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Acute lung injury (ALI) has been documented clinically following

several pathological states such as trauma, septic shock and

pneumonia. The histopathological characteristics, paired with

the production of a number of cellular pro-inflammatory

mediators, play a crucial role in the progression of ALI. During

ALI, polymorphonuclear neutrophil (PMN)-mediated apoptosis

is delayed by macrophages, possibly via effects on the Fas/FasL

mediated pathway, leading to the accumulation of these cells at

the site of injury and inflammation. The transcriptional regu-

lation of NFjB, CREB, and AP-1 also regulates the pathogenesis

of ALI. During sepsis and septic shock, we found evidence of

infiltrating leukocytes in the alveolar spaces along with an

increased number of TUNEL-positive cells in the lung sections.

We also observed an increased expression of TRADD and Bax/

Bcl2 ratio at 7 days post-sepsis. In contrast, the NFjB/IjB ratio

increased at 1 day post-sepsis. Together, these data provide

evidence illustrating the induction of apoptosis in lung tissues

subsequent to the onset of polymicrobial sepsis. The results

support the concept that the upregulation of apoptosis following

lung inflammation plays a crucial role in the development of

acute lung injury and related disorders such as ARDS. Exp Biol

Med 234:361–371, 2009
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Introduction

Acute lung injury (ALI) and acute respiratory distress

syndrome (ARDS) are inflammatory disorders of the lung

that are caused by pneumonia, sepsis, trauma and/or

aspiration (1). Both ALI and ARDS result from widespread

lung inflammation and increased pulmonary vascular

permeability (1). ALI is characterized by an abrupt onset

of hypoxemia with the presence of diffuse pulmonary

infiltrate (2). The disorder is defined as ARDS when the

partial arterial pressure of oxygen [PaO2]/fractional concen-

tration of oxygen in the inspired air [FIO2] drops below 200.

However, most of the interventional and epidemiological

studies have considered the overall disorder as acute lung

injury when it demonstrates a broad range of abnormalities

(PaO2/FIO2 , 300) (2). In addition, ALI and ARDS can be

categorized on the basis of origin: about 55% of patient

cases can be attributed to direct (or pulmonary) ALI arising

from pneumonia or aspiration, while indirect (extra-

pulmonary) ALI arising due to sepsis and trauma can be

seen in 20% of the patients (3).

ALI is a frequent complication following sepsis in

critically ill ICU patients and is associated with high rates of

morbidity and mortality (4, 5). According to the Acute Lung

Injury Verification of Epidemiology (ALIVE) data report,

ARDS/ALI affects about 7% of ICU patients, and

approximately 54% of these patients develop full-blown

ARDS within 24 h (5). A statistical analysis done in 1996

suggested that the mortality rate of ARDS patients has

remained constant from 1967–1994 (6). In recent years,

however, some investigators have reported an improvement

in survival rates, mainly as a result of the implementation of

new protective ventilatory strategies and drug therapies (7,

8). Even with these recent successes, there is still a

tremendous need for continued research efforts utilizing

multiple (biological, genomic and genetic) approaches to
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provide clarity to the underlying pathophysiological mech-

anisms of ALI. In this manuscript, we provide a brief

overview of the pathophysiology and signaling mechanisms

involved in the development of ALI.

Pathophysiology of ALI

Histopathological Evidence. Approximately 20%

of the patients exhibiting severe sepsis develop lung

dysfunction (9). The clinical presence of arterial hypoxemia

and bilateral chest pulmonary infiltrate results into ARDS

(9). The pathophysiological process is referred to as ‘‘diffuse

alveolar damage’’ (DAD). DAD is not restricted to the

sepsis syndrome since it also occurs during inhalational

injury, aspiration of gaseous contents and X-irradiation

damage. DAD proceeds through various stages, namely the

exudative, regenerative and reparative phases. During the

first week of the exudative phase, the lungs become dark red

and heavy. There is alveolar wall congestion and expansion,

edema, and red blood cells in the alveoli, coupled with

damage to the type 1 epithelial cells and alveolar capillary

endothelial cell damage. The late exudative phase is a

classic and histologically identifiable stage often referred to

as ‘‘shock lung.’’ During this phase, alveolar collapse,

hemorrhage and edema occur, along with a variable

accumulation of neutrophils in the alveolar capillaries. The

regenerative phase permits the recovery and healing of the

lungs to its normal structure. The type 2 epithelial cells

proliferate to replace the denuded epithelium. The epithe-

lium may grow beneath the hyaline membrane, which is

sloughed off, or over the membrane and later contributes to

the development of interstitial fibrosis. In the patients in

whom DAD has not been resolved through regeneration, a

reparative phase ensues, characterized by local thrombosis,

organization and local vascular remodeling (9).

