demonstrated increased post-apnea BP (52) and decreased

left ventricular stroke volume (53) with and without

hypoxemia. The authors proposed that inhibitory afferents

are overridden by the effects of arousal, explaining the

relative unimportance of hypoxemia per se in post-apnea

hypertension (52).

Intermittent Hypoxia as Therapy for Hyper-
tension. Although Western interest in IHT investigations

on animals has greatly intensified during the last decade,

scientists in the former Soviet Union (FSU) have for almost

30 years studied and applied IHT for treatment and

prevention of human diseases. Thus, most reports of clinical

applications of IHT for treating hypertension have been
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published only in Russian and Ukrainian journals, and are

difficult to access by Western readers. This section

summarizes that literature.

Intermittent hypoxia conditioning protocols developed

in the FSU typically consist of repetitive, brief bouts of

steady or progressive hypoxia, interrupted by similar or

prolonged periods of normoxic recovery. However, sub-

stantial variations in the intensity of hypoxia, duration and

number of hypoxic exposures per session, and number and

frequency of sessions complicate comparisons of results of

different studies. Nevertheless, clinical studies collectively

show that IHT (1) increases exercise tolerance, hypoxic

ventilatory response, hematocrit and blood hemoglobin

content; (2) dampens exercise-induced tachycardia; and (3)

produces a rightward shift in the lactate-exercise load

relationship (54–62). These effects appear to be mediated, at

least in part, by release of reactive oxygen species (ROS),

which evoke enhancements of antioxidant defenses (58). In

addition, IHT appears to induce changes within mitochon-

dria which increase the O2 utilization efficiency of ATP

production (63, 64).

Historical Foundations: Mountain Climate and
Hypertension. The antihypertensive effects of high

altitude have been known for decades (65–70). In

permanent high altitude residents, arterial pressures are

10–15 mm Hg lower and aging-related increases in BP are

more gradual than in lowlanders (71). Hypertension and

ischemic heart disease are less prevalent in highlanders, and,

when these diseases do occur, they tend to produce more

moderate clinical manifestations than in lowlanders (69, 72,

73). Indeed, treatment of hypertension is touted as a benefit

of many high altitude health resorts in the FSU.

Many Soviet authors ascribed the hypotensive effect of

high altitude to suppression of sympatho-adrenal and renin-

angiotensin systems (74–77). Even sojourns at moderate

altitude (c. 1000 m) decrease urinary dopamine and

epinephrine excretion and plasma renin activity, in associ-

ation with decreased arterial pressure (78). Decreased

arterial pressures were reported in 73% of patients

ascending to 1600 m (79). These hypotensive responses to

moderate altitudes are in contrast to the marked, sustained

increases in BP and circulating catecholamines in low-

landers subjected to 4 (80) or 9 wk (81) sojourns at 5260 m.

The more severe hypobaric stress in these studies provoked

intense sympathetic activity that very likely contributed to

the hypertensive responses in these subjects.

Hypobaric IH Therapy for Hypertension. Much

attention has been devoted to hypobaric effects on hyper-

tensive patients. Hypobaric therapy, the first IHT treatment

to be applied clinically, was widely used until the 1990s.

Generally, multi-patient barochambers were used, with daily

treatment sessions at simulated altitudes of 1500–3500 m.

Sessions typically lasted from 30 min to 2–3 h/d for 10–30

days. A favorable effect on BP was seen in 60% of

hypertensive patients completing such a hypobaric (2800 m

simulated altitude) program (79). Meerson et al. (82)

reported a decrease in arterial pressure during adaptation

to 3500 m simulated altitude (30 min/d, 5 d/week for 3

weeks) in borderline hypertensive patients.

Katiukhin and Ochirova (83) applied hypobaric IHT to

patients with stages I (140–159 mm Hg systolic pressure,

90–99 mm Hg diastolic pressure) or II (160–179 mm Hg

systolic pressure, 100–109 mm Hg diastolic pressure)

hypertension. The patients experienced single daily 25

min hypobaric exposures at 2000–3000 m simulated

altitude, for 12–14 days (Table 1). Patients did not receive

any antihypertensive drug therapy during the IHT program.

All patients reported feeling better, and most of them

experienced appreciable reductions in arterial pressure.

However, patients in stage II hypertension did experience

a rise in BP in the afternoon following each IHT session. All

patients demonstrated an increase in stroke volume without

changes in heart rate, and a decrease in peripheral vascular

resistance by the end of the IHT program. IHT also

produced electrocardiographic right axis shift and increased

right:left ventricle mass ratio (84). These changes subsided

within 2–3 weeks following the program. The effectiveness

of antihypertensive medications was increased after IHT, so

IHT was proposed as a pretreatment to enhance pharmaco-

therapy for hypertension.

In one of the few clinical investigations of IHT outside

FSU, del Pilar Valle et al. (85) studied 6 normotensive male

patients (68 6 4 y.o.) with severe but stable coronary artery

disease. All patients were lifelong lowlanders, and had

undergone coronary artery bypass surgery. They underwent

14 4-h sessions of hypobaric IHT, progressively increasing

to a maximal simulated altitude of 4200 m. Myocardial

perfusion was significantly increased after the IHT program,

and there was no evidence of impairment of myocardial

perfusion in any patient. The authors concluded that

hypobaric IHT improved myocardial perfusion in patients

with severe coronary heart disease. The effects of the IHT

program on BP were not reported. The results of this small

trial suggest that exposure to intermittent hypobaric hypoxia

could be an effective modality for the management of

patients with chronic coronary disease.

Sojourns at high altitude or use of barochambers for

treatment and prophylaxis of various diseases are not

entirely without risk. Excessive sympathetic activation

during quick ascent to high altitude may be deleterious, as

in acute mountain sickness (86–88). A third of the patients

subjected to hypobaric IHT at 2800 m simulated altitude had

side effects such as headache, stenocardia, and cardiac

rhythm disturbances (79). Karash et al. (89) estimated that

tolerance of human subjects to hypobaric hypoxia is one

fourth that of normobaric hypoxia. Furthermore, barocham-

bers are so expensive that they are impractical in many

health care settings, and determining and controlling the

appropriate hypoxia dosage for each individual patient is a

significant challenge.

Clinical Application of Normobaric Hypox-
ia. The disadvantages of hypobaric chambers have promp-
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ted increased study of normobaric hypoxia training, and in

recent years normobaric breathing of hypoxic gas mixtures

has become a practical means of producing IH. Three main

methods are currently available to produce normobaric

hypoxia:

1) Hermetically sealed cabin for 5–7 patients where O2

concentration is reduced to 12–14% (90). Single 30–60 min

sessions are applied daily for 15–20 days. Hypoxic gas

mixtures have been prepared by the gas membrane

separation principle (91), but other means of controlling

the chamber atmosphere could be utilized.

2) Individual hypoxic device operating on the open

breathing principle (Fig. 1A): Using a mask or special

helmet, the patient breathes a hypoxic gas mixture (12–16%

O2) for 3–10 min. Inspiration of the hypoxic atmosphere is

alternated with 3–10 min inspiration of room air. 5–10

hypoxia cycles are applied each day for 15–20 days (91,

92).

