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Cigarette smoking represents an enormous, global public health

threat. Nearly five million premature deaths during a single year

are attributable to smoking. Despite the resounding message of

risks associated with smoking and numerous public health

initiatives, cigarette smoking remains the most common

preventable cause of disease in the United States. Fortunately,

even in an adult smoker, smoking cessation can reverse many

of the potential harmful effects. The symptoms associated with

nicotine withdrawal represent the major obstacle to smoking

cessation. This minireview examines the roles of various

nicotinic receptors in the mechanisms of nicotine dependence,

discusses the potential role of the habenula-interpeduncular

nucleus axis in nicotine withdrawal, and highlights nicotinic

receptors containing the b4 subunit as a potential pharmaco-

logical target for smoking cessation strategies. Exp Biol Med

233:917–929, 2008
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Introduction

About 10 million cigarettes are sold every minute in the

world and every eight seconds someone dies from tobacco

use (1). If current trends continue, smoking will kill one in

six people by 2030 (2). Cessation is the only effective

measure to prevent and limit the long-term negative effects

of smoke (3).

Several phenomena participate in the initiation, main-

tenance and escalation of drug use that underlie nicotine

dependence. The neuronal adaptations produced by repeated

exposure to nicotine include a greater expression of

neuronal nicotinic acetylcholine receptors (nAChRs), the

need of progressively higher doses of nicotine to obtain the

same effect (tolerance), and the increased ability of the drug

to activate dopaminergic neurotransmission and trigger

appetitive behaviors (sensitization) (4, 5). Most smokers

recognize the negative impact of smoking on health and

would prefer to quit, if possible. However, very few actually

succeed (6). This happens mainly because of the withdrawal

symptoms that appear upon smoking cessation. In fact,

withdrawal symptoms are a better predictor of unsuccessful

quit attempts than smoke intake or dependence (7). While

current therapies for smoking cessation are helpful, none

can claim a very high rate of success (8). Therefore, there is

a great need to better understand the interacting behavioral

and biological factors that lead to the physical and

psychological manifestations of nicotine dependence.

This brief review examines the roles of each nAChR

subunit in nicotine addiction, with special emphasis on

nicotine withdrawal. In addition, we present the view that

nAChRs in the medial habenula (MHb) and interpeduncular

nucleus (IPN) have great influence on the symptoms of

nicotine abstinence and represent a novel target for smoking

cessation therapies.

Nicotinic Acetylcholine Receptors Bind the
Nicotine Contained in Tobacco

Neuronal nAChRs are pentameric ligand gated ion

channels formed by either a subunits (a7, a9, a10) or

combinations of a and b subunits (a2-a6 and b2-b4) (9).

They bind the acetylcholine (ACh) released mainly by

neurons located in the pedunculopontine tegmentum and the
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laterodorsal pontine tegmentum, several basal forebrain

nuclei, or the striatum (9). Upon opening, nAChRs are

permeable to monovalent and divalent cations, mainly Naþ

and Ca2þ (9). The membrane depolarization that follows ion

permeation can trigger a variety of intracellular events,

including the activation of signal transduction cascades and

the transcription of genes (10). Besides undergoing

transitions between the open and closed states nAChRs

can also exist in the desensitized state (11). The kinetics of

each conformational state are influenced by the subunit

composition of the channel (12) and might be relevant for

the mechanisms of nicotine dependence (13).

Several studies on mRNA and protein expression levels

have shown that different areas of the brain express specific

subsets of nAChR subunits. This anatomical knowledge,

together with studies in genetically modified mice, has shed

light over the possible functions of several nAChR subunits.

Experimental evidence from several groups has confirmed

the role of a4b2 nAChRs in addiction (14, 15). Those

receptors are necessary and sufficient for nicotine reward,

tolerance and sensitization (16). Another subunit that may

play a key role in nicotine addiction is a6, because a6-

containing receptors seem to dominate nicotine control of

dopamine neurotransmission in the nucleus accumbens (17).

Interestingly, we showed that b4-containing (b4*) (19), but

not b2-containing (b2*) nAChRs (18, 19) are necessary for

the expression of the somatic signs of nicotine withdrawal.

More recent data indicate that a7* nAChRs can also

influence the somatic signs of withdrawal (20). Table 1

summarizes the main expression patterns and functions of

each nAChR subunit.

Withdrawal Symptoms in Humans

In humans, cessation of tobacco intake precipitates both

somatic and affective symptoms of withdrawal which may

include severe craving for nicotine, irritability, anxiety, loss

of concentration, restlessness, decreased heart rate, de-

pressed mood, impatience, insomnia, and increased appetite

and weight gain (21, 22). These withdrawal symptoms cause

enough distress to become a deterrent to abstinence and a

drive to relapse (7). The negative affective symptoms

usually start 4 to 24 h after the last cigarette, peak in about

three days and may not recede even after a month of tobacco

abstinence (8, 21, 23–27).