Pro-Inflammatory Mediators. Role of Activated
Neutrophils and Cytokines During Acute Lung Injury.
Neutrophils (polymorphonuclear leukocytes, PMNs) play a

vital role in the inflammatory responses present in sepsis,

bronchopulmonary dysplasia and ALI (10–13); they are

essentially the first responders in the host defense

mechanism to counter infection. The balance of chemokines

locally produced by macrophages and of those from distal or

remote inflammatory sites is important to the direction of

neutrophil migration to the lungs (14–16). In response to

this chemical gradient, the neutrophils cross the endothe-

lium and release numerous proteolytic enzymes and reactive

oxygen species upon recruitment to the site of infection or

inflammation. Paradoxically, this event also stimulates the

release of macrophage-derived IL-10, a predominant anti-

inflammatory modulator of the immune response (17–21). It

has been suggested that the production of IL-10 by

macrophages is a by-product after phagocytosis of the

apoptotic neutrophils. In turn, IL-10 may subsequently

suppress the additional cytokine production and phagocytic

activity of these alveolar macrophages, allowing the

neutrophils to serve in both pro- and anti-inflammatory

capacities in this situation (17–19, 21–23).

In the polymicrobial sepsis model, a slight lung injury

characterized by coagulation cascade occurs at 24 h post-

cecal ligation and puncture (CLP) (24). This injury is

associated with capillary congestion and perivascular

cuffing, along with increased lung myeloperoxidase activity,

an index of neutrophil sequestration (24). These results

suggest that lung injury during sepsis is partially dependent

upon the neutrophils and also upon other inflammatory cells

such as monocytes/macrophages and lymphocytes.

Neutrophil Hypothesis, Depletion and Apoptosis.
In the non-pathological immune response, PMNs targeted

toward the lungs are cleared quickly once the invading

pathogens have been eliminated. In contrast, the accumu-

lation of activated PMNs in the lung tissue during severe

lung inflammation/injury suggests that these cells play a

significant role in the development of ALI. During ALI

pathogenesis, the neutrophil function becomes dysregulated,

leading to their sequestration in the lungs, progressing to

associated tissue injury (25–27). Neutrophil retention has

been observed early within the pulmonary capillaries that

form a complex interconnected network of short capillary

segments (28) in the lung parenchyma as well as in the

bronchoalveolar lavage fluids (BALF) of ARDS patients

(29). Because inflammation is closely linked to the patho-

genesis of ALI, several inflammatory mediators (cytokines,

chemokines and lipid mediators) further promote PMN

recruitment (30, 31). In addition, the chemokines are

critically involved in the activation and recruitment of

PMNs; therefore, they contribute significantly to the

harmful effects occurring at the organ level (32, 33).

It has been proposed that activated neutrophils in the

lungs have an unusually prolonged half-life of 8 h due to

delayed phagocytosis (or apoptosis) by the macrophages

(34). According to this ‘‘neutrophil hypothesis,’’ the switch

from a proinflammatory to an anti-inflammatory environ-

ment is postponed (10, 35). In the septic patient, this delay

appears to be related to the severity of sepsis since a

progressive decrease in neutrophil apoptosis has been

associated with the increased severity of sepsis (36). The

delayed apoptotic response provides the PMNs with a

longer life span, allowing them to accumulate at the local

site of injury and inflammation (36, 37). This anti-apoptotic

effect of ARDS upon the PMNs appears to be mediated

through the granulocyte macrophage colony stimulating

factor (GM-CSF) receptor (38).