3) Administration of gradually intensifying hypoxia

using a rebreathing technique with CO2 elimination (Fig.

1B): The patient breathes into a spirometer or re-breathing

bag in which the O2 concentration progressively falls while

CO2 is absorbed by soda lime. Rebreathing proceeds for 5–6

min, until an inspired O2 concentration of 7–8% is reached,

and then the patient inspires room air for 10–15 min.

Generally, three bouts of hypoxia are completed each day

for 2 weeks (93–95).

Amosov et al. (96) analyzed the ventricular complex of

the electrocardiogram in 22 patients with rheumatoid

arthritis before and after 5 min exposure to 10% O2. The

T wave amplitude significantly increased vs. pre-hypoxia

and the S-T segment shifted toward the isoelectric point.

Heart rate fell from 74 6 2 to 68 6 1 min�1, and systolic

arterial pressure decreased from 127 6 4 to 114 6 2 mm

Hg. The authors proposed that such changes might involve

enhanced cardiac parasympathetic activity during acute

adaptation to hypoxia.

Vorob’ev et al. (97) examined the anti-hypertensive

effects of IHT in 93 patients (26–66 y.o.) with stages I and II

essential hypertension. Patients were assigned to three

groups based on their hemodynamic profiles: hyperkinetic

(n ¼ 74), eukinetic (n ¼ 11), or hypokinetic (n ¼ 8). In all

three groups IHT effected appreciable reductions in BP

(Table 2), improved the patients’ health status and physical

performance, and normalized O2 consumption and transport.

The greatest reduction in BP was registered in the eukinetic

group, the least in the hypokinetic group (Table 1). A

transient increase in BP occurred in 46 patients during the

IHT program, but by the end of the program, pressure fell in

all 3 groups. The depressor effect persisted for 6 months in

80% and 1 year in 43% of the patients. 79% of the patients

were able to discontinue medications after IHT. No

unfavorable effects were observed. The authors suggested

16–20 IHT sessions for patients with stage I hypertension

and 26–30 sessions for stage II patients could provide

optimal depressor effects. Also, adaptation to IHT lowered

arterial BP in pregnant women with hypertensive neuro-

circulatory dystonia and stages I–II hypertension (98, 99).

Potievskaia (54) suggested that changes in salt and water

metabolism may have contributed to these persistent

hypotensive effects of hypoxia.

Recent studies have confirmed the results of earlier

Figure 1. Single-subject hypoxia devices. Panel A: Individual hypoxic device operating on the open breathing principle (90). The subject wears
a special helmet, into which hypoxic gas mixtures and room air are alternately delivered. Panel B: Rebreathing chamber with CO2 elimination
(94). Hypoxia gradually intensifies as O2 is depleted from the chamber. Rate of hypoxia intensification can be modified by adjusting volume of
the air chamber. SaO2 is continuously monitored by pulseoximetry.
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investigations. Mukharliamov et al. (100) applied a 10-day

IHT program of 10 cycles/d of 5 min hypoxia (10–14% O2):

5 min normoxia to 56 patients with stages I–II hypertension.

This program enhanced the reductions in systolic and

diastolic BPs, heart rate and peripheral resistance produced

by conventional antihypertensive medications. The authors

recommended conducting such IHT treatments 1–2 times a

year. The same IHT regimen was used by Balykin et al.

(101) to study changes in cardiorespiratory function in

obese persons exposed to different combinations of

normobaric IHT and physical exercise. In combination,

IHT and exercise increased cardiorespiratory functional

reserves, physical performance and aerobic capacity to

greater extents than either modality alone.

Simonenko et al. (102) studied 30 hypertensive patients

receiving a therapeutic regimen combining antihypertensive

medications with adaptation to intermittent normobaric

hypoxia, and 32 control hypertensive patients treated with

Table 2. Effects of Hypoxia on Blood Pressure in Normotensive and Hypertensive Ratsa

Ref. Protocol
Hypertension

model

Mean arterial pressure (mm Hg)
Nature of anti-

hypertensive effectPre-treatment Post-treatment

36 12 s 3–5% O2 every 30 s, 7 h/d for
up to 35 d

Normotensive 151 6 2 172 6 3 none

132 6 s of 2–3% fractional inspired O2 at
30 s intervals for 7 h/d over 35 d

Normotensive 93 6 7 109 6 4 none

160 Fractional inspired O2 of 6%, for 40 s
at 9 min intervals for 8 h/d for 35 d

Normotensive 103 6 1 112 6 2 none

292 Hypobaric hypoxia, 4600 m (428 torr),
2 d hypoxia þ 2 d normoxia for 12
mo

Normotensive 163 6 3 171 6 3 none

140 Intermittent hypobaric hypoxia;
simulated altitude 4000 m for 4 h/d
over 40 d

5–7-wk old
SHRSP

216 þ 7 156 þ 3 Prevention

134 Intermittent hypobaric hypoxia;
simulated altitude 5000 m for 5 h/d
over 40 d

SHR 153 112 Prevention

144 Intermittent hypobaric hypoxia, 4500 m,
5 wk

4-wk-old SHR Persisted 26 wk

152 Hypobaric hypoxia, 4000 m, 21 h/d, 3 d 13-wk old SHR 197 6 5 172 6 4 Treatment

139 Intermittent hypobaric hypoxia;
simulated altitude 4500 m, 6 h/d, 3 wk

5-wk-old SHR 173 146 Prevention

136 Continuous hypobaric hypoxia
interrupted 23/wk for 1 h, 3700 m,
10 wk

7-wk old SHR
5-wk old SHR

180
175

154
122

Prevention

146 Continuous hypobaric hypoxia
interrupted 23/wk for 1 h, 3700 m,
12 wk

5-wk old SHR 205 6 7 165 6 6 Partial protection
persisted 6 wk

145 Continuous hypobaric hypoxia, 3700 m,
21 d

4-wk old SHR 145 6 5 125 6 6 Prevention

137 5000 m, 15 d SHR 203 6 10 187 6 9 Treatment

151 Continuous hypobaric hypoxia, 2100
m, 3 d

SHR 196 158 Treatment

201 Continuous hypobaric (430 mm Hg)
hypoxia, 8–10 wk

4-wk old SHR ‘‘Significantly
decreased’’

Prevention

148 Intermittent hypobaric hypoxia, 5000 m,
10 h/d, 21d

Renovascular
hypertension

169 6 4 136 6 6 Prevention

147 Intermittent hypobaric hypoxia, 5000 m,
5 h/d, 40 d

5–6-wk old
SHRSP

210 155 Prevention

a SHR, spontaneously hypertensive rats; SHRSP, stroke-prone SHR.
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drugs alone. Twenty-four–hour monitoring of BP revealed a

more pronounced decrease of arterial pressure in the IHT

group, particularly a dampening of nocturnal and diurnal

rises in BP. The combined therapy normalized 24-h arterial

pressure profile, increased the number of patients with an

adequate fall of nocturnal arterial pressure, and decreased

the number and duration of hypertensive episodes.