Anxiety and stress have a complex influence on all

aspects of nicotine dependence, including the withdrawal

syndrome. While many smokers use cigarettes as a tool to

attenuate stress and anxiety and maintain that smoking has a

calming effect (28–30), anxiety increases during with-

drawal. Indeed, several studies suggest that smokers

continue to smoke to avoid that particular symptom of

nicotine deprivation (31–38). Besides being a product of

nicotine withdrawal, stress and anxiety have the ability to

exacerbate its symptoms, which results in increased craving

and relapse (36, 39–46).

Similarly to anxiety, depression may both promote

smoking and be a symptom of nicotine withdrawal (47–49).

Subjects with a history of depression seem more sensitive to

the effects of nicotine and display elevated craving and

withdrawal scores upon nicotine cessation (50). Finally,

another stress-related disorder, PTSD (post-traumatic stress

disorder) is also associated with increased smoking behavior

and enhanced withdrawal symptoms (51, 52), purporting

mood regulation as one of the factors prompting smoking

and preventing smoking cessation.

Withdrawal Symptoms in Rodents

Withdrawal symptoms can be assessed in animals by

the sudden discontinuation of chronic nicotine administra-

tion and recording of withdrawal signs, either through

observation of behavioral signs or through monitoring of

disruptions in operant behavior. Alternatively, withdrawal

can be precipitated on chronic nicotine treated rodents by

systemically administering nAChR antagonists. Nicotine

withdrawal signs are both physical, or somatic, and

affective, or non-somatic.

Somatic Signs. Somatic signs of withdrawal upon

interruption of chronic nicotine treatment were first

documented in the rat (53). These signs included teeth

chattering, chews, gasps, palpebral ptosis, tremors, shakes,

and yawns. The number of signs depended on the amount of

nicotine infused, and were relieved by acute nicotine

treatment (53). Another way of precipitating withdrawal in

rats chronically treated with nicotine is the systemic

injection of nicotinic antagonists such as mecamylamine,

di-hydro-beta-erythroidine, or methyllycaconitine (54).

Mecamylamine, which has a slightly higher affinity for

a3b4* nAChRs than for b2* receptors, is the best antagonist

at precipitating nicotine withdrawal (54).

The advent of genetic engineering techniques has

prompted the study of nicotine withdrawal symptoms in

the mouse. The symptoms of nicotine withdrawal are

qualitatively similar to those observed in rats and consist of

a sharp increase in certain normal behaviors that become

repetitive and more frequent. Among those behaviors there

are shaking, grooming and scratching. In addition, behav-

iors such as jumping, which are not normally observed, also

appear in the mouse undergoing nicotine withdrawal (54,

55). Our lab has shown that mice null for the b4 subunit

show no somatic signs when nicotine withdrawal is

precipitated with systemic mecamylamine, and no sponta-

neous withdrawal-induced hyperalgesia (19). In the same

report we also showed that b2 -/- mice show normal

mecamylamine-precipitated somatic signs of behavior (19),

a finding that was later confirmed by an independent group

(18). In addition, we have shown that the a7 subunit also

plays a role in mecamylamine-precipitated somatic signs of

withdrawal. We showed that a7 -/- mice show an

intermediate withdrawal phenotype on that experiment

(20). Interestingly, it was reported by another group that
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a7 -/- mice show normal somatic signs of spontaneous

withdrawal, but decreased hyperalgesia upon spontaneous

nicotine withdrawal (56). The apparent differences between

these two reports may be due to the different protocols

followed.

Non-Somatic Signs. There are four main measures

of affective signs of withdrawal that have consistently been

reported on rodents: anhedonia, conditioned place aversion,

anxiety-related behavior and conditioned fear.

A major affective symptom of nicotine withdrawal is a

diminished interest in rewarding stimuli, or anhedonia (57).

Interestingly, depression, which is highly correlated to

nicotine withdrawal, also produces anhedonia (58). In rats,

anhedonia is measured as an increase in brain-stimulation

reward thresholds (57). Withdrawal from several drugs of

abuse, including nicotine, significantly elevates brain-

stimulation reward thresholds, reflecting lower interest in

the electrical stimuli that seem rewarding in basal conditions

(58). Both spontaneous (59, 60) and mecamylamine-

precipitated (61) nicotine withdrawal induce increases in

self-stimulation thresholds.

Conditioned place aversion is another paradigm used to

reveal the affective signs of withdrawal (58). After exposure

to a two-chamber apparatus, chronic nicotine-treated

animals are injected with an antagonist to precipitate

withdrawal, and immediately confined in one of the

chambers. Following injection of saline, animals are

confined in the other compartment. When tested without

drug and with access to both chambers, animals prefer to

stay in the chamber that has been paired with saline and not

Table 1. nAChR Subunits, Their RNA Expression Patterns and the Major Phenotypes of Mutant Mice for
Each Subunita

Subunit Expression Major mutant mouse phenotypes References

a2 High: IPN, amygdala
Low: olf, basal ganglia,

hippo, cx

a2 -/- mice show impaired hippocampal LTP,
suggesting an effect on learning and memory.

