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Abstract

Tinnitus is a disturbing condition defined as the occurrence of acoustic

hallucinations with no actual sound. Although the mechanisms underlying

tinnitus have been explored extensively, the pathophysiology of the disease

is not completely understood. Moreover, genes and potential treatment targets

related to auditory hallucinations remain unknown. In this study, we examined

transcriptional-profile changes in the medial geniculate body after noise-

induced tinnitus in rats by performing RNA sequencing and validated

differentially expressed genes via quantitative polymerase chain reaction

analysis. The rat model of tinnitus was established by analyzing startle

behavior based on gap-pre-pulse inhibition of acoustic startles. We

identified 87 differently expressed genes, of which 40 were upregulated and

47 were downregulated. Pathway-enrichment analysis revealed that the

differentially enriched genes in the tinnitus group were associated with

pathway terms, such as coronavirus disease COVID-19, neuroactive ligand-

receptor interaction. Protein–protein-interaction networks were established,

and two hub genes (Rpl7a and AC136661.1) were identified among the selected

genes. Further studies focusing on targeting and modulating these genes are

required for developing potential treatments for noise-induced tinnitus

in patients.
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Introduction

Tinnitus, a condition in which people with or without hearing loss perceive phantom

sounds, has become a major problem affecting millions of people worldwide. Research

related to the epidemiology of tinnitus has demonstrated that nearly 25% of all Americans

experience abnormal auditory sensations at least once in their lifetime [1]. When tinnitus

becomes chronic (>6 months), various co-morbidities including insomnia, and
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psychological disorders, such as anxiety, depression, cognitive

dysfunction, and stress, influence the quality of patients’ lives and

even lead to suicide [2]. Although frequently caused by hearing

loss and aging, tinnitus is hearing loss- and age-independent,

suggesting that an extremely intricate mechanism mediates the

onset of this disease [3]. Current therapeutic strategies for

treating tinnitus (including drugs, acoustic stimulation,

psychological therapy, and repetitive transcranial magnetic

stimulation) have generated conflicting evidence regarding

beneficial outcomes and alleviation of the disease [4].

Since tinnitus can persist after the destruction of the auditory

nerve, recent studies have attributed the generation of tinnitus to

the central auditory pathway, which involves the auditory cortex,

medial geniculate body (MGB), inferior colliculus, and cochlear

nucleus, instead of the peripheral otologic components [5]. The

MGB, an obligate auditory brain center, plays an essential role in

transmitting acoustic information from the inferior colliculus to

the auditory cortex [6]. Not only is the MGB the principle

conduit between the thalamic circuits and the cortex, but that

there is evidence for altered firing patterns along this ascending

input in animal models of tinnitus [7]. Based on its anatomical

features, the MGB is a suitable candidate region for studies

related to tinnitus [8]. Previous research indicated that the

firing of neurons in the MGB changes from the tonic to burst

form, which was found to be a significant indicator of

hyperactivity after tinnitus [9]. Inhibition of the abnormal

response can equally alleviate oscillations induced by tinnitus

between the MGB and auditory cortex [10]. Altered biological

function of the MGB can lead to abnormal signal transmissions

in the auditory pathways, which can subsequently mediate the

development of tinnitus.

In the context of biological traits, genes are important

hereditary units that modulate numerous life processes,

including birth, illness, and death. Recent advancements in

genomics have provided insights into relationships between

genes associated with different human diseases and genetic

heredity in tinnitus [11]. Animal transcriptomics studies have

revealed several genes that are expressed differently after tinnitus,

such as NR2B, VGLUT1, BDNF, and Gabrb3 [12–15]. In

addition, the results of some studies on patients with tinnitus

showed that the expression levels of genes related to

cardiovascular function, neurotrophic factors, GABAB

receptor subunits, and serotonin transporter function were

significantly increased [16–19]. Meanwhile, human genetic

studies on tinnitus that have been replicated in an

independent cohort also revealed that genes, such as

AF131215.5, BLK, C8orf12, COL11A1, GRK6, MSRA,

MFHAS1, XKR6, ANK2, AKAP9, and TSC2, could act as

major predictors of the development of tinnitus [11, 20, 21].

