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Abstract

Acute myeloid leukemia (AML) is one of the most threatening hematological

malignances. cGAS-STING pathway plays an important role in tumor

immunity and development. However, the prognostic role of cGAS-STING

pathway in AML remains unknown. Firstly, The expression of cGAS and STING

was analyzed by bioinformatics analysis. Subsequently, Bone marrow samples

were collected from 120 AML patients and 15 healthy individuals in an

independent cohort. The cGAS and STING expression was significantly

elevated in AML patients compared with healthy controls. Patients with

high cGAS and STING expression had a higher NRAS/KRAS mutation rate

and lower complete remission (CR) rate. High cGAS and STING expressionwas

significantly associated with lower overall survival (OS) and disease-free

survival (DFS). Our findings revealed that the expression levels of cGAS and

STING in AML are elevated. High expression of cGAS and STING correlated

with worse OS and DFS andmay be a useful biomarker for inferior prognosis in

AML patients.
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Impact statement

Acute myeloid leukemia (AML) is an aggressive hematopoietic malignancy with a

high incidence rate and poor clinical prognosis. However, the current understanding of

the molecular mechanism of AML development and progress is very limited. In our study,

we evaluated the expression of cGAS and STING by collecting bone marrow samples from

120 AML patients and 15 healthy individuals, and found that cGAS-STING pathway was

involved in the pathogenesis of AML. The high expression of cGAS and STING is related

to the worse OS and DFS, which may be useful biomarkers for the poor prognosis of AML
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patients. Our research fills the gap in the pathogenesis of AML

and provides potential biomarkers for clinical diagnosis

and treatment.

Introduction

Acute myeloid leukemia (AML) is an aggressive

hematopoietic malignant disease resulted in high morbidity

and unfavorable clinical outcome [1]. Cytogenetics is the

backbone for risk stratification, facilitating the classification of

AML patients into favorable, intermediate, and poor prognostic

groups. However, more than half of AML patients are classified

as an intermediate cytogenetic risk group but their clinical

outcomes turn out to be distinct [2, 3]. A large percentage of

AML patients will suffer from disease recurrences due to the

heterogeneous AML clones [4, 5]. The current perception of

molecular mechanisms on the development and progression of

AML is limited to date [6]. Thus, the identification of new

molecular biomarker and revealing of novel mechanism are

needed to prompt a more precise risk stratification and

develop targeted therapies for AML.

As a vital DNA sensor, cyclic guanosine monophos-phate

(GMP)-adenosine monophosphate (AMP) (cGAMP) synthase

(cGAS) initiated an innate immunity pathway through binding

deviant DNA in the cytosol. cGAMP can activate stimulator of

interferon genes (STING), leading to a signaling cascade which

produces type I interferons and other functional cytokines [7].

cGAS-STING pathway was previously introduced as a crucial

initiator of innate immune and anti-virus responses [8].

Recent studies have revealed the multiple role of cGAS-

STING pathway in cancer. Activated cGAS-STING pathway

in tumor cells lead to upregulation of various inflammatory

genes, such as Type I interferon and impedes the neoplastic

progression [9]. There are also related reports in AML, and

therefore, many scientists have attempted to increase the

expression of type I interferons by upregulating STING,

thus achieving the goal of treating AML [10–13]. Yet,

mounting evidence indicates that cGAS-STING pathway

might provoke inflammation, leading to tumor

transformation, development and metastasis in certain

diseases [14–16]. Consequently, the relationship between

the expression levels of cGAS and Sting in AML and patient

prognosis remains unclear.

In this study, we found that cGAS and STING expression

levels were higher in AML patients compared with healthy

controls by using Gene Expression Profiling Interactive

Analysis (GEPIA) and Gene-Set Enrichment Analysis (GSEA)

with further validation performed in our cohort. Furthermore,

we investigated the impact of cGAS and STING expression on

the clinical outcomes of AML patients. Our results indicated that

higher expression of cGAS and STING was associated with

inferior survival in AML patients.