Intermittent Hypoxia in the Elderly. Many inves-

tigators and clinicians have assumed that elderly patients

would neither tolerate nor benefit from IHT due to the

increasing fragility of old age. For example, Kolchinskaya

et al. (103, 104) assert that old age per se imposes intrinsic,

chronic hypoxia, so superimposing IHT may be dangerous

and ineffective. Moreover, Korkushko et al. (105) reported

intense sympathoadrenal activity during hypoxic stress in

elderly subjects. Indeed, some physiological components of

gas exchange that maintain oxygenation, such as vital

capacity and hypoxic ventilatory drive, decline with age

(106, 107). On the other hand, most elderly individuals

desire a full and active lifestyle despite the inevitable

declines in physiological function and reserves. There is

considerable evidence that the elderly can readily acclimate

to moderately high altitudes (106, 108, 109), and, therefore,

may tolerate brief periods of moderate hypoxia during IHT.

Burtscher et al. (110) studied middle aged and elderly

men (50–70 y.o.) with and without prior myocardial

infarction who completed 15 daily sessions of intermittent

hypoxia. Each session consisted of three to five hypoxic

(14–10% FIO2) exposures, each 3–5 min, with 3-min

reoxygenations. In comparison to non-IHT control subjects,

the IHT regimen slightly increased hematocrit and hemo-

globin content, lowered heart rate, blood lactate accumu-

lation and perceived exertion during submaximal exercise,

and increased O2 consumption, workload, minute ventila-

tion and arterial O2 content during maximum exercise while

again suppressing lactate accumulation. The authors con-

cluded that such short-term IH exposures increase aerobic

capacity and exercise tolerance not only in healthy elderly

persons but also patients with coronary artery disease.

Korkushko et al. (111) studied 29 elderly patients with

stage II hypertension who completed 10 days of IHT

combined with the angiotensin converting enzyme inhibitor

enalopril (Table 1). Reductions in systolic arterial pressure

at rest (by 5.8%) and during 55 W exercise (by 18.8%) were

seen after the IHT program. These antihypertensive effects

persisted for 2 months.

Collectively, these studies support the therapeutic

application of normobaric IHT, alone or in combination

with pharmacological treatments, to treat classes I and II

hypertension in adult and elderly patients. The use of IHT to

treat more severe classes III and IV hypertension has not

been tested. The optimally safe and efficacious IHT regimen

has not been defined, and may depend on the age, medical

history, and genetic profile of the individual patient.

Hypoxia associated with hypobaric or normobaric IHT

is generally assumed to be the factor responsible for the fall

in BP. However, it must be noted that appropriate control

studies, such as increasing FIO2 during simulated altitude or

performing sham hypobaric or normobaric treatments with

21% O2, are absent. Such control studies are essential for

IHT to be more widely accepted as a hypertensive therapy.

Mechanisms of Antihypertensive Effects of IHT
in Humans. Role of Autonomic Nervous System in
Human Adaptation to IHT. From 1938 to 1943 repeated

exposure of Soviet pilots to hypobaric hypoxia in altitude

chambers dampened increases in heart rate and arterial

pressure during acute hypoxia (112–117), suggesting the

autonomic system had been altered by this training regimen.

In the late 1940s Gazenko and Kuznetsov’s studies of the

sympathetic response to IH in men and animals supported a

recommendation to use IH to condition pilots for high-

altitude flights (118). Sirotinin (119) considered the

autonomic nervous system changes induced by hypoxia,

including IH, to be primary factors in adaptation, and

concluded (67) ‘‘Between sympathetic and parasympathetic
systems there exists not antagonism but synergism.’’ More

recent studies in Ukraine confirmed Sirotinin’s concepts.

Bernardi et al. (15) performed power spectral analysis of

heart rate to examine more specifically how IHT affected

autonomic function in healthy subjects. IHT nearly

abolished the increase in heart rate during hypoxic exposure,

whereas sham training did not alter the hypoxia-induced

tachycardia. These analyses suggested that IHT augmented

parasympathetic influence during the hypoxic challenge.

These novel studies suggested that IHT mimicked acclima-

tization to high altitude, in which parasympathetic activity

also is enhanced (86, 120). Such activation of the

parasympathetic system by IHT was confirmed by studies

in rats (121, 122) and human subjects (123–125).

Other Depressor Mechanisms of IHT in Humans.
Other putative anti-hypertensive IHT mechanisms include

hypoxic stimulation of endothelial NO production, which

provokes vasodilation and opening of reserve capillaries,

and hypoxic induction of angiogenic growth factor synthesis

by endothelial cells and monocytes (126). ROS activate

gene expression of these factors (127). Because IHT

provokes ROS accumulation in human blood plasma

(128), El’chaninova et al. (126) tested the hypothesis that

IHT could enhance vascular endothelial growth factor

(VEGF) and fibroblast growth factor (FGF) production,

which initiates endotheliocyte proliferation. Twenty healthy

human subjects (33 6 2 y.o.) completed 14 consecutive

days of IHT; each session consisted of six 10-min cycles of

10–12% O2 with intervening 5 min recovery periods. Two

peaks in serum VEGF concentration were noted: VEGF was

increased by 110% on the second day and 50% on the fourth

day of the IHT program, vs. pre-IHT baseline, and then

gradually returned to the baseline range. The authors

proposed that the first VEGF peak reflected transient, ill-

defined damage of endothelial cells by oxidant stress

imposed by the first IHT session, and the second peak

was caused by enhanced VEGF synthesis. FGF concen-
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tration increased by 20% on the first day of IHT, and then

fell to baseline by the fourth day. The absence of a second

FGF peak may indicate that FGF synthesis doesn’t respond

as robustly to IHT as VEGF synthesis. Circulating activities

of the antioxidant enzymes superoxide dismutase, catalase

and glutathione peroxidase increased appreciably by the end

of the IHT program. The combined stimulation of

endothelial proliferation and enhancement of antioxidant

defenses support the application of IHT for treatment of

hypertension and atherosclerosis.

Rodway (129) examined the effect of hypoxia exposure

pattern on systemic BP and heart rate responses vs.
inducible nitric oxide synthase (iNOS) expression in

circulating lymphocytes of 10 healthy individuals (25 6 2

y.o.) subjected to 3 days of IH and continuous hypoxia.

Systolic, diastolic and mean BPs and heart rate increased to

similar extents under both programs, with no difference by

exposure pattern or evidence of facilitation over 3 days.

Neither IH nor continuous hypoxia altered iNOS mRNA

abundance. However, iNOS expression at the end of day 3

was inversely correlated with the end-exposure diastolic (r¼
�0.79) and mean (r ¼ �0.76) BPs on days 1–3 of

intermittent but not continuous hypoxia. Thus, both IH

and continuous hypoxia were associated with comparable

hemodynamic changes. The negative correlation between

arterial pressure and iNOS mRNA with intermittent but not

continuous hypoxia may suggest differential modulation of

hemodynamic responses to the two hypoxia patterns.

Wang et al. (130) recently demonstrated that acclima-

tization to IH improves human exercise performance by

enhancing peripheral oxygen delivery and utilization. The

authors compared effects of 12% O2 and more moderate

15% O2 IHT programs, and concluded that both regimens

improve pulmonary ventilation. However, anti-oxidative

capacity decreased and circulating lipid peroxides increased

during 12% O2 but not 15% O2 IHT. Such oxidative stress

could lead to suppression of vascular endothelial function

and impairment of vasomotor responses.