Ishii et al., 2005 (193);
Nakauchi et al., 2007 (194)

a3 High: olf, MHb, IPN,
pineal, #10

a3 -/- mice die days after birth. a3 þ/- mice
show decreased nicotine-induced seizures.

Salas et al., 2004a (19);
Xu et al., 1999 (195)

Low: thal, hypothal, SN/VTA,
Sup col, cx

a4 High: cx, VTA, striatum,
thal, hypothal, MHb, etc.

a4 -/- mice show altered nicotine-induced DA
levels in the striatum. Activation of receptors
in a4 gain of function mice is sufficient for
reward, tolerance and sensitization.

Marubio et al., 2003 (196);
Tapper et al., 2004 (16)

a5 High: hippo (CA1), IPN,
SN/VTA, #10

Decreased nicotine-induced hypolocomotion
and seizures. Impaired autonomic function
under certain conditions.

Salas et al., 2003 (185);
Wang et al., 2002 (197)

Low: Cx
a6 High: SN/VTA a6 is a partner of the b3 and b2 subunits. It

dominates the nicotine control of dopamine
neurotransmission in nucleus accumbens.

Champtiaux et al., 2002 (198);
Exley et al., 2007 (17)

a7 High: cx, hippo, thal, VTA,
striatum, etc.

No major behavioral phenotype. Normal
sensitivity to acute nicotine. Decreased
nicotine withdrawal somatic signs and
hypernociception. a7 gain of function mice
show increased sensitivity to nicotine-induced
seizures.

Broide et al., 2002 (199);
Franceschini et al., 2002
(200); Grabus et al., 2005
(56); Paylor et al., 1998
(201); Salas et al., 2007 (20)

a9/a10 High: vestibular and
cochlear hair cells

Related to hearing function. No known
involvement with nicotine addiction.

Elgoyhen et al., 1994 (202);
Elgoyhen et al., 2001 (203)

b2 High: cx, VTA, striatum, thal,
hypothal, MHb, etc.

Implicated in nicotine reinforcement and
self-administration. These phenotypes were
rescued by viral re-expression of b2 in the
VTA of b2 -/- mice. b2 -/- mice show normal
somatic signs of nicotine withdrawal.

Maskos et al., 2005 (14);
Picciotto et al., 1998 (15);
Salas et al., 2004b (186)

b3 High: MHb, SN/VTA
Low: Sup Col, LC

The a-conotoxin MII-sensitive component of
nicotine-induced DA release is lost in b3
-/- mice, which also show less anxiety-like
behavior.

Booker et al., 2007 (204);
Cui et al., 2003 (205)

b4 High: olf, MHb, IPN, pineal,
#10

b4 -/- mice show decreased anxiety-like
behavior, are insensitive to nicotine-induced
seizures and hypolocomotion. Do not show
somatic signs of nicotine withdrawal.

Salas et al., 2004a (19);
Salas et al., 2004b (186);
Salas et al., 2003 (206)

a IPN, interpeduncular nucleus; olf, olfactory bulb; hippo, hippocampus; cx, cortex; MHb, medial habenula; #10, cranial nerve #10; thal,
thalamus; hypothal, hypothalamus; SN/VTA substantia nigra/ventral tegmental area; Sup Col, superior colliculus; LC, locus coeruleus.
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in the chamber paired with antagonist and therefore,

withdrawal symptoms. Different antagonists and rat strains

have been used in this paradigm, revealing an effect of both

strain and type of drug on the amount of antagonist needed

to observe place aversion (61, 62).

The third non-somatic manifestation of nicotine with-

drawal is increased anxiety-like behavior in the elevated

plus maze (EPM). In the EPM the animal explores 4

corridors arranged in a plus sign shape. Two of the corridors

have tall walls while the other 2 are without walls, and the

maze is elevated 50 cm from the floor. Rodent behavior on

this maze has been repeatedly used as a model for anxiety

(63). Mice and rats undergoing nicotine withdrawal showed

increased anxiety-like behavior in the EPM (54, 64). This

phenomenon mirrors the increase in anxiety reported by

humans experiencing nicotine abstinence and suggests that

the sensitivity to anxiety might influence the degree of

withdrawal signs.

Cognitive symptoms of withdrawal can be explored in

rodents with the conditioned fear paradigm (65). In this task,

animals are trained in a context by pairing an auditory

conditioned stimulus (CS) with a foot shock unconditioned

stimulus (US). The association formed between the training

context and the US (contextual fear conditioning) requires

the hippocampus, while the association between the CS and

the US (cued fear conditioning) does not require the

hippocampus (66, 67). Nicotine withdrawal produces

deficits in contextual fear conditioning and seems to

selectively affect the acquisition of but not the recall or

expression of the learned response (68). b2* nAChR are

involved in this aspect of the withdrawal syndrome (68).