Although abundant data have been generated regarding the

genetic underpinnings of tinnitus, differentially expressed

genes (DEGs) in the MGB remain unclear for this clinical

enigma, which limits the development of effective treatments.

Exploring potential genes in brain regions that underlie tinnitus

vulnerability would lay a foundation for understanding tinnitus

pathogenesis and exploring effective intervention strategies.

In this study, we performed RNA-sequencing (RNA-seq) to

identify DEGs in the MGB that correlated with noise-induced

tinnitus and elucidated related signaling pathways. Two hub

genes (Rpl7a and AC136661.1) in the MGB showed potential

as effective therapeutic drug targets.

Materials and methods

Animals

Two-month-old male Sprague–Dawley rats were housed in

standard cages (12 h day/night cycle) with a normal humidity

(50–60%) and an appropriate temperature (22°C) with food and

water ad libitum. All procedures were performed in accordance with

the requirements of the Care and Use of Laboratory Animals of the

Chinese PLAGeneral Hospital. All protocols used in this study were

approved by the Animal Ethics Committee of the Chinese PLA

General Hospital (Code: 2021-X17-85).

Auditory brainstem responses (ABRs)

The animals included in this study were verified by

performing ABR tests, which can be used to study noise

exposure. Briefly, the rats were administered sodium

pentobarbital intraperitoneally (i.p.) and subsequently placed

in a soundproof chamber. Tone and click stimuli (0.5 ms rise

or fall) were applied using a TDT loudspeaker (Tucker Davis

Technologies, Miami, FL, United States). A tube linked to a TDT

RZ6 instrument was placed in the external auditory canal. Before

ABR testing, the animals were administered reference, active, and

ground needle electrodes (Rochester Elektro-Medical, Lutz, FL,

United States). The reference needle was placed on the tested

mastoid, whereas the ground needle was set contralaterally, and

the active needle inserted into the vertex of the skin. The original

sound-pressure level (SPL) was set at 90 dB and then it was

decreased in 10 dB steps for both the click and tone stimuli (4, 8,

16, and 32 kHz). The recorded amplified responses were filtered

through a passband from 100 Hz to 3 kHz and averaged

512 times. To detect the ABR threshold, repeatable wave-III

patterns were monitored at every frequency until they

disappeared with decreasing SPLs, and the lowest dB SPL at

each frequency was recorded.

Gap detection

The establishment of tinnitus in animals after noise exposure

was verified by assessing gap-induced pre-pulse inhibition (PPI)
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of the acoustic startle responses, as described previously [22].

Briefly, a cage connected to a piezoelectric transducer was used to

detect pressure changes caused by acoustic startles and

instantaneously transform them into voltage values that were

utilized to evaluate the amplitudes of the acoustic startle response

(ASR). The “no-gap” pattern was set using background noise

(60 dB SPL) centered at 6, 12, or 16 kHz, inserted with a 115 dB

SPL startle stimulus lasting for 20 ms. The “gap” pattern was set

using a silent cap (50 ms) delivered 100 ms ahead of the startle

stimulus onset, and the results were compared with those

obtained using the no-gap pattern. A speaker (controlled

using startle software, Xeye, Beijing, China) was installed

20 cm above the platform and linked to the piezoelectric

transducer to generate auditory stimuli. Ten paired “gap” and

“no-gap” trials were conducted in random order for all tests. The

ability of animals to detect gap was estimated by gap: PPI (%)

ratio, which was calculated as amplitude of the 1-gap ASR

divided by the amplitude of the no-gap ASR. The criteria for

tinnitus was as follows: At least the startle ratio of single test

frequency before exposure was more than 30% before noise

exposure and the startle ratio after exposure is required to be

below 30%. In addition, decrease in startle ratio for a single

frequency should be more than 30% [23]. Otherwise, the animals

are considered as non-tinnitus ones.

Noise exposure

Rats wearing foam earplugs (OHRFRIEDEN, Wehrheim,

Germany) unilaterally in the right ear were used in this study.