As discussed above, hypoxia simultaneously impacts

many hypertensive mechanisms. Hypoxia provokes NO

synthesis in endothelial cells which in turn stimulates

vasodilation and the opening of reserve capillaries, thereby

decreasing peripheral resistance. IHT promotes the develop-

ment of collateral vessels and new capillaries as well as

erythropoietin and hemoglobin synthesis. IHT contributes to

antioxidant activation and membrane stabilization. These

effects enhance oxygen supply to the nervous system, heart,

lung, and kidneys, thereby normalizing central and

vegetative regulation of BP.

Summary. This section has summarized some of the

extensive clinical and experimental hypoxia research

conducted in the Soviet Union and now in the FSU.

Collectively, these studies demonstrate that IHT is a

promising therapeutic modality to prevent and treat hyper-

tension throughout adulthood. It should be noted that low

doses of hypoxia might not be sufficient stimuli to mobilize

adaptive mechanisms, whilst severe or prolonged hypoxia

may provoke dangerous pathological processes. Accord-

ingly, the IHT protocol should be adjusted and hypoxia

dosage titrated to optimize the conditioning benefits in each

patient. Currently, intensive studies on approaches to dosage

selection are being performed. Specific prognostic criteria

are being developed to assess each patient’s adaptability to

IHT. Moreover, safe, portable, inexpensive IHT devices are

being developed and tested (Fig. 1). The absence of negative

side effects sometimes associated with drug therapies, and

the stimulation of an organism’s general, nonspecific

resistance, makes appropriate application of IHT a treatment

with a bright future.

Pro- vs. Antihypertensive Effects of Intermittent
Hypoxia: Preclinical Evidence

Investigations of the effect of IH on systemic BP have

yielded inconsistent and controversial findings. On one

hand, persistent hypertension is a common disorder

observed in patients and animals exposed to severe, brief,

intermittent hypoxia, as occurs in OSA (131). On the other

hand, adaptation to normo- or hypobaric IHT has been

repeatedly demonstrated to prevent development of exper-

imental hypertension, and in several cases reduce BP of

hypertensive animals (Table 2). A major reason for this

divergence is that the cardiovascular response to hypoxia

strikingly depends on the hypoxic regimen. Protocols have

varied greatly in duration and intensity of hypoxia exposure,

the number of hypoxia:reoxygenation bouts per day and the

total days of the protocol (Table 2). Protocols which induce

systemic hypertension and impair endothelium-dependent

vasorelaxation have generally employed brief, repetitive,

often severe hypoxia exposures for prolonged periods. Such

protocols include inspiration of 2–3% O2 for 6 s at 30 s

intervals, several hours per day for 4–7 wk (8, 42, 132), and

inspiration of 10% O2 for 1 min at 4 min intervals, 12 h per

day, for 14 d (133). In contrast, many studies (Table 2) have

demonstrated that adaptation to more moderate IH regimens

with simulated altitudes of 4000–5000 m (equivalent to 10–

12% FIO2 at sea level) for �1 h/d for 3–12 weeks prevented

development of endothelial dysfunction and the expected

rise of BP in spontaneously hypertensive rats (SHR;134–

134).

The anti-hypertensive effects of adaptation to hypoxia

fall into two categories: (1) prevention of hypertension

development in pre-hypertensive rats, and (2) reduction of

BP in already established hypertension. Most studies of the

antihypertensive action of IHT were performed on SHR or

stroke-prone SHR (SHRSP), although a few were conducted

in rats with other forms of experimental hypertension, such

as renovascular or deoxycorticosterone-acetate (DOCA)-salt

hypertension. The following is a more detailed review of

research on the antihypertensive effect of hypoxia.

The earliest reported studies of antihypertensive effects

of hypoxia were conducted by Meerson et al. (141, 142) and
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Barbarash et al. (143) in the 1970s. They showed that

adaptation to continuous high altitude or intermittent

hypoxia prevented development of hypertension in rats

treated with DOCA-salt. Meerson et al. (142) suggested that

the antihypertensive effect of hypoxia adaptation was due to

prevention of heart, kidney and adrenal hypertrophy and

normalization of sodium and potassium gradients in renal

tissue. Meerson et al. (134) also reported that adaptation of

SHR to IH, beginning during the prehypertensive stage,

slowed the development of hypertension. Here, BP was 112

mm Hg in SHR adapted to hypoxia, vs. 153 mm Hg in non-

adapted SHR.

These results were confirmed by other investigators,

who demonstrated that both continuous and intermittent

hypoxia slowed the development of hypertension in SHR.

Behm et al. (144) reported that IH prevented development

of hypertension in 4-week old SHR and that this effect

persisted for 26 weeks of subsequent normoxia. Henley and

Tucker (136) reported that the antihypertensive effect of

hypoxic adaptation was more pronounced when adaptation

was started in younger rats. They found that when 5-week

old SHR were exposed to hypoxia, their baseline BP of 122

mm Hg remained within the normal range, vs. 175 mm Hg

in the non-adapted cohort. However, when 7-week old SHR

were exposed to hypoxia, their BP increased to 154 mm Hg,

vs. 180 mm Hg in non-adapted SHR. Moderation of

hypertension was also observed after adaptation of 4-week

old SHR (145); a partial depressor effect persisted for 6

weeks of normoxia (146).

Stroke-prone SHR develop especially high BP (.200

mm Hg) in the course of maturation. When SHRSP were

adapted to chronic hypoxia at simulated altitudes of 4000–

5000 m starting at age 5–7 weeks, BP increased to 156 mm

Hg vs. 210–215 mm Hg in non-adapted rats (140, 147). The

depressor effect of adaptation to hypobaric IH also was

demonstrated in a rat model of renovascular hypertension

(148). Here, BP of adapted rats increased to only 136 6 6

mm Hg, whereas BP of non-adapted rats increased to 169 6

4 mm Hg.

In most studies, adaptation to hypoxia was used

prophylactically to blunt development of hypertension

rather than to treat established hypertension. It is evidently

more difficult to reduce BP in mature, already hypertensive

rats. For example, Koshelev et al. used hypobaric IH to

suppress the development of hypertension in young SHR:

BP in adapted rats increased to 146 mm Hg vs. 173 mm Hg

in non-adapted rats (139, 149). However, the same IH

regimen failed to reduce BP in adult SHR (149). The

authors suggested that the antihypertensive effect of IH was

due to stimulation of small arteriole growth in young rats

without increasing the arteriolar wall thickness to lumen

ratio. Indeed, the depressor effect of adaptation to hypoxia

in SHRSP was found to be associated with decreased

hypertrophy of the vascular wall (150). Meerson et al. (151)

and Behm et al. (152) used adaptation to continuous and

intermittent hypobaric hypoxia, respectively, to treat high

BP in SHR. Continuous, moderately hypobaric (2100 m)

hypoxia lowered BP from 196 to 158 mm Hg (151), and

adaptation to intermittent, 4000 m simulated altitude

lowered BP from 197 6 5 to 172 6 4 mm Hg (152).

Although research is limited and results variable, it seems

possible that adaptation to hypoxia can mitigate established

hypertension in animal models.