Current Pharmacotherapies for Smoking
Cessation

Nicotine Replacement Therapy. Nicotine replace-

ment therapy (NRT) is usually the first choice for those

smokers that want to quit. NRT provides an alternate source

of nicotine without the tars and poisonous gases found in

cigarettes. It promotes smoking cessation by allowing

smokers to control cravings while they gradually decrease

nicotine intake. NRT is available as transdermal patches,

chewing gum, nasal sprays, inhalers, sublingual tablets, and

lozenges. Except for the nasal spray, all other forms of NRT

deliver nicotine more slowly than cigarettes. NRT is

effective at reducing craving and withdrawal associated

with quitting (69). However, given the rapid rise in nicotine

levels during smoking, NRT users may still be able to obtain

additional reinforcement from cigarettes during treatment

(70). This phenomenon, coupled with the sensory cues that

further maintain tobacco dependence (71) make the success

rate of NRT much lower than desirable.

Partial Agonists. A second approach to smoking

cessation is the treatment with a combination of nicotine and

a non-selective nAChR antagonist to achieve partial

receptor agonism. Mechanistically, this combination of

agents is expected to target the nAChRs that mediate the

reinforcing effects of nicotine. Due to the presence of the

antagonist, the effects of nicotine are attenuated so that its

reinforcing effects are diminished but are still sufficient to

prevent craving. The administration of the non-selective

nAChR antagonist mecamylamine alone was one of the

earliest suggestions for smoking cessation pharmacotherapy

(72). Mecamylamine dose-dependently reduced the sub-

jective effects of nicotine in some smokers (73). The results,

however, were inconsistent in that mecamylamine increased

cigarette consumption in some studies. In addition, side

effects compromised compliance. Rose and Levin (74) were

the first to propose the co-administration of nicotine and

mecamylamine. Small clinical trials using transdermal

nicotine and oral mecamylamine showed that this approach

might be valuable, as the combination achieved higher

abstinence rates than did transdermal nicotine alone (75).

Despite the potential benefits of this pharmacological

strategy, administering two separate compounds with

different pharmacokinetic and metabolic profiles under the

condition of maintaining a narrow agonist-to-antagonist

ratio can be extremely challenging. Nevertheless, this

attempt introduced the concept of partial nAChR agonism,

especially at a4b2* nAChRs, as a strategy for smoking

cessation. The use of cytisine further supported the concept.

Cytisine, a nAChR partial agonist (76), is a plant alkaloid

that has been used for over 40 years in Eastern Europe, but

not in the US, as a smoking cessation agent (77).

Varenicline, the first partial nicotinic agonist approved

in the USA as a therapeutic aid to smoking cessation, was

developed by merging structural elements of nicotinic and

opioid ligands (78, 79). The rationale behind varenicline’s

clinical efficacy is the one previously discussed. When

nicotine is not present it acts as a partial agonist, providing

at least part of the reinforcing effects of nicotine a smoker is

used to receiving through nicotine. This effect would reduce

cravings and withdrawal when nicotine is not present. In

contrast, when nicotine is present, varenicline would act as

an antagonist, preventing the rewarding effects of nicotine

(80). In fact, varenicline has effects on dopamine release

that are similar to those of nicotine, but at a smaller scale

(80). In a study comparing varenicline with bupropion

(brand name Zyban, see below) and placebo, 23% of

smokers taking varenicline, 15% taking bupropion and 10%

taking placebo were able to quit and remained abstinent for

one year (81). It should be noted that although varenicline

was conceived and marketed as a a4/b2-specific partial

agonist, it is also a full agonist at a7*, and a partial agonist

at a3b4* nAChRs. In fact, the efficacy of varenicline as a

partial agonist is much higher for a3b4* and a7* nAChRs

than it is for a4b2* receptors (82). Therefore, it is possible

that nAChR subtypes other than those containing a4 and b2

are also implicated in the effects of varenicline on nicotine

withdrawal.

Bupropion. Bupropion is an atypical antidepressant

(83) marketed as Wellbutrin for its antidepressing effects,
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and as Zyban (Glaxo Wellcome) for its anti-tobacco

properties. It was the first non-nicotine-based therapy

approved by the Food and Drug Administration (FDA) for

smoking cessation (84). The mechanisms of bupropion’s

effects on depression and tobacco smoke seem independent

from one another, i.e. the efficacy as anti-tobacco drug does

not depend on the presence of current or past history of

depression (85). Bupropion can double long-term abstinence

rates compared to placebo (21) by decreasing both cue-

induced tobacco craving (86) and withdrawal symptoms

such as depression, difficulty concentrating and irritability

(87).

Animal studies have shown that bupropion alters brain

reward circuits influenced by nicotine, reversing the

elevated intracranial self-stimulation thresholds resulting

from nicotine abstinence (88), thus impairing the negative

reinforcing effects of nicotine (59). In rodents, bupropion

can alter nicotine reinforcement with some doses causing a

decrease in nicotine self-administration behavior (89–91).