The rats were exposed to loud noise at a frequency from

8–16 kHz (126 dB SPL) for 2 h after being deeply anesthetized

with an i.p. injection of sodium pentobarbital [24]. Unilateral

noise exposure allowed animals to maintain normal hearing,

which was essential for gap detection. The sound-delivery system

comprised an RA 300 amplifier (Alesis, Cumberland, RI,

United States) and a TW67 speaker (Pyramid Car Audio,

Brooklyn, NY, United States). Briefly, the speaker was

arranged 10 cm away from the ears of each rat, and the RA

300 amplifier and TDT processor were arranged to generate and

amplify the tones. Calibration of the SPL was achieved using a

sound-level meter connected to a condenser microphone.

RNA-seq analysis

RNA-seq was performed as described elsewhere [25].

Regions (5.2–6.36 mm posterior to bregma; 3.2–4.2 mm,

lateral to the midline; 5.2–6.8 mm ventral to the dorsal surface

of the skull) were selected as the target area according to brain

atlas of rats. Briefly, MGB tissue samples (n = 3) acquired from

the non-tinnitus and tinnitus groups were washed immediately,

and processed for RNA isolation using TRIzol reagent (Thermo

Fisher Scientific, Wilmington, DE, United States). The RNA

concentration and purity of each sample were measured using

a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific).

The RNA Nano 6000 Assay Kit was used to assess RNA integrity.

Sequencing libraries were generated using the NEBNext UltraTM

RNA Library Prep Kit for Illumina (New England Biolabs,

United States) according to the manufacturer’s

recommendations, and index codes were added to attribute

the sequences to each sample. Raw data (raw reads) in fastq

format were first processed using in-house Perl scripts. To obtain

clean data (clean reads), reads containing poly-N sequences,

adapters, and low-quality reads were removed from the raw

data. Then, the Q20, Q30, GC content, and sequence-duplication

levels of the clean data were calculated. After cleaning the data,

high-quality data were acquired and downstream analyses

were performed.

Bioinformatics analysis

Edge R and DEseq2 packages were used to analyze

differential gene expression in tissue samples. A p-value

of <0.05 and a fold-change of ≥1.5 were used as criteria for

identifying genes that are significantly modulated levels [26]. The

GOseq R package and KOBAS software were used to analyze

enriched processes and pathways identified using the Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) databases, respectively. The DEGs were

uploaded to the STRING database,1 and protein–protein-

interaction analysis was performed. Cytoscape software was

used to visualize and select hub genes.

Quantitative polymerase chain reaction
(qPCR) analysis

All experimental procedures for RNA extraction used in this

study were in accordance with those employed in previous

studies [27]. Total RNA (n = 5) was extracted using RNA

Extraction Reagent (Servicebio, Wuhan, China) and converted

to complementary DNA (cDNA) using the Servicebio RT First

Strand cDNA Synthesis Kit (Servicebio). qPCR analysis was

performed using 2× SYBR Green qPCR Master Mix

(Servicebio). The mRNA-expression levels of the target genes

were normalized to glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) mRNA-expression levels and fold-changes in

expression differences were calculated using the 2−ΔΔCT

method [28]. The sequences of the oligonucleotide primers

(Servicebio) used in this study are shown in Table 1.

1 http://stringdb.org/

Experimental Biology and Medicine
Published by Frontiers

Society for Experimental Biology and Medicine03

Liu et al. 10.3389/ebm.2024.10057

http://stringdb.org/
https://doi.org/10.3389/ebm.2024.10057


Statistical analysis

GraphPad Prism software (version 9.0.1; San Diego, CA,

United States) was used to analyze the behavioral data generated

in this study. The ABR thresholds and changes in GAP-PPI ASR

were assessed using two-way ANOVA. Changes in the mRNA level

determined using qPCR were examined using non-paired Student’s

t-test. Data are presented as the mean ± standard error of the mean.

p < 0.05 was applied as the threshold for statistical significance.

Results

Validation of tinnitus established by noise
in rats

Figure 1A shows the experimental design of our study.

Figure 1B (left panel) shows that the acoustic threshold of the

left ear following a significant increase in the noise level. As

depicted in Figure 1B (right panel), the acoustic threshold of the

left ear (following the noise increase [post]) was significantly

higher than before (pre) the noise when the click stimulus was

introduced (pre vs. post, 21.67 ± 1.67 vs. 65.00 ± 8.47, p < 0.01).