The exact mechanisms responsible for the decreased

neutrophil apoptosis during ARDS and sepsis remain to be

elucidated. However, one potential mechanism involves the

activation of NFjB, with a concomitant reduction in the

caspase-3 levels and of the mitochondrial membrane

potential (37). The activation of the p38-MAPK signaling

pathways (39), modulation of Mcl-1 (myeloid cell leuke-

mia-1) (40) or mitogen-activated protein kinases (MAPK)

may contribute to the neutrophil activation mechanisms
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induced by various stimuli as well as modulate apoptosis

(41–46). In particular, p42/p44 MAPK is involved in PMN

apoptosis in response to treatment with LPS or GM-CSF,

while the role of p38 MAPK remains controversial (39, 47–

49). Nevertheless, the consensus seems to suggest that its

activation may be a significant event in PMN spontaneous

apoptosis.

A large number of neutrophils accumulate during ALI

and are vital for the activation of other proinflammatory

cytokines; however, their contribution to the severity of

sepsis is not yet established. The analysis of these clinical

observations could identify specific mechanisms for neu-

trophil apoptosis in sepsis-induced ARDS and provide new

insights into the development of therapeutic strategies to

improve the survival rate of patients with other inflamma-

tory disorders in which neutrophils are implicated in the

disease progression.

Role of Alveolar Macrophages in ALI. While the

delayed apoptosis of recruited neutrophils is a crucial event

in the development of ALI, alveolar macrophages (AMs)

serve as the first line of defense in the lungs (50). These

phagocytic cells are prolific secretory ‘‘factories’’ capable of

regulating the inflammatory reactions in the lungs (51, 52)

and are reported to be the principle mediators in the

pathogenesis of septic shock (53). AMs reside in the alveoli

and the alveolar ducts of the lungs and are unique in their

survival within an aerobic environment. They actively

phagocytize and kill invading airborne and blood-borne

pathogens. In order to induce and potentiate the inflamma-

tory and immune processes, AMs release cellular mediators

such as tumor necrosis factor-alpha (TNF-a), macrophage-

activating cytokine IFN-gamma, and eicosanoids (PGE2)

during the initial phase of lung inflammation (54, 55).

A large amount of evidence suggests that AMs play an

essential role in the regulation of the pro- and anti-

inflammatory events during sepsis-induced ALI (56, 57).

It has been reported that, in response to migratory signals,

neutrophils cross the endothelium and stimulate the release

of IL-10 ostensibly from the AMs (18–21), a phenomenon

demonstrated in several independent investigations. In this

scenario, the neutrophils act as both pro- and anti-

inflammatory stimuli while interacting with the endothelial

cells and immune cell populations. It has been demonstrated

that the suppression of either the neutrophilic or macro-

phagic response reduces the indices of inflammation and

lung injury following hemorrhage and subsequent septic

challenge (58). Thus, both cell types are essential for the

development of lung injury following shock and sepsis (58).

In contrast to the effect seen in the neutrophils, an

increase in the percentage of apoptosis during sepsis has

been observed in the AMs (59). This ALI-associated

increase was evident as early as 3 h post-CLP induction,

resulting in a significant decrease of AM numbers by 20 h

post-CLP (59). This enhanced apoptosis and subsequent

decrease in the AM number could be due to an inadequate

supply of precursor monocytes from the peripheral

circulation and could serve to compromise the antimicrobial

defense of the lungs in septic patients (59).

Anti-Inflammatory Mediators. As the inflamma-

tory reaction progresses during ALI, the main inhibitory

gene products appear to be IL-10 and IL-13, T-cell-derived

cytokines involved in immunomodulation and anti-inflam-

matory properties. These anti-inflammatory interleukins are

powerful inhibitors of IjB-a hydrolysis that must occur

prior to the activation of NFjB (60). Under these circum-

stances, the NFjB complex (p50, p65) remains interlocked

with IjB-a, preventing its translocation into the nucleus and

initiating the continued transcription of genes involved in

inflammation, immune responses, cell proliferation and cell

survival. Working in concert with these cytokines is

secreted leukocyte protease inhibitor (SLPI), another

regulatory protein generated during the acute inflammatory

response and capable of inhibiting NFjB. SLPI inhibits the

activation of NFjB by increasing the levels of cytoplasmic

IjB-b, which also forms complexes with NFjB to inhibit its

translocation to the nucleus. Thus, there are at least three

potent anti-inflammatory regulators produced during an

acute inflammatory response to the lungs (60).