However, a biphasic dose-response pattern to nicotine has

also been reported, with low doses of bupropion increasing

nicotine infusions and high doses decreasing responding

non-specifically (89, 91). In addition, bupropion has been

shown to attenuate the nicotine abstinence syndrome in rats.

Acute and chronic bupropion exposures alleviate the

expression of somatic signs associated with spontaneous

and precipitated withdrawal, respectively, and chronic

exposure also reduces the place aversion conditioned to

mecamylamine-precipitated nicotine abstinence (88, 92).

Although the mechanisms of action of bupropion on

nicotine addiction remain uncertain, bupropion is known to

affect several systems involved in addiction. First, bupro-

pion decreases DA reuptake in the mesolimbic system (93).

Bupropion also inhibits noradrenaline (NE) reuptake in the

locus coeruleus (93, 94), which is thought to be involved in

nicotine withdrawal (95). Finally, bupropion also acts as an

antagonist for nAChRs, including the a3b4* subtype (96–

98).

Cannabinoid Receptor Antagonists. Central can-

nabinoid (CB) receptors, especially the CB1 subtype, have

been recently implicated in brain reward function due to the

ability of endocannabinoids to increase dopamine (DA)

levels in the mesolimbic system (99–101). Interestingly, D9

tetrahydrocannabinol (THC), a CB receptor antagonist,

potentiates the effects of non-pharmacologically active

doses of nicotine (102), suggesting an interaction between

the nicotinic and the cannabinoid systems. Therefore, CB1

receptor antagonists represent potential aids for smoking

cessation. Indeed, the CB1 receptor antagonist rimonabant

(SR 141716, trade name Acomplia) has been shown to

reduce the motivational effects of nicotine in the condi-

tioned place preference and the nicotine self-administration

paradigms (103, 104). Rimonabant was the first CB1

receptor antagonist to be clinically tested in the European

Union and it is currently under Phase III clinical trails in the

US. The drug was initially developed as a possible treatment

for obesity as CB1 receptors participate in the control of

food consumption and energy expenditure. It has also been

proposed as a smoking cessation aid and may protect

successful quitters from significant post-cessation weight

gain (105, 106). The beneficial effects of rimonabant on

weight loss have been demonstrated in a recent Cochrane

review (107). Since weight gain is one reason why some

smokers avoid quit attempts, the dual action of rimonabant

on decreasing weight gain and on smoking cessation may be

particularly useful, especially when cardiac risk factors

(obesity and tobacco smoke being two critical factors) are

taken into account (108).

Mechanisms of Nicotine Withdrawal

nAChRs are expressed throughout the CNS and can

influence a number of brain areas and functions. The

nicotine contained in tobacco produces neuroadaptations

that may explain the alteration in brain reward systems

involved in the addiction process (109). Such neuro-

adaptations reflect nicotine’s influences on several neuro-

transmitter systems, including acetylcholine, dopamine

(DA), opioid peptides, serotonin (5-HT), and glutamate.

Abrupt cessation of nicotine is likely to alter the neuro-

chemistry of the addicted brain, thus triggering the affective

and somatic signs of withdrawal. Neuroadaptations that

affect multiple neurotransmitter systems are common to

other drugs of abuse. One example is given by opiate

addiction in which a number of non-opioid transmitters have

been postulated to be involved in the development of both

dependence and abstinence (110–113). The symptoms of

nicotine abstinence may therefore reflect the activation of

several brain circuits. How each brain circuit is altered

during both nicotine exposure and withdrawal is likely to

depend on the pharmacological and biophysical properties

of the nAChR subtypes expressed in the brain areas that are

important for that circuit.

Dopamine and Nicotine Withdrawal. The meso-

limbic dopaminergic system serves a fundamental role in the

acquisition of behaviors that are inappropriately reinforced

by addictive drugs, and is very likely to also participate in

the mechanisms of withdrawal (114). In the nucleus

accumbens (NAcc), spontaneous or mecamylamine-precipi-

tated nicotine withdrawal is associated with a decrease in

extracellular DA levels (115–117). Whether altered DA

levels participate in both the somatic and motivational

aversive aspects of withdrawal is not clear (58, 118). In fact,

the somatic signs of withdrawal seem to appear earlier than

the decreases in accumbal DA output (115). This temporal

dissociation between the two phenomena suggests that

accumbal DA may not necessarily be involved in mediating

the somatic aspects of nicotine withdrawal. Interestingly, the

opioid receptor antagonist naloxone can increase somatic

withdrawal signs in nicotine-dependent rats without affect-

ing accumbal DA release (119).