Depressor Mechanisms of Intermittent Hyp-
oxia. Although the antihypertensive mechanisms of hypo-

xia adaptation are still not completely understood, they

likely impact several major steps in the pathogenesis of

sustained hypertension, including sympathetic nervous

activity, Ca2þ loading of vascular smooth muscle, water

and salt metabolism, oxidative stress, rarefaction of the

microcirculation, endothelial dysfunction, and reduced syn-

thesis and/or availability of NO. These putative mechanisms

have been investigated in animal models, and the findings

are reviewed below.

Sympathetic Activation. Increased sympathetic activ-

ity is an important mechanism of hypertension (153, 154).

The sympathetic nervous system can increase BP through its

effects on cardiac output, peripheral vascular resistance,

renal function, gene expression and morphology of target

organs (154). Studies in SHR confirm the contribution of the

sympathetic nervous system to the development of hyper-

tension. These rats exhibit increased sympathetic innerva-

tion and catecholamine content in several organs, including

the kidneys (155), and exaggerated reactivity of the

hypothalamic-pituitary-adrenocortical axis to acute stress

(156). Development of hypertension in SHR may be

delayed or prevented by renal denervation (157) or neonatal

sympathectomy (158).

While hypoxia regimens that model OSA lead to

sustained increases in sympathetic activity and vasoreactiv-

ity (12, 159, 160), other hypoxia protocols attenuate both

basal and stress-induced sympathetic activity in rats (161,

162). Henley and Bellush (145, 163) reported that

attenuation of hypertension was nearly complete when

altitude exposure (simulated altitude of ;3700 m for 21 d)

was initiated in 4–5-wk old SHR. Non-hypoxia-conditioned

SHR had appreciably higher norepinephrine (NE) contents

in hypothalamus, brainstem and frontal cortex, relative to

Wistar-Kyoto (WKY) rats (145). Hypoxia exposure of SHR

decreased NE content in all three brain regions, in

association with reduced NE turnover. The authors

suggested that hypoxia-induced reduction of NE reflects

decrements in central noradrenergic activity. In the same

study SHR also had greater content and turnover of

dopamine in striatum than did WKY rats. As with NE,

hypoxia decreased brain dopamine content. Together,

dopaminergic and noradrenergic profiles revealed a marked,

widespread influence of hypoxia on catecholaminergic

metabolism. Hypoxia also decreased adrenal catecholamine

turnover in SHR, which may represent an important

mechanism whereby hypoxia could exert a potent anti-

hypertensive influence. The selective suppression of adrenal
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catecholamine turnover in hypoxic SHR implicates the

central nervous system in this potential depressor effect.

Hyper-reactivity of blood vessels to sympathetic stimuli

may contribute to development of hypertension in SHR

(164); accordingly, it was hypothesized that hypoxic

moderation of spontaneous hypertension was caused by a

decrease in vascular responsiveness (165). Thoracic aortic

rings obtained from SHR maintained at 3700 or 1520 m

simulated altitude showed chronically reduced responsive-

ness to phenylephrine, unlike aortas from hypoxia-adapted

normotensive WKY rats. The vessel response to KCl, a non-

specific vasoconstrictor, was unaffected by high altitude,

suggesting that hypoxia might restrict the development of

spontaneous hypertension through a specific attenuation of

a-adrenergic vasoconstriction.

The dampened systemic pressor response and reactivity

of isolated aortic segments to phenylephrine induced by 4-

week hypobaric hypoxia was not immediately reversed

upon resumption of normoxia, unlike the vascular hypores-

ponsiveness induced by acute hypoxia, which is promptly

reversible upon the return to normoxia (166). Moreover,

Auer and Ward (167) showed that agonist-induced con-

traction of aortic segments is reduced after only 12 h of in
vivo hypoxia, and that the reduction of contractility induced

by exposure to hypoxia for 48 h persisted for at least 12 h

after restoration of normoxia. Therefore, it appears that the

depressor responses to acute and chronic hypoxia are

mediated by different mechanisms.

Water and Salt Metabolism. The ability of the

kidneys to balance water and electrolyte excretion with

intake is crucial for long-term control of arterial pressure

(154). In SHR the pressure–natriuresis relationship is shifted

to higher renal perfusion pressures (168) and proximal

tubular sodium reabsorption is increased (169).

Early studies provide some evidence that adaptation to

hypobaric hypoxia may improve water and salt metabolism

in SHR. Both acute and chronic high altitude (2100 m)

hypoxia exerted diuretic and natriuretic effects on SHR but

not Wistar rats (151). The BP in SHR fell from 196 to 158

mm Hg after only 3 days of hypoxia, but remained

unchanged in normotensive animals. This antihypertensive

effect of adaptation to hypobaric hypoxia was associated

with partial atrophy of the adrenal zona glomerulosa and

reduced adrenal synthesis and circulating activities of

mineralocorticoids. The size and activity of supraoptic

hypothalamic nuclei were also diminished. Meerson et al.
(151) suggested that these structural adaptive changes along

with inhibition of mineralocorticoid and ACTH secretion

afforded a sustained decrease in sodium and water content in

hypoxia-adapted animals and that these changes might offset

major mechanisms of essential hypertension in humans.

Similar effects were observed in another experimental

hypertension model, rats with DOCA-salt hypertension

(143). These rats had enhanced NaCl intake, hypertrophy of

the heart, kidneys and adrenal glands, increased diameter of

renal glomeruli, expansion of the renal cortex and medulla,

and reduced Naþ and Kþ gradients in renal tissue.

Adaptation to hypoxia attenuated these changes and

prevented development of hypertension.

A pronounced and sustained suppression of voluntary

intake of hypertonic saline was observed in SHR at

simulated altitude of 4000 m (152). The hypoxia-induced

reduction in saline consumption was much more pro-

nounced in SHR than in normotensive Wistar rats.

Interestingly, SHR with already established hypertension

nevertheless responded to hypobaric hypoxia with an

appreciable decrease of BP (from 197 6 5 mm Hg to 172

6 4 mm Hg) provided that the rats had no access to

additional salt, i.e., when only food and water were

available. These data support the hypothesis that adjust-

ments in water and salt metabolism may contribute

importantly to the antihypertensive effect of hypoxia (151).

Prevention of Ca2þ Overload. There is convincing

evidence that hypertension in SHR is characterized by

enhanced Ca2þ influx in various cell types. Intracellular

Ca2þ overload increases contraction of vascular smooth

muscle, which increases peripheral vascular resistance and

arterial pressure (170). By increasing NO in vascular

smooth muscle (171), adaptation to intermittent hypoxia

enhanced sarcoplasmic reticular (SR) Ca2þ sequestration

and thereby prevented Ca2þ overload in SHR (172).

Moreover, hypoxia adaptation has been shown to make

the SR Ca2þ ATPase more resistant to oxidative damage

(173).

Exposure of rats to 48 h continuous, hypobaric (380

mm Hg) hypoxia decreased intracellular free Ca2þ concen-

tration ([Ca2þ]i) in vascular smooth muscle cells of their

mesenteric arteries (174). On the other hand, hypoxia

exposure increased [Ca2þ]i of endothelial cells isolated from

these mesenteric arteries, suggesting that Ca2þ-enhanced

NO production in endothelial cells attenuates vasoconstric-

tion following chronic hypoxia.