Similar findings were observed with different tone stimuli,

including 4 kHz (pre vs. post, 20.00 ± 3.65 vs. 71.67 ± 5.43,

p < 0.01), 8 kHz (pre vs. post, 21.67 ± 3.07 vs. 67.50 ± 4.79, p <
0.01), 16 kHz (pre vs. post, 20.00 ± 2.58 vs. 73.33 ± 7.15, p <
0.001), and 32 kHz (pre vs. post, 30.00 ± 5.16 vs. 77.5 ± 6.02, p <
0.01). The hearing threshold of the right ear was not significantly

different after initiating click stimuli (pre vs. post, 28.33 ± 3.07 vs.

31.67 ± 6.54, p = 0.66) or tone stimuli, i.e., 4 kHz (pre vs. post,

25.00 ± 3.42 vs. 31.67 ± 3.07, p = 0.17), 8 kHz (pre vs. post,

30.00 ± 4.47 vs. 23.33 ± 4.22, p = 0.33), 16 kHz (pre vs. post,

26.67 ± 3.33 vs. 30.00 ± 2.58, p = 0.58), and 32 kHz (pre vs. post,

30.00 ± 2.58 vs. 45.33 ± 4.28, p = 0.06). Unilateral normal hearing

enables animals to detect gaps in background sounds. The

experimental design used to assess the ability of the animals to

detect gaps is shown in Figure 1C. Animals in the control group

exhibited comparable Gap-PPI changes at 6 kHz (pre vs. post,

57.82 ± 6.55 vs. 52.79 ± 7.41%, p = 0.63), 12 kHz (pre vs. post,

52.96 ± 5.15 vs. 51.74 ± 3.53%, p = 0.88), and 16 kHz (pre vs. post,

47.31 ± 3.56 vs. 49.47 ± 3.24%, p = 0.68), as shown in Figure 1D.

These findings were equally applicable to the non-tinnitus group,

which displayed no significant change at 6 kHz (pre vs. post, 48.74 ±

5.29 vs. 61.24 ± 4.08, p = 0.11), 12 kHz (pre vs. post, 50.53 ± 5.58 vs.

39.11 ± 4.18, p = 0.21), and 16 kHz (pre vs. post, 55.50 ± 2.89 vs.

44.30 ± 4.47, p = 0.12) in terms of gap-PPI detection (Figure 1E). In

the tinnitus group, the inhibitory effect of the gap on acoustic

startling was attenuated at 6 kHz (pre vs. post, 60.99 ± 7.07 vs.

27.63 ± 5.31, p < 0.01, Figure 1F). At 12 kHz, the tendency of

decreasing inhibition was also observed, where the gap-PPI

decreased from 47.67 ± 4.45% to 13.57 ± 4.03% (p < 0.01,

Figure 1F). This type of change was equally applicable to a

16 kHz background sound, where the gap-PPI of the tinnitus

group decreased from 45.38 ± 3.69% to 15.20 ± 4.79% (p < 0.01,

Figure 1F). In order to exclude the potential loss of hearing in the

plugged ear via damage to binaural ascending afferents [29], the

ABR threshold of non-tinnitus and tinnitus group was tested which

were shown in Supplementary Figures S1A, S1B. There was a similar

ABR threshold change in the non-tinnitus and tinnitus group.

Identification of DEGs

To illuminate transcriptional-profile changes associated with

noise-induced tinnitus, we performed RNA-seq analysis of brain

TABLE 1 Sequences of primers used for qPCR analysis.