In addition to the NAcc, DA fibers that arise within the
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ventral tegmental area (VTA) also project to the prefrontal

cortex (PFC). In contrast to the deficits in DA transmission

observed in the NAcc, nicotine withdrawal increases DA

output in the PFC of rats (119). Such increases in PFC DA

release may be important in mediating aversive aspects of

nicotine withdrawal, as enhanced DA transmission in the

PFC has been observed during exposure to stressful and

aversive stimuli (120–122), and has been implicated in

mediating anxiety-related behaviors (123, 124). As pre-

viously discussed, anxiety is one of the manifestations of

nicotine withdrawal in humans as well as in animal models

of addiction.

Norepinephrine and Nicotine Withdrawal. Nico-

tine enhances the release of norepinephrine (NE) in various

CNS regions (125, 126), and NE mechanisms can modulate

midbrain DA function (127). In addition, the NE reuptake

inhibitor reboxetine attenuates nicotine self-administration

(128), and bupropion, which has an NE component to its

action, is used in smoking cessation treatments (129). The

noradrenergic tricyclic antidepressant nortriptyline, which

inhibits serotonin and noradrenaline reuptake, could also

work as second-line therapy for smoking cessation (130).

Despite this evidence suggesting that noradrenergic mech-

anisms might be important for nicotine abuse, not much is

known on the role of NE in the mechanisms of nicotine

withdrawal. One report indicates that nicotine withdrawal

alters NE levels in the hypothalamus and cortex of mice

exposed to chronic nicotine in the drinking water (131). a7*

nAChRs might be involved in this phenomenon (132). The

paucity of data on nicotine contrasts with the abundant

literature implicating noradrenergic mechanisms in opioid

withdrawal. For example, withdrawal from chronic mor-

phine increases NE release in the cortex and the bed nucleus

of the stria terminalis (BNST) (133–135). NE release in the

BNST may underlie anxiety associated with protracted

withdrawal.

Serotonin and Nicotine Withdrawal. 5-HT is also

expected to influence nicotine reward, as nicotine increases

5-HT release in the cortex, striatum, hippocampus, dorsal

raphe nucleus, hypothalamus, and spinal cord (136, 137). In

addition, DA neurons are influenced by 5-HT mechanisms

(138). As for the role of 5-HT in withdrawal, it has been

proposed that reduced serotonergic neurotransmission may

contribute to the anhedonia observed during both amphet-

amine and nicotine withdrawal in humans (60, 139, 140).

The role of the various 5-HT receptors and the anatomical

localization of the 5-HT/withdrawal interaction are less

clear. Some investigators suggested that during nicotine

withdrawal, 5-HT activates inhibitory somatodendritic 5-

HT1A autoreceptors in the raphe nuclei leading to a decrease

in 5-HT release into forebrain and limbic sites (141, 142).

This conclusion is supported by the observation that a

serotonergic antidepressant treatment that combines the 5-

HT-selective re-uptake inhibitor fluoxetine and a 5-HT1A

receptor antagonist rapidly reverses the elevation in brain-

stimulation reward thresholds observed in rats undergoing

nicotine withdrawal (60, 143). Contrary to the view that

reduced serotonergic transmission contributes to nicotine

withdrawal, Cheeta and colleagues showed that adminis-

tration of nicotine directly into the dorsal raphe nucleus, at a

concentration that activates somatodendritic 5-HT1A recep-

tors, reverses the increase in anxiety observed in rats

undergoing nicotine withdrawal as measured in the social

interaction test (144). Other studies have implicated the

activation of 5-HT3 receptors in the amygdala in the

heightened anxiety observed during nicotine withdrawal

(145).

Opioids and Nicotine Withdrawal. The first model

for nicotine withdrawal in rodents was developed by

modification of a previous model used in opioid research

(53). The behavioral similarities between these two models

prompted a follow-up study, where rats treated chronically

with nicotine were injected with the opioid receptor

antagonist, naloxone, and nicotine withdrawal symptoms

became apparent (146). In a separate experiment, acute

morphine injection diminished spontaneous nicotine with-

drawal, consistent with a major role for the opioid system in

nicotine withdrawal (146). Genetic approaches have also

demonstrated the impact of the opioid system in nicotine

withdrawal in mice. A role for endogenous enkephalins on

nicotine withdrawal was investigated by using preproen-

kephalin knock-out mice (147). In these mice the somatic

expression of mecamylamine-precipitated nicotine with-

drawal was significantly attenuated. Other effects of nicotine

such as nicotine-induced antinociception, conditioned place

preference, and enhancement in DA extracellular levels in

the nucleus accumbens induced by nicotine were also

reduced in preproenkephalin-deficient mice, demonstrating

an important role for the endogenous opioid system not only

in nicotine withdrawal but also in nicotine rewarding

properties (147). Another interesting observation is that

18-Methoxycoronaridine (18-MC), a potent antagonist of

a3b4 nicotinic receptors, inhibits systemic morphine-

induced increases in DA levels when injected into the rat

habenula or IPN (148).