The effects of chronic hypoxia on [Ca2þ]i and myofila-

ment Ca2þ sensitivity during 5-hydroxytryptamine stimula-

tion were examined in uterine arteries isolated from

normoxic and chronically hypoxic (3820 m for 110 d) rats

(175). Smooth muscle [Ca2þ]i was measured simultaneously

with contractile force. Chronic hypoxia dampened 5-

hydroxytryptamine induced smooth muscle contraction by

suppressing Ca2þ mobilization and myofilament Ca2þ

sensitivity. Similar results were obtained in aortas of 16-

week-old SHR, where the hypotensive effect of chronic

hypobaric hypoxia (4,000 m, 5 weeks) was associated with

reductions in 45Ca uptake and tissue Ca2þ content compared

to respective values of normotensive rats (176). The authors

suggested that these effects on Ca2þ may at least partially

explain the depressor effect of adaptation to hypoxia.

Another important mechanism of cardioprotection

against Ca2þ overload which may be activated by

intermittent hypoxia is increased resistance of Naþ-Kþ

ATPase to oxidative stress (173, 177). In addition, hypoxia-

induced protection against Ca2þ overload may be mediated
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by activation of NO-dependent mechanisms (178, 179). Xu

et al. (180) showed that NO protected sarcolemmal Naþ-Kþ

ATPase function and Naþ and Kþ transport by scavenging

toxic free radicals. Baker et al. (181) observed increased

activation of KATP channels in hearts of chronically hypoxic

rabbits. Increased NO production during adaptation to

hypoxia may have activated cGMP-dependent protein

kinase, which in turn would have phosphorylated and

activated KATP channels. The resulting potassium efflux,

sarcolemmal hyperpolarization, and decreased Ca2þ influx

was suggested to confer tolerance to subsequent myocardial

ischemia (182), but an additional effect might be to decrease

reactivity of vascular smooth muscle.

Oxidative Stress and Microvascular Rarefaction.
Vascular reactive oxygen species (ROS) are produced in

endothelial, adventitial, and vascular smooth muscle cells,

primarily by NAD(P)H oxidase. At low concentrations ROS

function as signaling molecules to regulate endothelial

function and vascular resistance. However, increased ROS

bioactivity leads to endothelial dysfunction, increased

contractility and hypertrophy of vascular smooth muscle,

monocyte invasion, lipid peroxidation, inflammation, and

increased deposition of extracellular matrix proteins. These

manifold responses to increased ROS ultimately contribute

to development of hypertension (183). In addition, adapta-

tion to hypoxia may potentiate antioxidant defenses. High

altitude (6300 m) hypoxia training (30 min/d for 15 days)

increased activities of the antioxidant enzymes superoxide

dismutase, catalase and glutathione peroxidase in erythro-

cytes (184).

The burst of ROS associated with reoxygenation may

be an important inducer of protective adaptations to

intermittent hypoxia. The antioxidant NAC abrogated the

development of cardioprotection in chronically hypoxic rats

(185) and intermittently hypoxic dogs (186), indicating that

oxidative stress, acting during adaptation of rats to hypoxia,

plays an important role in the induction of endogenous

protective mechanisms. Antioxidant supplementation under

conditions which evoke ROS-dependent adaptive responses

may exert potentially adverse effects.

In hypertensive rats, oxidative stress in microvessels is

considered to be a primary cause of blood vessel rarefaction,

i.e., a reduction in microvessel density, resulting from

enhanced endothelial cell apoptosis (187, 188) and,

possibly, impaired angiogenesis. Rarefaction increases

peripheral vascular resistance and impairs O2 delivery to

tissues. Vessel rarefaction increases resistance to blood flow

as does vasoconstriction; however, unlike vasoconstriction,

microvascular rarefaction markedly alters blood flow

distribution (189). In addition, rarefaction of cerebral

microvessels in SHR may form local hypoxic foci to

activate the sympathetic nervous system through the

cerebro-ischemic mechanism (190, 191). It is unclear

whether microvascular rarefaction is a cause or consequence

of elevated BP, which itself may induce rarefaction (192).

On the other hand, microvascular rarefaction was demon-

strated in humans predisposed to hypertension who still

maintain near-normal BP (193). Oxidative stress also may

promote loss of microvessels, since cell-permeable antiox-

idants prevent endothelial cell apoptosis and microvascular

rarefaction in SHR (188).

Some pharmacological agents such as a very low-dose

combination of perindopril and indapamide or other

angiotensin-converting enzyme inhibitors and AT1 receptor

antagonists can reverse capillary rarefaction and restore

normal microvascularisation in the coronary circulation of

hypertensive rats (194, 195). This important benefit of

antihypertensive therapy mitigates complications such as

ischemia and other organ damage. Restoration of tissue

vascularity by improving angiogenesis may contribute to

successful treatment of hypertension-associated damage to

organs such as brain, heart, kidneys and eyes. In addition to

pharmacological stimulation, angiogenesis also is evoked by

hypoxia. For instance, intermittent, high-altitude hypoxia-

induced angiogenesis increases vascular capacity in rat

myocardium (196) and decreases the intercapillary diffusion

distance for blood-borne fuels and O2 (197). IH increases

vascularity in skeletal muscles and enhances exercise

performance (198). Hypoxia can promote angiogenesis

through various factors, particularly vascular endothelial

growth factor (199), which initiates angiogenesis through

the recruitment and proliferation of endothelial cells.

Alternating hypoxia and reoxygenation induce oxidative

stress which can injure tissues but also may promote

angiogenesis or neovascularization. It thus appears that after

causing injury, ROS promptly initiate the tissue repair

process by triggering angiogenesis (200).

The antihypertensive effect of adaptation to hypoxia is

considered by some to be due to angiogenesis (148, 149,

201), particularly in the brain. In brain of rats exposed to

chronic, hypobaric (0.5 atm) hypoxia for up to 3 weeks,

angiogenesis decreased the average intercapillary distance

from ;50 to ;40 lm (202) and improved O2 availability to

the brain parenchyma (203). This angiogenic effect of

hypoxia might prevent functional rarefaction of arterioles

and capillaries in brains of SHR (201) and rats with

renovascular hypertension (148).

Nitric Oxide. There is increasing evidence that IH

modifies synthesis of vasodilatory factors, primarily NO

(179). Recent studies have demonstrated that adaptation to

hypoxia is protective against both NO deficiency and

overproduction (178, 179, 204). Both of these NO disorders

can contribute to hypertension, so a bidirectional moderat-

ing effect on the NO system may be an anti-hypertensive

mechanism of IHT.

Konishi and Su (205) were the first to demonstrate

endothelial dysfunction in hypertension. Later, attenuation

of endothelium-dependent vasorelaxation was found in

different experimental models of hypertension and also in

patients with essential renovascular and other forms of

hypertension (206). NO deficiency provokes endothelial

dysfunction, often associated with reduced plasma and
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urinary levels of nitrite and nitrate (140, 207). NO

deficiency in hypertension may result from reduced

endothelial nitric oxide synthase (eNOS) activity (207),

NO inactivation by free radicals (208), and/or decreased

action of NO on the vascular smooth muscle (209).