Gene Forward primer (59–39) Reverse primer (59–39)

Fau GACGGTCGCCCAGATCAAA GGTTGTACTGCATTCGCCTCTT

Rpl7a GACAAGGGTGCTCTGGCTAAG GCAATGCGAGCCACAGACTTA

Rps19 AACCAGCAGGAGTTCGTCAGA ACCACCACGGAGGTACAGGT

LOC100360491 TTCTCCTCTTCCGTGATGGCT ATCCACAAGAAAATGGCACGC

LOC685085 AAAGAAGAAGTGGTCCAAAGGCA CTGTGCTTTGAAACCAGCTTGAT

AC136661.1 TACCTGTTCTCCCTGCCCATT GTAGTCCCCAATAGCGACAAA

Fos TCCAAGCGGAGACAGATCAACT TCAAGTCCAGGGAGGTCACAGA

Ebna1bp2 AAGAAGGCGGTGAATGACGA GCAAAATAATCAGTGGGCCTCTT

Egr1 CCAAACTGGAGGAGATGATGCT GACTCTGTGGTCAGGTGCTCGTA

LOC689899 AACAAGCACCAGATCAAACAGG TGGCAACATCTAGAGCATCATAATC

Gapdh CTGGAGAAACCTGCCAAGTATG GGTGGAAGAATGGGAGTTGCT
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FIGURE 1
Establishment of a rat model of tinnitus induced by loud noise. (A) Schematic illustration depicting the experimental timeline. (B) Typical image
of the ABR threshold upon click stimulation of left ear before (left) and after noise (middle) exposure. The ABR threshold of the left ear after noise
exposure was significantly increased after click stimulation or exposure to a tone with a frequency of 4, 8, 16, or 32 kHz (right). (C) The experimental
paradigm for detecting tinnitus. (D–F)Gap-PPI values of (D) the control, (E) non-tinnitus and (F) tinnitus groups at 6, 12, or 16 kHz. n= 6 animals.
*p < 0.05, **p < 0.01, ***p < 0.001.
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samples from the non-tinnitus and tinnitus groups. The results of

numerous studies related to tinnitus have shown that the MGB

plays an important role in the development of this disease [30];

therefore, the MGB was chosen as the target area. Genes

exhibited expression differences of >1.5-fold between the non-

tinnitus and tinnitus groups were designated as potential DEGs.

110 DEGs and 99 DEGs were identified by EdgeR and DEseq2,

respectively (Figures 2A, B). DEGs selected by EdgeR contained

FIGURE 2
Confirmation of differential gene expression between the non-tinnitus and tinnitus groups at the transcriptional level. (A,B) Differently
expressed genes as screened out by Edger and Deseq2. (C) Venn plots of differently expressed genes screened by Edge R and DESeq2. (D)Heatmap
showing DEGs in the non-tinnitus (left) and tinnitus (right) groups. Blue and red colors indicate downregulated and upregulated DEGs, respectively.
n = 3 animals.
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53 upregulated and 57 downregulated. DEGs selected by

DEseq2 contained 48 upregulated and 51 downregulated. By

integrating the results from EdgeR and DEseq2, we identified

87 differently expressed genes which include 40 upregulated

DEGs and 47 downregulated DEGs (Figure 2C). The selected

DEGs are shown in a heat map (Figure 2D). Top ten

upregulated and downregulated DEGs selected by Edger and

Deseq2 were shown in Table 2.

DEG-enrichment analysis

GO-based enrichment analysis was performed to assess the

relevant biological functions of the DEGs in the non-tinnitus and

tinnitus groups. Figures 3A–C depicts the enrichment terms in

the biological process (BP), cellular component (CC), andmolecular

function (MF) categories. Three top most BP terms were positive

regulation of miRNA transcription, positive regulation of miRNA

metabolic process and regulation of miRNA transcription. Themost

enriched CC term was cytosolic ribosome, followed by side of

membrane and external side of plasma membrane with the latter

two terms were not significantly enriched. The top three most

enriched MF terms were excitatory extracellular ligand-gated

monoatomic ion channel activity, structural constituent of

ribosome and ubiquitin protein ligase binding with the latter two

terms showing no statistical significance. KEGG analysis was

performed to elucidate the underlying pathways associated with

the DEGs between the tinnitus and non-tinnitus groups. The most

significantly enriched pathways identified were coronavirus disease

COVID-19 and neuroactive ligand-receptor interaction (Figure 3D).

TABLE 2 The top ten upregulated and downregulated DEGs.