Glutamate and Nicotine Withdrawal. Nicotine,

acting at presynaptic receptors, enhances glutamate release

in several areas of the brain including the VTA, PFC and

NAcc (149, 150). The glutamate released upon nicotine

exposure binds to metabotropic and ionotropic glutamate

receptors on postsynaptic dopaminergic neurons thereby

increasing their bursting activity and increasing dopamine

release. These actions may partly mediate the reinforcing

effects of acute nicotine (150) as antagonists of the mGluR5

receptor subtype have been shown to decrease both

intravenous nicotine self-administration (151) and cue-

induced reinstatement of nicotine seeking (152). Other

metabotropic glutamate receptor subtypes may be involved

in the nicotine withdrawal syndrome, in particular in the

negative affective symptoms. As previously discussed,

nicotine withdrawal produces anhedonia, or diminished

interest in pleasure. In rodents, anhedonia is believed to
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produce an increase in the threshold for stimulation in the

intracranial self-stimulation procedure (60). This elevation

in threshold is blocked by mGluR2/3 antagonists (153).

Therefore, mGluR5 affects nicotine self-administration

while mGluR2/3 affects nicotine withdrawal. This parallels

the roles of the b2 and b4 nAChR subunits in rodents.

Interestingly, mGluR5 is expressed in several areas of the

brain, but not in the MHb, while mGluR3 is expressed in a

more restricted pattern, with high levels in the MHb, among

other areas (154).

Monoamino Oxidase Inhibitors and Nicotine
Withdrawal. Although it is known that nicotine is the

main addictive component of tobacco, tobacco smoke

contains many other compounds including monoamino

oxidase inhibitors (MAOIs). It has been shown that whereas

behavioral sensitization to D-amphetamine stayed constant

following up to 30 days of withdrawal, similar conditions

abolished behavioral sensitization to nicotine. Following 30

days of withdrawal, locomotor responses to nicotine were

identical to those in naı̈ve mice. However, when the MAOIs

tranylcypromine or pargyline were co-injected with nic-

otine, behavioral sensitization was maintained even after

long-term withdrawal (155). In a similar report, it was

shown that in nicotine-infused rats, mecamylamine induced

a place aversion that lasted 6 weeks. When nicotine-infused

rats were also treated with a MAOI, mecamylamine-induced

conditioned place aversion persisted for at least 8 months of

abstinence. In addition, the MAOI treatment slightly

decreased ratings of somatic signs induced by mecamyl-

amine administration (156). These data suggest that nicotine

may not be the only psychoactive substance in tobacco, and

that MAOIs may potentiate the effects of nicotine.

Brain Regions Associated to Drug Withdraw-
al. A widely accepted view of the mechanisms of drug

addiction is that the reinforcing effects of most drugs of

abuse depend on induction of increases in DA levels in the

nucleus accumbens. DA has been implicated in motor and

cognitive function, and in regulation of reward, saliency and

motivation (157–159). The NAcc receives dopaminergic

innervation from the VTA, and it has been shown that b2*

nAChRs in the VTA are necessary for the rewarding effects

of nicotine (14). The PFC, which has connections to both

NAcc and VTA, is usually considered as the third region in

this circuit (157). Other areas of the brain have also been

shown to be important for the effect of drugs of abuse, such

as the amygdala (160) and the hypothalamus (160). The

involvement of the VTA/NAcc/PFC in addiction has been

extensively reviewed elsewhere (157, 159). We will focus

on the role of the habenula and interpeduncular nucleus on

nicotine withdrawal.

The Role of the Habenula in Drug Withdraw-
al. The role of DA in reward has been best defined in the

concept of ‘incentive salience’, in which DA levels are

involved in reward prediction for the purpose of reward

seeking (161). In monkeys, dopaminergic cells were shown

to fire in response to reward. After training with a cue that

predicts reward, dopaminergic cells fired in response to the

prediction of reward, and not to the reward itself.

Interestingly, dopaminergic cells fired less than normal if

reward was not delivered when expected (162). A recent

report (163), as well as a body of literature from the 1980s

(164–166) points to the habenula as the region that controls

the decrease in firing of dopaminergic cells in the NAcc.

The habenula has been implicated in withdrawal to

drugs of addiction by the use of ibogaine and its derivative,

18-Methoxycoronaridine (MC-18). Ibogaine is an alkaloid

extracted from the African shrub Tabemanthe Iboga (167).

Several chemical addictions such as opiate, cocaine,

nicotine and alcohol might be sensitive to the effects of

ibogaine (168). The effects of ibogaine in rats include a

decrease in self-administration, a decrease in withdrawal

signs and a block of drug induced DA release. Ibogaine’s

effects might reflect the interaction with multiple neuro-

transmitter systems as the alkaloid acts at several neuro-

transmitter receptors such as sigma opioid, NMDA and

nAChRs (169). More recently, a derivative of ibogaine, 18-

Methoxycoronaridine (18-MC), was synthesized and used

in similar experiments (170). In rodents, 18-MC decreased

morphine, cocaine, methamphetamine, alcohol and nicotine

self-administration, and opioid withdrawal signs. 18-MC

also blocked the sensitization of morphine- and cocaine-

induced increase in DA levels in the nucleus accumbens

(171). Since 18-MC is a specific blocker of a3*b4* nACRs

(171), the possible role of this block as the main mechanism

of action of 18-MC was studied. Two lines of evidence

pointed to a3*b4* nACRs as the primary target for 18-MC.