Nitric oxide overproduction rather than NO deficiency

is often observed in SHR (210). The NO pathway is

apparently upregulated in blood vessels by a mechanism

involving induction of eNOS (210) and/or inducible NOS

(iNOS) (211). However, in SHR NO is not sufficiently

bioactive to stimulate the formation of cyclic GMP and to

maintain an adequate NO-dependent vasodilatory tone.

Also, excessive and sustained generation of NO may

contribute to oxidant-mediated endothelial dysfunction.

Chronic treatment with the NOS inhibitor, aminoguanidine

suppressed development of hypertension and lessened

vascular hyper-reactivity in SHR (212). In early hyper-

tension, iNOS induction may be sufficient to restrict BP

elevation. Later, however, excessive NO inhibits eNOS and

directly damages vascular cells by suppressing mitochon-

drial respiration and DNA synthesis. These effects even-

tually lead to endothelial dysfunction and increased BP,

which, in turn, damages endothelium-dependent relaxation

even further, creating a vicious cycle (213, 214).

Stimulation of NO synthesis in hypertensive rats

normalizes endothelium-dependent relaxation and reduces

BP (215, 216). Adaptation of SHRSP to hypobaric IH

beginning at hypertension onset (at age 5–6 wk) produced a

pronounced antihypertensive effect. By maturity, in hyp-

oxia-adapted SHRSP, BP had increased only to 156 6 3

mm Hg, vs. 216 6 7 mm Hg in non-adapted rats (140). This

effect in adapted rats was associated with increased

endothelial NO synthesis, as indicated by increased urinary

NO2
�þNO3

� excretion, and also by complete prevention of

endothelial dysfunction of isolated blood vessels. A NOS-

stimulating b-adrenergic antagonist, nebivolol (217), mim-

icked these antihypertensive and vasoprotective effects of

hypoxic adaptation (150). Compared to another b-antago-

nist, metoprolol, nebivolol was a more potent antihyperten-

sive agent, which also prevented endothelial dysfunction,

myocardial hypertrophy, and vascular remodeling in

SHRSP rats (150).

Mashina et al. (147) compared the protective effects of

adaptation to hypoxia with those of nebivolol and the NO

donor dinitrosyl iron complex (DNIC). It appeared that

adaptation to hypoxia was superior in reducing hypertension

and improving endothelial dysfunction in SHR. DNIC was

as effective as hypoxia for preventing hypertension, but it

did not improve endothelium-dependent relaxation. Nebi-

volol exerted both antihypertensive and vasoprotective

effects, which nevertheless were less pronounced than those

of adaptation to hypoxia. On the whole, adaptation to

intermittent hypoxia proved the most effective antihyper-

tensive and vasoprotective treatment.

Adaptation to hypoxia stimulates both NO synthesis

and progressive NO binding by certain proteins, forming

NO stores, primarily in the form of S-nitrosothiols and

DNIC (171). These NO stores buffer excess free NO and

also can gradually liberate NO to provide a non-enzymic

source of free NO (218, 219). Although often undetectable

in basal conditions, NO stores form in response to increased

NO concentration, whether from NOS activity or from

administration of exogenous NO donors (220). Exogenous

DNIC exerts a protracted hypotensive action, presumably

caused by stable addition of DNICs to protein thiols (221).

The accumulation of NO stores in adaptation to

hypoxia may contribute to the protection against potentially

harmful effects of excess NO synthesized during repeated

hypoxia exposures. On the other hand, as non-enzymic NO

sources, NO stores may compensate for decreased produc-

tion of NO by endothelial cells, or feedback-inhibit NO

overproduction. Smirin et al. (222) reported that prevention

of NO storage in the vascular wall abolished hypoxia-

mediated protection against NO overproduction, whereas

augmentation of NO stores by NO donors mimicked this

protection. Chronic treatment of rats and dogs with an NO

store-depleting (223) antioxidant, N-acetylcysteine, abol-

ishes the cardioprotective effect of adaptation to hypoxia

(185, 186).

A hypobaric IH regimen which prevented the develop-

Table 3. Pro- Vs. Antihypertensive Hallmarks of OSA and IHTa

Characteristic OSA IHT

Hypoxia exposures Very frequent, brief Less frequent, more prolonged
Ventilation Asphyxiation Hyperventilation
Arterial PCO2 Increased Decreased
Arterial pH Decreased Increased
ROS formation Intense Moderate
Inflammation Pro-inflammatory Anti-inflammatory
Erythropoietin No change Increased synthesis and activity
Circulating endothelin-1 Increased Little or no change
Arousals Frequent None: subject remains conscious
Endothelial function Impaired Improved
NO storage Unknown Increased

a IHT, intermittent hypoxia training; OSA, obstructive sleep apnea; ROS, reactive oxygen species.
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ment of hypertension in SHR did not affect BP and

endothelium-dependent relaxation of isolated aortas of

normotensive rats (140). Moreover, the hypotensive effect

of an exogenous NO donor, DNIC-cys, was greater in SHR

than WKY rats (221). The hypotensive effect on normo-

tensive rats may have been limited by a genetically

predetermined enhancement of NO storage, apparently

related to the inherited capacity for NO synthesis.

Adaptation to hypoxia increased total NO production to a

similar extent in SHRSP and normotensive WKY rats, but

the size of NO stores was much less in SHRSP (179). Since

more NO remained unbound in SHRSP, adaptation to

hypoxia had a more pronounced depressor effect than in

WKY rats. However, the lack of compensatory increase in

NO storage capacity in SHRSP may exacerbate endothelial

injury and dysfunction due to NO overproduction by iNOS

in macrophages and vascular smooth muscle (224).

Why Do OSA and IHT Produce Such Disparate
Effects on Blood Pressure?

To formulate an explanation for the divergent effects of

OSA vs. IHT on systemic BP, it is useful to consider the

fundamental differences between the two phenomena (Table

3). OSA is characterized by brief, recurrent cycles of

hypoxia-reoxygenation, typically less than 60 s in duration.

In contrast, IHT programs which have proven effective at

mitigating hypertension use hypoxia periods of several

minutes–hours (Table 2). CO2 accumulates in the circu-

lation during each OSA asphyxiation episode, which causes

acidemia (225–227); during IHT, systemic hypoxia acti-

vates ventilation, resulting in hypocapnea and alkalemia.

Each asphyxiation arouses the OSA patient, so sleep is

fragmented and unproductive. On the other hand, human

subjects undergo IHT during normal waking hours, and

remain alert throughout the IH sessions.

Several factors produced by OSA serve to activate the

sympathetic nervous system and, thus, increase BP (Fig. 2).