Up regulated
genes

log2FoldChange False-discovery
rate

p-value Down regulated
genes

log2FoldChange False-discovery
rate

p-value

AABR07046778.1 6.136147593 1.72E-31 1.03E-16 LOC103690064 −1.802058571 1 0.014442155

Ngfr 2.387695704 0.967933878 0.003147254 AABR07048397.1 −1.353588127 0.299396874 0.000105157

Nudt10 2.345152966 0.061686258 0.000159045 Trpv1 −1.321438256 1 0.007588696

LOC100360647 2.004777335 0.001272584 0.001899531 AABR07061378.1 −1.310732471 1 0.039494665

AC136661.1 1.900711856 0.37144022 0.001977346 Ncaph −1.220065263 1 0.039471337

Fau 1.847325179 0.061686258 0.015040405 Spata20 −1.206301061 1 0.045839587

Sdc1 1.783174086 0.299396874 0.025586079 Rps19 −1.166814696 1 0.004378735

LOC100360491 1.764732106 0.146915516 0.000136002 Enpp3 −1.104953628 1 0.03958059

LOC100910678 1.562883998 0.164957053 0.000141141 Grtp1 −1.088605849 1 0.026009829

Snrpg 1.533385569 1 0.027685201 Glra1 −1.076531654 1 0.004025429

TABLE 3 The hub genes selected by cytohubba.

Hub genes log2FoldChange False-discovery rate p-value

LOC689899 6.136147593 1 1.03E-16

Rpl7a 0.606298027 1 0.003766165

LOC100360491 1.764732106 0.146915516 0.000136002

Rps19 −1.166814696 1 0.004378735

LOC685085 −1.306683174 1 0.032988997

Fau 1.848475885 0.061686258 5.05E-05

AC136661.1 1.783174086 0.37144022 0.025586079

Ebna1bp2 −0.817818978 0.967933878 0.002607751

Egr1 −0.64586611 0.056699571 3.26E-05

Fos −1.006387096 0.004093582 1.83E-06
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Construction of a protein–protein-
interaction network and selection of
hub genes

We employed the STRING database to generate a network of

protein–protein interactions, according to previous studies [31]. The

cut-off criterion for inclusion in the network was that the median

confidence level of the interaction score was 0.400. Figure 4A shows

all 85 nodes and 50 edges in the protein–protein-interaction network,

where the average node degree was 1.18. The Cytohubba plug-in of

Cytoscape was used to select the potential hub genes. The following

10 genes had the highest net degree ranking: LOC689899, Fau, Rpl7a,

LOC100360491, Rps19, LOC685085, AC136661.1, Fos, Ebna1bp2,

Egr1 (Figure 4B and Table 3).

Verification of the hub genes

We performed qPCR to verify the expression levels of

LOC689899, Fau, Rpl7a, LOC100360491, Rps19, LOC685085,

AC136661.1, Fos, Ebna1bp2, and Egr1. Although LOC689899 had

the highest betweenness centrality value, it did not show a significant

difference in expression between the two groups (p = 0.69,

Figure 5A). Fau (p = 0.23, Figure 5B), LOC100360491 (p = 0.50,

Figure 5D), Rps19 (p = 0.80, Figure 5E), LOC685085 (p = 0.43,

Figure 5F), Fos (p = 0.36, Figure 5H), Ebna1bp2 (p = 0.53, Figure 5I)

and Egr1 (p = 0.78, Figure 5J) also showed no significant differences.

However, Rpl7a was expressed at significantly higher levels in the

tinnitus group than in the non-tinnitus group (p < 0.001, Figure 5C)

which was also true for the AC136661.1 (p < 0.05, Figure 5G).