First, combinations of sub-effective doses of 18-MC and

other a3b4* nACRs antagonist such as mecamylamine or

bupropion also decreased morphine, methamphetamine, and

nicotine self-administration in rats (171). Second, micro-

injection of 18-MC in the MHb or the IPN, two areas

dominated by b4* nACRs, is sufficient to attenuate DA

sensitization to morphine in the nucleus accumbens (148).

The fact that b4 nAChR null mice show no somatic signs of

nicotine withdrawal (19) is in agreement with a possible

major role of the habenular/interpeduncular system in drug

addiction.

Anatomical Connections Between the Habenu-
la and Mesencephalic Dopaminergic Areas. The

habenular complex is an epithalamic area composed of both

medial and lateral compartments that receive massive

afferents from several DA-rich areas (medial frontal cortex,

nucleus accumbens, olfactory bulb, septum and striatum)

via the stria medullaris thalami. The main efferent pathway

is the fasciculus retroflexus, which projects to IPN, VTA,

substantia nigra (SN), medial raphe complex, locus

coeruleus, and central gray (172–176). These anatomical

connections support the notion that dopaminergic trans-

mission in the midbrain might be regulated by inputs

traveling along the fasciculus retroflexus and suggest an

important role of the habenular complex as a modulatory

relay between limbic forebrain structures and the midbrain.
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Modulation of Dopaminergic Activity and Relay
of Negative Feedback. Animal studies provide evidence

that the VTA and SN receive inhibitory input from the

habenula. Electrical stimulation of the habenular nuclei

causes inhibition of ;85–90% of the DA neurons in the

VTA and SN in rats (164). In contrast, habenular lesions

increase DA turnover in the NAcc and prefrontal cortex,

reflecting an activation of the dopaminergic system (166,

177). The interest in this brain area has been increased by

recent data in both human and non-human primates.

Experiments conducted in behaving monkeys have shown

that the habenula is a source of negative reward signals in

DA neurons and that it plays an important role in determining

the reward-related activity of DA neurons (163). Those data

are corroborated by functional MRI (fMRI) studies in

humans showing that when a decision-making error is made

and negative feedback is received (when expected reward

fails to occur), the habenular nuclei are strongly activated

(178, 179). Based on this information, we hypothesize that

the activity of the habenula is increased during withdrawal,

possibly through the activation of b4* nAChRs. While the

lateral habenula sends direct projections to the midbrain,

including the DA neurons in the SN pars compacta and VTA,

and the 5-HT neurons in the dorsal raphe (175), the MHb

sends most projections to the IPN (180). The IPN in turn

sends projections to the raphé nuclei and the VTA (180–

182). Therefore, the MHb likely influences monoaminergic

transmission via its connections to the IPN.

Expression Patterns of nAChRs in the Haben-
ula and IPN. nAChRs are found on the soma of MHb

cells, which express particularly high levels of mRNA for

b4 and a3 and, to a lesser extent, for a5 (183–186). A

combination of whole-cell recording and single cell RT-

PCR techniques showed that, at least in the habenular areas

studied, 95–100% of MHb cells express a3, a4, a5, b2 and

b4, whereas approximately 40% of the cells express a6, a7

and b3 (187). Recent work using b4-selective monoclonal

antibodies confirmed prominent immunoreactivity in the

MHb (188). The MHb provides dense cholinergic innerva-

tion to the IPN with projections that run ipsilaterally in the

fasciculus retroflexus (180, 189). The presynaptic terminals

that regulate ACh release onto the IPN may also express

a3*b4* nAChRs, as shown by experiments using a-

conotoxin AuIB and b2 null mutants (190). IPN neurons

express nAChR complexes containing both b2 and b4 (191,

192) along with a2. Based on the literature, most MHb

neurons express a3*b4* nAChRs, while in the IPN a2

would be the most likely partner for b4, possibly in

combination with a5.

Concluding Remarks

The nicotinic system and its roles in physiology and

disease, including addiction, are actively being studied by

different techniques. One of the most prolific approaches

has been the study of subunit-specific mutant mice. From an

assessment of the literature, a major role for a4*b2*

receptors in reward seems apparent. This effect is mediated

by the VTA/NAcc dopaminergic connection. In contrast,

nicotine withdrawal, especially the somatic signs, seem to

be mediated by b4* nAChRs in the MHb and IPN.

To design improved anti-tobacco therapies we must

focus on the withdrawal symptoms that appear upon

smoking cessation. The wealth of information on the

nicotinic system and its roles on tobacco addiction is

moving us closer to that goal.
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