Materials and Methods

Datasets

The GEPIA1 integrated the two databases including The

Cancer Genome Atlas (TCGA)2 and the Genotype-Tissue

Expression Project (GTEx)3. This platform can perform gene

expression analysis based on RNA-seq expression data for

9,736 tumor samples and 8,587 control samples [17]. In this

study, the GEPIAwas used to analyze the expression of cGAS and

STING in different tumors. Two gene expression profile datasets

(GSE63270 and GSE30029) which involved expression data for

healthy and AML bone marrow samples were downloaded from

Gene Expression Omnibus (GEO,4) [18].

Clinical patients and reverse transcribed
quantitative PCR (RT-qPCR)

A total of 120non-M3AMLpatients diagnosed in our department

during 2018–2020 were enrolled in the present study. Additionally,

15 healthy allo-HSCT donors were enrolled as control. All patients

were diagnosed and classified according to French -American—British

(FAB) group and World Health Organization (WHO) classification.

Complete remission (CR) was defined by <5% blast cells in the bone

marrow and normalization of the peripheral blood counts at 4 weeks

after starting induction therapy, without any evidence of

extramedullary disease. The written informed consents were

provided from all patients in accordance with Declaration of Helsinki.

Ficoll-Hypaque density gradient column (Cytova, Uppsala,

Sweden) was used to isolate monocytes. The total RNA was

isolated from monocytes by Trizol (Invitrogen, United States),

then reverse transcribed into cDNA using BioTeke super RT Kit

(BioTeke, Beijing, China). RT-qPCR was performed with an ABI

PRISM 7500 real-time PCR system (PE Applied Biosystems, Foster

City, CA, United States). We selected β-actin as a control gene to

compensate for variations in quality and quantity of RNA and

cDNA. The amplification conditions were as follows: 95 °C for

2 min, followed by 40 cycles of 95 °C for 15 s and 60 °C for 30 s.

Sequences were as follows:

cGAS - Forward: 5′- CACGAAGCCAAGACCTCCG -3′
cGAS - Reverse: 5′- GTCGCACTTCAGTCTGAGCA -3′
STING - Forward: 5′- CCAGAGCACACTCTCCGGTA -3′
STING - Reverse: 5′- CGCATTTGGGAGGGAGTAGTA -3′
β-actin - Forward: 5′- TGTGGCATCCACGAAACTAC -3′
β-actin - Reverse: 5′- GGAGCAATGATCTTGATCTTCA -3′

1 http://gepia.cancer-pku.cn

2 http://tcga-data.nci.nih.gov/tcga/

3 http://www.gtexportal.org/home/index.html

4 http://www.ncbi.nlm.nih.gov/geo
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The relative expression levels of above genes were calculated

using the 2−ΔΔCT method (fold change over control expression).

Statistical analysis

All data were analyzed with SPSS (version 20.0; Chicago, IL)

and GraphPad Prism 5.0 (GraphPad Software Inc., United States).

Overall survival (OS) was calculated from the date of diagnosis

until death caused by any reason. Disease-free survival (DFS) was

defined as the time from achievement of CR to relapse or the last

follow-up. Mann–Whitney U test and Chi-square test were used

for continuous and categorical variables respectively. The

probabilities of OS and DFS were estimated using the Kaplan-

Meier method. The expression of cGAS and STING as well as

other variables were included in the univariate analysis. Only

variables with p < 0.1 were included in a Cox proportional

hazards model with time-dependent variables. Spear-man rank

correlation was used to analyze the correlation between two

variables. Unless otherwise specified, p values were based on

two-sided hypothesis tests. Alpha was set at 0.05.

Results

Elevated expression levels of cGAS and
STING in AML

Firstly, we analyzed the expression levels of cGAS and STING

in different types of tumors using GEPIA database. The analysis

FIGURE 1
The expression levels of cGAS (MB21D1) and SING (TMEM173) were elevated in AML. (A) Analysis of the expression of cGAS and SING in different
types of tumors, fromGEPIA database. (B–D)Up-regulated cGAS and STING expression in AML patients comparedwith normal controls, fromGEPIA
database (173 AML and 70 normal controls), GEO: GSE63270 (62 AML and 42 normal controls) and GSE30029 (46 AML and 31 normal controls),
respectively. (E) Validation of cGAS and STING expression of AML patients and normal controls in an independent cohort (120 AML and
15 normal controls). *p < 0.05; **p < 0.01; ***p < 0.001.
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TABLE 1 Clinical characteristics of AML patients.