Discussion

Tinnitus is an intractable condition that impairs quality of

life and imposes a heavy burden on society when it progresses to

a chronic state. Research to identify the best method to treat

tinnitus is still ongoing because of its elusive pathogenic

mechanisms. In this study, we first established a rat model of

tinnitus by exposing the animals to loud noise, which was

FIGURE 3
GO and KEGG enrichment analyses of key mRNAs. (A–C) Representative GO analysis of DEGs enriched for (A) Biological Process, (B) Cellular
Components, and (C) Molecular Function. (D) The most highly enriched pathways associated with DEGs.
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FIGURE 4
Protein–protein-interaction network in the experimental model of tinnitus (A) The protein–protein-interaction network established using the
STRING database and the hub genes identified in this study. (B) Key genes are arranged based on their degree values. The top ten geneswere selected
as potential hub genes.
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subsequently validated by applying gap-induced, PPI of acoustic

startle response (GPIAS) methods. Subsequently, genetic changes

in the MGB between the non-tinnitus and tinnitus groups were

analyzed using RNA-seq. We identified 87 differentially

expressed genes (DEGs; 40 upregulated and 47 downregulated

genes) that were highly related to tinnitus. GO analysis of the

DEGs was performed to identify their potential functions and

KEGG analysis was performed to clarify the signaling pathways

involved. Ten hub genes were finally identified based on the

protein–protein-interaction network analysis and were tested

further at the transcriptional level.

In this study, animals showed tinnitus-related behavior after

tonal stimulation at 6, 12, and 16 kHz, which was close to the

frequencies of the loud noises used in this study. These results were

consistent with those of previous research, which showed that the

tinnitus frequency was similar to the noise frequency [32]. Themost

FIGURE 5
Results of qPCR analysis of the selected hub genes. (A–J)Differences in themRNA-expression levels of ten key genes between the non-tinnitus
and tinnitus groups are shown, including LOC689899 (A), Fau (B), Rpl7a (C), LOC100360491 (D), Rps19 (E), LOC685085 (F), AC136661.1 (G), Fos (H),
Ebna1bp2 (I) and Egr1 (J). n = 5 animals, *p < 0.05.
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upregulated genes AABR07046778.1, Ngfr, Nudt10, LOC100360647,

AC136661.1, Fau, Sdc1, LOC100360491,LOC100910678, and Snrpg.

The glutamate excitotoxicity associated with mitochondrial

dysfunction can cause tinnitus [33]. AABR07046778.1 may

modulate tinnitus by participating the same process. The most

downregulated genes in the tinnitus (when compared to the non-

tinnitus group) were LOC103690064, AABR07048397.1, Trpv1,

AABR07061378.1, Ncaph, Spata20, Rps19, Enpp3, Grtp1, and

Glra1. LOC103690064 is functionally similar to m7GpppN-

mRNA hydrolase, which control the degradation, decay and

turnover of mRNA by removing the 5′ cap structure from the

mRNA [34–36]. The finding that LOC103690064 was

downregulated the pathological retention of RNAs or the

protective compensation of RNAs in the MGB [37].

One of the most enriched pathway terms identified in this study

was coronavirus disease COVID-19 pathway. This pathway mainly

correlates with the immunologic derangement as well as the

dysfunction of blood-brain barrier (BBB) induced by coronavirus

in the central nervous system [38, 39]. Previous results have shown

that patients with COVID-19 also display increased severity and

incidence rate of tinnitus [40, 41]. It is reasonable to speculate that in

tinnitus, increased pathological immune proteins or BBB

permeability occur in the MGB. The coronavirus disease

COVID-19 is also commonly enriched in neurodegenerative

diseases, which is often associated with tinnitus, a tentative sign

of neurodegeneration [42]. KEGG pathway terms associated with

neuroactive ligand-receptor interaction were highly enriched, which

further verifies that tinnitus is one type of neurodegenerative

disorder that is highly correlated with the damage of synaptic

transmission [43]. Genes involved in neuroactive ligand–receptor

interactions, such as Npy2r, Htr2c, and Rxfp1, were significantly

dysregulated during cognitive dysfunction or memory impairment

which was tightly related with tinnitus [44, 45].