Role of Apoptosis During ALI

Lungs are complex organs that include different spatial

arrangements of multiple cell types such as endothelium,

epithelium, fibroblasts and inflammatory cells. The obser-

vation from in vitro studies that macrophages phagocytose

apoptotic PMNs has led to the suggestion that enhanced

PMN apoptosis may result in a blunted in vivo inflammatory

response (61). This observation was then confirmed by

quantitation of PMN numbers in the BALF of patients with

ARDS or at risk of developing ARDS (62). In this study,

Matute-Bello et al. further demonstrated that bronchoalveo-

lar lavage (BAL) from ARDS patients decreased PMN

apoptosis and prolonged the survival of normal human

PMN cultured in vitro. This observation was attributed to

the presence of anti-apoptotic factors such as GM-CSF and

suggested that a lack of PMN apoptosis may serve to

prolong the inflammatory process and predispose the

patients to ARDS subsequent to ALI.

The Fas/FasL pathway appears to play an essential role

in the apoptosis signaling system in alveolar epithelial

injury during ALI and ARDS (63). The high levels of

soluble Fas and FasL in BAL fluids correlated with the

increased mortality rates of patients with ALI/ARDS (63,

64). These data agreed with the decreased lung injury

observed in Fas or FasL-deficient mice after challenge with

intrapulmonary deposition of the IgG immune complexes

(65). Furthermore, the inhibition of caspase activity blunted

the PMN-induced acute lung injury in wild-type mice (65).

These collective data suggest that the Fas/FasL pathway

may play an important role in apoptosis-mediated regulation

for ALI.
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Role of Transcriptional Factors in the Regulation
of ALI

It has been established that NFjB is a critical

transcriptional factor required for the maximal expression

of many cytokines involved in the pathogenesis of ARDS.

First discovered by Sen and Baltimore in 1986 (66), NFjB

regulates the gene expression of major pro-inflammatory

cytokines (TNF-a, IL-b), chemokines [macrophage inflam-

matory protein (MIP-2), cytokine-induced neutrophil che-

moattractant (CINC)], and adhesion molecules (ICAM-1, E-

selectin) (67), all of which play a major role in lung injury

(68). Thus, NFjB activation is necessary for an intact host

defense response such that an excessive activation of NFjB

results in an exuberant inflammatory injury of lungs and

other organs (67, 69, 70). Activated NFjB contributes to the

accumulation of neutrophils and the expression of IL-1b,

TNF-a and MIP-2 mRNAs in the lungs of endotoxemic or

hemorrhagic mice (71). In addition to the enhancement of

the immunomodulatory genes, NFjB plays an important

role in apoptosis by regulating the expression of genes

involved in cell death (72). Of note is that the activation of

NFjB can decrease PMN apoptosis and subsequently

increase the life span of these cells, an event that is a

potential determinant of acute lung injury.

The activators of NFjB, such as TNF-a, IL-b and LPS,

increase the cellular production of reactive oxygen species

(ROS) by the mitochondria (73). The accumulation of

neutrophils in the lungs leads to increased local concen-

trations of ROS and proinflammatory cytokines as a result

of delayed apoptosis (62, 74, 75). In the experimental

models of acute lung injury, secondary to hemorrhage or

endotoxemia, NFjB is activated, and there is a decrease in

the population of neutrophils (74). NFjB also interacts with

a large number of selective heterologous transcription

factors. One such transcriptional factor involved in the

control of many inflammatory mediators is AP-1, a

protooncogene product composed of c-Jun homodimers or

heterodimers of c-Fos. AP-1 activation is considered to be

an important first step in the chromatin remodeling process

involved in the initial binding of transcriptional factors to a

nucleosomal template (76). The interactions between AP-1

and NFjB do not always involve precise promoter/enhancer

organization or require a jB element (77). However, an

NFjB-dependent increase in AP-1 protein and mRNA

levels in the plasma as well as the lungs following trauma

has been observed, suggesting a direct interaction of NFjB

with AP-1 (78). In hemorrhagic shock, the transcriptional

mechanisms, activation of NFjB and CREB, are involved

in regulating pulmonary cytokine expression (79). Because

the binding elements for NFjB and CREB have been found

in the enhancer/promoter regions of immunoregulatory

cytokine genes for IL-1b and TNF-a, these binding

elements have an important function in modulating the

transcription of these genes (80–82). However, the precise

roles of these two transcriptional factors and the involve-

ment of NFjB in coordinating the control of inflammatory

gene transcription during ALI remain to be elucidated.