Variable Total (n = 120) cGAS expression levels STING expression levels

Low (n = 60) High (n = 60) p-value Low (n = 60) High (n = 60) p-value

Sex, male/female 70/50 31/29 38/22 0.268a 36/24 33/27 0.712a

Median age, year (range) 52 (3–91) 53 (3–86) 49 (5–91) 0.992b 52 (3–86) 51 (5–91) 0.940b

Median WBC, ×109/L (range) 18.81 (0.25–279.03) 17.26 (0.25–241.00) 20.05 (1.10–279.03) 0.735b 11.58 (0.25–241.00) 22.87 (1.10–279.03) 0.062b

Median Hemoglobin, g/L (range) 72 (21–130) 70 (21.0–130) 73 (33–130) 0.729b 69.5 (21.0–130.0) 73 (29–130) 0.555b

Median Platelet, ×109/L (range) 41 (3–487) 43 (3–487) 35 (5–157) 0.425b 44 (3–487) 35 (5–159) 0.910b

Median LDH, U/L (range) 431 (94–3,261) 436 (94–2,450) 390 (154–3,261) 0.410b 394 (94–2,450) 433 (150–3,261) 0.315b

BM blast, % (range) 59.2 (5.5–96.5) 60.8 (13.0–96.5) 51.2 (5.5–95.5) 0.371b 59.9 (20.5–96.5) 54.0 (5.5–95.5) 0.579b

Karyotype 0.268a 0.857a

Normal 55 (45.8%) 29 (48.3%) 26 (43.3%) 28 (46.7%) 27 (45.0%)

Complex 12 (10.0%) 5 (8.3%) 7 (11.7%) 6 (10%) 6 (10%)

t (8; 21) or inv (16) or t (16; 16) 17 (14.2%) 7 (11.7%) 10 (16.7%) 10 (16.7%) 7 (11.7%)

Others 25 (20.8%) 16 (26.7%) 9 (15.0%) 12 (20.0%) 13 (21.7%)

Missing 11 (9.2%) 3 (5.0%) 8 (13.3%) 4 (6.7%) 7 (11.7%)

Risk Stratification 0.040a 0.138a

Low 21 (17.5%) 15 (25.0%) 6 (10.0%) 15 (25%) 6 (10%)

Moderate 25 (20.8%) 15 (25.0%) 10 (16.7%) 13 (21.7%) 12 (20.0%)

High 63 (53.3%) 27 (45.0%) 36 (61.7%) 28 (46.7%) 35 (58.3%)

Missing 11 (9.2%) 3 (5.0%) 8 (13.3%) 4 (6.7%) 7 (11.7%)

FLT-ITD mutation (+/−) 22/86 12/44 10/42 0.815a 10/45 12/41 0.637a

Isolated biallelic CEBPA mutation (+/−) 16/92 10/46 6/46 0.423a 8/47 8/45 1a

NPM1 mutation (+/−) 13/95 8/48 5/47 0.560a 7/48 6/47 1a

AML-ETO (+/−) 11/97 3/53 8/44 0.115a 6/49 5/48 1a

ASXL1 mutation (+/−) 21/87 10/46 11/41 0.807a 13/46 8/41 0.333a

RUNX1 mutation (+/−) 16/92 7/49 9/43 0.591a 8/47 8/45 1

IDH1 or IDH2 mutation (+/−) 25/83 13/43 12/40 1.000a 13/42 12/41 0.237a

DNMT3A mutation (+/−) 14/94 7/49 7/45 1.000a 6/49 8/45 0.576a

TET2 mutation (+/−) 18/90 10/46 8/44 0.800a 8/47 10/43 0.612a

NRAS or KRAS mutation (+/−) 17/91 4/51 13/40 0.040a 2/53 15/38 0.002a

(Continued on following page)
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revealed that cGAS and STING expression levels were higher in

AML compared to other tumors (Figure 1A). In addition, the

dataset from GEPIA which involved 173 AML and 70 healthy

control samples showed that cGAS and STING gene expression

was higher in AML samples than healthy controls (Figure 1B).