Identifying the genes encoding key proteins responsible for

noise-induced tinnitus could help elucidate the mechanism

responsible for the condition. Rpl7a which encodes the

ribosomal protein large subunit was found to be upregulated

in the tinnitus group compared with the non-tinnitus

group. Previous research showed that the levels and activity of

ribosomal proteins can change during neurodegeneration as well

as brain aging [46–48]. Rpl7a were found to promote the growth

and regeneration of neural axons after optic nerve crush injury

suggesting that the elevated level of Rpl7a can facilitate the

communication between adjacent neurons and increase the

output of MGB to auditory cortex [49]. AC136661.1 was

another up-regulated hub gene in tinnitus group, selected by

the protein–protein-interaction network. This gene codes the 40S

ribosomal protein S2 (RPS2) in rats, a protein responsible for

aminoacyl-tRNA binding. This protein is similar to yeast S4 and

Escherichia coli S5 ribosomal proteins [50]. Upregulation of

AC136661.1 may permit the fidelity of the translation of

mRNA ribosomes in mitochondria which guarantee the

supply of energy in MGB neurons [51]. This is a reasonable

finding because the main cell subtypes (accounting for >99% of

cells in the MGB in rodents) are glutamatergic [52]. The

increased activity of excitatory neurons led to an increased

output from the MGB to the auditory cortex in a model of

central gain, which showed increased excitability of neurons in

the auditory cortex [53, 54].

Previous research revealed the presence of genes related with

axonal branching (ANK2, AKAP9, and TSC2) in tinnitus patients

[20]. These also support our hypothesis that enhanced excitability of

neurons occurred in tinnitus as increased branches promote

connections among neurons and even brain regions. Other

genes, such as COL11A1, GRK6, MFHAS1, MSRA, XKR6,

C8orf12, AF131215.5, and BLK, which were reported to be

correlated with tinnitus-related disorders were not observed in

our study [55]. This may be due to the fact that our study

mainly focused on acute tinnitus that is scarcely associated with

psychological problems. Meanwhile, other studies have shown that

genes such as CACNA1E that influence the firing of neurons are also

associated with tinnitus, which is applicable to our study, suggesting

the altered excitability of neurons in the brain [56]. Xie et al.

identified that genes related with the formation of cilia and

infiltration of inflammatory cells also participate in the

development of tinnitus [57]. Our study did not find such

genetic changes as we only focused on the central nervous

system instead of the peripheral nervous system. Further

investigations need to be done to clarify the regional effect on

the candidate genes related to tinnitus. We did not find the similar

genes reported in the human studies byAmanat et al. [20]. However,

we found gene (NGFR) shares similar functions withANK2which is

high imperial for the growth and extension of neurons [58]. In

addition, we also did not detect the genes reported in thework byXie

et al such as WNT11 and TNFRSF1A [57]. However, we cannot

exclude the possibility that genes in different signaling pathway may

interact with each other which indirectly influence the tinnitus. For

example, WNT family member could activate NGFR transcription

in a ZEB1-dependent manner [59]. Additional work also should be

done to verify the hypothesis.

This study has certain limitations that should be

acknowledged. First, we only utilized male rats as the target to

reduce the effects of sex on hearing levels; however, female rats

displayed comparable variability in hearing levels to male rats

during the reproductive cycle [60]. Additional studies should be

performed with female rats before the results are translated to a

clinical study. Second, we predominantly focused on the

occurrence (rather than the sustainment) of tinnitus (i.e., the

chronic phenotype) [61]. Tinnitus lasted longer in our model

(established by exposing rats to loud noises) than drug-induced

tinnitus lasts. When considering simulating patients disturbed by

tinnitus, these results should be cautiously interpreted because in

clinical practice, numerous patients experience tinnitus without

explicit pathogenesis but with normal bilateral hearing. Third,

although similar genetic variability occurs between rodents and

humans, the hub genes selected in our study should be translated
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cautiously into humans because some human diseases do not

occur naturally in rodents [62]. Fourth, the genes encoding

proteins related to tinnitus were only confirmed at the

transcriptional level. Further studies are required to determine

whether these proteins can be translated clinically into effective

targets for treating tinnitus.

I In conclusion, we identified 88 DEGs in tinnitus

(43 upregulated genes and 45 downregulated genes). Most

DEGs enriched were associated with COVID-19 and

neuroactive ligand-receptor interaction-related pathways. We

selected the genes (Rpl7a and AC136661.1), which are highly

related to the normal function of ribosome, for further analysis.

These findings will contribute significantly to the development of

an effective therapeutic approach for tinnitus, resulting in an

exciting breakthrough for this debilitating disease.
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