NFjB-Independent Apoptosis Mechanisms.
There are additional NFjB-independent pathways that

may contribute to alterations in the lung neutrophil

apoptosis after endotoxemia. It has been demonstrated that

a member of the Bcl2 family of proteins Mcl-1 (Myeloid

Cell Leukemia-1) is associated with neutrophil survival

during ALI (83–86). In addition, G-CSF and its receptors

were found to be elevated in lung neutrophils after

endotoxemia. The G-CSF levels are usually elevated in

bronchoalveolar lavage specimens from patients with ALI

and thus contribute toward a reduction in the neutrophil

apoptosis (87, 88). It has been suggested that G-CSF may

exacerbate the acute neutrophil-driven pulmonary inflam-

mation (89), independent of NFjB. Therefore, even in the

absence of NFjB, the up-regulation of the G-CSF receptors

on the lungs might be capable of diminishing the neutrophil

apoptosis (90).

Two tyrosine kinases, Src and Jak, also become rapidly

activated in a LPS model of ALI (91). The Jak family of

kinases plays a critical role in activating multiple down-

stream signaling pathways and is closely associated with the

cytokine receptors. The Src family members are also known

to participate in cytokine signaling and inflammatory

responses (92, 93). These are also considered to be critical

regulators of cell signaling in immune cells (94). In

particular, the mechanism of endotoxin (LPS)-induced Src

and Jak activation in the lungs appears to be multifactorial

and changes over time as different cytokines and inflam-

matory mediators are elaborated (95). LPS has been shown

to be a potent activator of these kinases in macrophages, and

they are important for neutrophil and macrophage effector

function such that their inhibition may confer protection by

decreasing inflammatory cell migration and function (96,

97). Inhibition of these kinases also significantly decreases

the production of the major proinflammatory cytokines

TNF-a and IL-6 in both the serum and lungs of animals

(98).

Although both of these tyrosine kinases have numerous

downstream signaling effectors, they share common targets

such as the signal transducer and activator of transcription

(STAT) factors. Similar to NFjB, the STAT proteins

regulate the expression of genes that are critical for

inflammation and immune responses (99). In particular,

STAT3 has been identified as an acute-phase response gene

in the liver and plays a pivotal role in increased

inflammatory cytokines, chemokines and inflammatory

mediator expression (100, 101). In earlier studies, Severg-

nini et al. determined that STAT3, Src and Jak activation by

LPS required the presence of reactive oxygen species (102).

Thus, Src and Jak have been shown to be redox-regulated,

as has LPS-induced signaling in certain instances (103,

104). This observation reiterates the need for an increased

understanding of the cellular and molecular mechanisms in
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ALI is crucial for the development of novel effective

treatment strategies.

Sepsis-Induced Lung Injury

A major complication evident in traumatized patients

with sepsis is a progressive impaired organ function,

primarily in the lungs. Approximately 30% of the septic

patients in Intensive Care Units develop lung dysfunction

(105), with pulmonary dysfunction being one of the most

common findings in septic patients. Moreover, these

patients are susceptible to respiratory tract infections,

presumably due to insufficient immune defense mechanisms

and overwhelming lung injury. Despite extensive exper-

imentation and model development, the underlying mech-

anisms in polymicrobial sepsis-induced lung dysfunction

are far from clear. Although various researchers have

studied the lung inflammation/injury in a lethal endotoxemia

animal model (106, 107), the amount of research using

Figure 1. Microscopic images (magnification, 35, A) and photomicrographs (magnification, 340, B) of lung tissue sections representing
histology and DNA fragmentation using BrdU TUNEL Kit (Invitrogen), respectively, in the sham, 1- (SP-1D), 3- (SP-3D), and 7-day (SP-7D) post-
sepsis groups. Immunohistochemistry performed on paraffinized sham and septic lung tissues and visualized using confocal microscopy.
TUNEL positive cells exhibit green fluorescence to indicate the DNA breaks (488 nm) in the nuclei (blue fluorescence with TO-PRO, 633 nm). A
color version of this figure is available in the online journal.
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clinically relevant models of sepsis is sparse. However, a

recent study provides evidence that there is a time-

dependent increase in lung injury in the CLP model of

bacterial sepsis (108). This lung injury is initially charac-

terized by moderate edema at 24 h post-CLP, followed by

diffuse alveolar hemorrhage, alveolar wall thickening and

increased cellularity at 48 h post-CLP. This study agrees

with similar findings in which alveolar hemorrhage, septal

wall thickening and capillary congestion occurred in the

mouse model at a similar time-point (24).