Frequent hypoxia-reoxygenation cycles cause intense oxi-

dative stress, due to repeated addition of oxygen to the

electron-rich, reduced environment of hypoxic cells and

mitochondria (228). Intense, OSA-induced ROS production

plays a pivotal role in the pathogenesis of hypertension

(228–230). ROS have been implicated in the mechanism of

long-term facilitation of the carotid chemoreceptor reflex,

Figure 2. Pro- and anti-hypertensive mechanisms of OSA and IHT, respectively. Solid arrows indicate facilitation and/or activation. Broken lines
indicate inhibition and/or suppression. Pro-hypertensive mechanisms are shown with black boxes and arrows; gray boxes and arrows indicate
anti-hypertensive mechanisms. EPO, erythropoietin; IHT, intermittent hypoxia treatment; LTF, long-term facilitation; OSA, obstructive sleep
apnea; ROS, reactive oxygen species; VSM, vascular smooth muscle. See text for details.
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which increases tonic sympathetic activity (41, 231, 232). In

contrast, IHT enhances parasympathetic tone (15, 121, 122).

Oxidative stress associated with OSA also activates the

inducible NOS isoform, iNOS, leading to intense NO

production (233, 234). NO produced by iNOS can itself

activate the carotid chemoreceptors (235, 236), and, by

irreversibly condensing with another ROS, superoxide,

generate peroxynitrite (237), yet another chemoreflex

activator (238). Conversely, exogenous antioxidants mitigate

hypertension (239–241). Furthermore, OSA, ROS and iNOS

are associated with increased circulating activity of the

potent vasoconstrictor, endothelin-1 (228, 242–244) and

suppression of eNOS, culminating in endothelial dysfunc-

tion (245). Kanagy et al. subjected rats to brief (90 s), intense

bouts of combined normobaric hypoxia (FIO2: 5%) and

hypercapnia (FICO2: 5%), with intervening 90 s normoxia

periods (229, 246, 247). In these rats, increased circulating

endothelin-1 activity paralleled increases in BP. When the

rats consumed the superoxide dismutase mimetic tempol in

their drinking water, the hypoxia þ hypercapnia-induced

increases in BP and endothelin-1 were blunted (229). These

results implicate ROS in the endothelin-1-mediated mech-

anisms of OSA-induced hypertension (Fig. 2).

The moderate amounts of ROS generated by controlled,

therapeutic IH provoke neither vasoconstriction nor long-

term facilitation of the carotid chemoreflex. Indeed, these

ROS function as signaling molecules (245–247) which

appear to be pivotal to the cardio- and cerebroprotective

adaptations evoked by IHT (185, 186, 248). These

adaptations include IHT-induced increases in cytoprotective

antioxidant enzyme activities in erythrocytes (184), liver

(249), heart (250) and brain (251). IHT induces changes in

mitochondrial respiration which increase the efficiency of

oxygen utilization in ATP production. These effects are

mediated partly by NO-dependent reactions.

In contrast to OSA, IHT stimulates endothelium-

dependent relaxation and prevents endothelial dysfunction

in hypertensive rats (215, 216). Furthermore, IHT promotes

formation of NO stores which contribute to adaptive

responses of the circulation (224) and protect against

harmful effects of both excessive NO synthesized during

repeated exposure to hypoxia and decreased production of

NO by endothelial cells (171).

The stress of asphyxia during OSA is a powerful

stimulus of sympathetic activity, as is the lack of restful

sleep. Cyclic accumulation of CO2 and Hþ in the arterial

blood would increase delivery of these metabolites to

skeletal muscle. Both CO2 and Hþ are known to activate the

muscle metaboreflex (252, 253), an important stimulus of

sympathetic activity (254). In conscious, chronically

instrumented dogs subjected to rebreathing-induced, pro-

gressive hypoxia, the superimposition of mild hypercapnia

increased splanchnic and renal vasoconstriction, peripheral

resistance and aortic blood pressure, but sinoaortic dener-

vation prevented these pressor responses (255). Tamisier et
al. (256) found that muscle sympathetic nerve activity and

forearm vascular resistance in healthy human subjects

returned to baseline and mean arterial pressure temporarily

fell below pre-hypoxia values following 15 min of

hypocapnic hypoxia, but both variables were elevated for

at least 15 min following hypercapnic hypoxia. Bao et al.
(37) demonstrated that repetitive cycles of eucapnic hypoxia

in rats produced more substantial increases in arterial blood

pressure and sympathetic activity (measured in the left

splanchnic nerve) than comparable cycles of hypocapnic

hypoxia. However, these workers also showed in this rat

model that neither eucapnia nor hypercapnia exacerbated the

persistent diurnal increases in arterial pressure evoked by

hypocapnic hypoxia (257). Collectively, it appears that

episodic hypercapnia associated with OSA intensifies the

acute pressor responses to hypoxia, but evidence that

hypercapnia produces sustained post-hypoxic hypertension

is still inconclusive.

Obstructive sleep apnea is pro-inflammatory (230, 258–

260); indeed, systemic inflammation ranks among the

leading causes of OSA-induced comorbidities, including

hypertension. Inflammation causes hypertension by damag-

ing vascular endothelium, which disrupts endothelium-

mediated vasodilation (131, 260–263). The pro-inflamma-

tory factors NF-jB (228, 230, 264, 265) and iNOS (233,

234) are activated in the OSA setting in response to ROS.

Therapeutic IH activates expression and synthesis of the

cytokine erythropoietin (266–269), but OSA does not (259,

270–272). In addition to its well-documented erythropoietic

actions, erythropoietin has recently been found to protect

heart (267, 273, 274) and brain (275, 276) from ischemia-

reperfusion injury. Numerous recent reports have demon-

strated anti-inflammatory actions of erythropoietin, con-

cordant with its cerebro- and cardioprotective character

(274–279). In general, IHT programs increase circulating

erythropoietin (266, 267) without increasing hematocrit

(266, 269). Accordingly, intermittent, normobaric hypoxia

therapy suppressed inflammation, lowered circulating pro-

inflammatory cytokines, and increased anti-inflammatory

cytokines in men performing strenuous exercise (280).

Hypoxia can profoundly alter the rheological properties

of blood. Chronic hypoxia increases hematocrit and, thus,

apparent blood viscosity, a major determinant of vascular

resistance (281, 282). Moreover, hypoxia increases viscosity

of erythrocyte-free plasma, possibly by altering interactions

among plasma proteins, and decreases erythrocyte deform-

ability (283). Hypoxic effects on hematocrit are heavily

dependent on the duration and intensity of the hypoxic

stimulus (284). Accordingly, the increase in hematocrit in

OSA patients increased with the severity of the nocturnal

respiratory disturbance, although even severe OSA pro-

voked only modest increases in hematocrit (285, 286). In

rats, rapid, cyclic bouts of hypoxia-reoxygenation produced

similar increases in hematocrit whether accompanied by

hypocapnia or hypercapnia (287). Therefore, the intensity,

frequency and duration of intermittent hypoxia cycles are
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likely the major determinants of erythropoiesis and

hematocrit, even in the absence of OSA.

In summary, OSA ignites a crescendo of factors which

activate the sympathetic nervous system and systemic

inflammation, culminating in maladaptive, persistent hyper-

tension (Fig. 2). In contrast, therapeutic IHT minimally

activates or even dampens these factors. These distinct

differences between OSA and IHT are likely responsible for

the divergent effects of these hypoxia paradigms on

systemic arterial pressure and other comorbidities of OSA.

It seems reasonable to conclude that appropriate application

of intermittent hypoxia can produce sustained reductions in

systemic arterial pressure in hypertensive subjects.
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