Using a cecal inoculum method in a septic male

Sprague-Dawley rat model, we have tested the hypothesis

that increased duration of sepsis stimulates apoptosis in lung

tissue (109–111). In the cecal inoculum (CI) model, animals

were made septic using cecal material obtained from a

healthy donor rat and suspended in 5 mL sterile 5% dextrose

water (D5W). The sham-operated animals receive only 5

mL/kg dose of sterile D5W, which is a vehicle used for

preparing cecal inoculum. The main advantage of CI model

over CLP model is the use of a quantifiable dose of cecal

material for sepsis induction. Unlike CI model, in the CLP

model the dose of cecal material remains unquantifiable that

produces an inconsistent response and is laboratory- and

personnel-dependent. Post-mortem analysis of these septic

animals in CI model revealed a severely inflamed

peritoneum with the presence of pus, which was directly

proportional to the duration of sepsis (111). We observed

that animals at 3 and 7 days post-sepsis had a significant

progressive increase in wet lung weight and body weight

ratio, suggesting signs of pulmonary edema (111). The

histological examination using hematoxylin-eosin staining

revealed an extensive inflammatory damage in the lung

following induction of sepsis (Fig. 1A). The lung tissue

obtained from a sham animal showed a normal histology.

However, with the progression of sepsis from 1 day to 7

days, the lung tissue showed an increased accumulation of

inflammatory cells, along with deformed alveoli filled with

proteinaceous material, granulocytes, necrotic debris, and

inflammatory cells (Fig. 1A). In paraffinized lung tissue

sections of sham and septic animals, DNA breaks were

determined using the APO-BrdUTM TUNEL Assay Kit

(Invitrogen). This TUNEL assay detects the DNA fragmen-

tation of apoptotic cells by labeling the 39-hydroxyl ends of

the DNA breaks (111). The TUNEL assay revealed the

presence of DNA breaks expressed by the green fluores-

cence at 488 nm in the nuclei (exhibiting blue fluorescence

at 633 nm) in the infiltrating cells in the alveolar spaces and

endothelial cells during sepsis (Fig. 1B). On further

analyses, we observed that 10–38% infiltrating cells

expressed TUNEL positive nuclei as opposed to alveolar

septal cells. These findings are in agreement with the

observation of Masaki et al., who first reported in situ
TUNEL DNA strand breaks in endothelial, bronchial and

alveolar epithelial cells as well as inflammatory cells in the

interstitium (112). In this study, we also performed caspase-

3 and caspase-8 colorimetric assay (BioVision, Inc.) using

homogenized lung tissues harvested from sham and septic

animals, which is based on the principle of spectrophoto-

metric detection of chromophore p-nitroaniline (pNA) after

its cleavage from the labeled substrate IETD-pNA. The

absorbance values of caspases 3 and 8 were measured at 450

nm. We observed that the induction of sepsis produced

increased concentrations of both caspase-3 and caspase-8 in

the lung tissue supernatants compared to the sham group

(Fig. 2). Overall, these findings further emphasize that the

induction of apoptosis-mediated DNA damage is an

important molecular characteristic in the development of

ALI during sepsis.

Cytosolic caspase-3 activation is regulated by both

TNF-a receptor-mediated extrinsic and intrinsic (mitochon-

drial-dependent) apoptosis cascades. It is now established

that the majority of the cytotoxic effects of TNF-a are

mediated by TNF-receptor-1 (TNFR1) through the inter-

action of its death domain protein, TRADD (113). In our

polymicrobial sepsis model, we followed a standard

immunoblot procedure as described in our previous

Figure 2. Effect of duration of sepsis on the concentration of (A)
active caspase-3 and (B) caspase-8 in lung tissue supernatants
(optical density/mg protein) in sham, and 1-, 3-, 7-day post-sepsis
groups (n¼5 in each case). Data are expressed as mean 6 standard
error to mean (SEM). The biochemical data were analyzed with a
one-way analysis of variance (ANOVA) using SPSS software. After
obtaining a significant F value, a post-hoc Student-Newman-Keul’s
test was performed for inter- and intra-group comparisons. * P � 0.05
compared to the sham group.
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publication and observed an increase in the TRADD protein

expression (Fig. 3) at 7 days post sepsis induction (109,

111). Thus, it is apparent that TRADD-mediated extrinsic

apoptosis plays a critical regulatory role in the upregulation

of caspase-3 during the development of ALI in sepsis. In

addition to mediating signal transduction, TNFR also

activates NFjB by proteolytic breakdown of its inhibitor,

IjB. The Ijj phosphorylates IjB, which results in IjB

degradation and translocation of NFjB to the nucleus to

activate transcription. In addition, cytosolic caspase-3

activation also causes the upregulation of IjB and the

activation of cytosolic NFjB (60, 78).

In the present study, we observed that the NFkB

expression was upregulated at day 1 and remained elevated

at day 7, although the levels were lower than 1-day post

sepsis (Fig. 4). It is not clear from these results whether the

decreased expression of NFjB on days 3 and 7 compared to

day 1 was due to an increased translocation of NFjB in the

nucleus. Guinee et al. reported that an elevated Bax

expression was linked to diffuse alveolar damage (114).

Figure 5. Expression of intrinsic apoptosis markers (A) Bax and (B)
Bcl2 in sham, 1-, 3-, and 7-day post-sepsis group. The immunoblots
indicate the expressions of Bax and Bcl2 normalized to beta-actin in
the lung tissue samples. Each well was loaded with 15 lg protein
determined by Bradford’s detection method. The data were analyzed
as explained in the legend of Figure 2. * P � 0.05 compared to
respective sham group; # P � 0.05 compared to the 1-day sepsis
groups. The blot is a representation of five experiments in each
group.

Figure 4. Expression of other apoptosis markers, NFjB and IjB
ratio in sham, 1-, 3-, and 7-day post-sepsis group. The immunoblots
indicate the expressions of NFjB and IjB in the lung tissue samples.
Each well was loaded with 15 lg protein determined by Bradford’s
detection method. The data were analyzed as explained in the
legend of Figure 2. * P � 0.05 compared to respective sham group;
# P � 0.05 compared to the 1-day sepsis groups. The blot is a
representation of five experiments in each group.

Figure 3. Expression of extrinsic apoptosis marker, TRADD, in
sham, 1-, 3-, and 7-day post-sepsis groups. The immunoblot
indicates the expression of TRADD normalized to beta-actin in the
lung tissue samples. Each well was loaded with 15 lg protein
determined by Bradford’s detection method. The data were analyzed
as explained in the legend of Figure 2. * P � 0.05 compared to
respective sham group. The blot is a representation of five experi-
ments in each group.
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The activation of the intrinsic apoptosis cascade was

supported by the observation of Bax protein upregulation

on day 1 post-sepsis and day 7, suggesting a biphasic

response in our sepsis model (Fig. 5). In contrast, the Bcl2
protein expression was down-regulated by day 1 and

remained lower than sham levels up to 7 days post-sepsis.

These data obtained in our polymicrobial septic rat model

support the contention that the activation of extrinsic and

intrinsic apoptotic cascades correlates with an increase in

pulmonary edema, as seen in the lung tissues during the

progression of sepsis. However, additional studies are

needed to determine the apoptosome formation and to

profile other mitochondrial target apoptotic cascade pro-

teins, such as cytochrome c, in order to explore their

association with lung injury during sepsis.

Future Prospects

Despite the reduction in the rate of mortality in the last

10–15 years, ALI/ARDS still remains an important cause of

pulmonary and non-pulmonary morbidity (30–40%) in

discharged patients (115). A rise in the incidence of

morbidity has been predicted because of the increased

frequency of several predisposing conditions, such as sepsis,

that precipitate ALI/ARDS (116). At an NHLBI workshop

(2003), an unequivocal consensus was reached regarding

future endeavors in this field: that research leading to

increased comprehension of the mechanisms involved in the

development of ALI must take place at all levels (basic,

translational and cellular). Investigational and collaborative

efforts directed toward understanding key cellular and

molecular events in both animal and clinical studies will

provide the necessary insight for improving the detection

and treatment of ALI (117).
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