We then analyzed available molecular data from GSE63270

(involved 62 AML and 42 normal controls) and GSE30029

(involved 46 AML and 31 normal controls). In both cohorts,

cGAS and STING gene expression levels were higher in AML

samples than normal controls in consistence with the result from

GEPIA analysis (p < 0.0001, Figures 1C, D). To validate the

results from above publicly available datasets, we collected bone

marrow samples from 120 AML patients and 15 healthy donors

and performed the detection of cGAS and STING gene

expression. We found that the expression of cGAS and

STING was also elevated in AML patients from our cohort

(p < 0.0001, Figure 1E). Taken together, these results

demonstrate that up-regulation of cGAS and STING is a

common feature in AML.

Patient characteristics

The baseline characteristics of patients are shown in Table 1.

We dichotomized the patients into two high and low groups

based on the median values of cGAS and STING expression

respectively. The distribution of risk stratification was

significantly different in cGAS high and low groups with more

patients at high risk in cGAS high group (p = 0.040). Patients

with higher cGAS expression had a higher NRAS/KRAS

mutation rate (p = 0.040) and lower CR rate (p < 0.0001).

Similarly, patients in STING high group had a higher NRAS/

KRAS mutation rate (p = 0.002) and tended to have a lower CR

rate (p = 0.076). The other characteristics including age, white

blood count, hemoglobin, platelet, lactate dehydrogenase, bone

marrow blast percentage, karyotypes, FLT3-ITD mutation,

isolated biallelic CEBPA mutation, NPM1 mutation and other

mutation between patients with high and low cGAS or STING

expression were not significantly different.

High cGAS and STING expression
correlated to inferior survival in AML

We further analyzed the overall survival (OS) in an adjusted

cohort which excluded 18 untreated patients, 18 patients received

allo-HSCT and 5 patients lost to follow-up. The remaining

patients received similar treatments. In analysis of disease-free

survival (DFS), 6 patients who didn’t achieve CR after treatment

were further excluded. Kaplan-Meier analysis showed that

patients with higher cGAS expression had a shorter OS

(377.6 vs. 626.7 days, p = 0.007, Figure 2A) as well as a

shorter DFS (312.2 vs. 543.9 days, p = 0.012, Figure 2B).T
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FIGURE 2
Kaplan-Meier survival curves of OS and DFS in patients grouped by median values of cGAS and STING expression. (A) Survival curves of OS in
cGAS high and low groups. (B) Survival curves of DFS in cGAS high and low groups. (C) Survival curves of OS in STINGhigh and low groups. (D) Survival
curves of DFS in STING high and low groups. OS, overall survival; DFS, disease-free survival.

TABLE 2 Multivariate analysis of factors associated with OS and DFS.

Variable Univariate analysis Multivariate analysis

HR (95% CI) p-value HR (95% CI) p-value

OS

cGAS expression 2.910 (1.378–6.146) 0.005 2.348 (1.012–5.447) 0.047

STING expression 2.855 (1.282–6.358) 0.01

DNMT3a mutation 2.543 (1.008–6.418) 0.048 3.420 (1.254–9.324) 0.016

TET2 mutation 2.039 (0.936–4.446) 0.073 2.521 (1.050–6.048) 0.038

allo-HSCT 0.205 (0.049–0.862) 0.031 0.171 (0.040–0.737) 0.018

DFS

cGAS expression 2.411 (1.119–5.195) 0.025 2.420 (1.071–5.469) 0.034

DNMT3a mutation 2.568 (1.015–6.5) 0.047 3.900 (1.441–10.774) 0.008

TET2 mutation 2.481 (1.090–5.645) 0.03 2.936 (1.189–7.250) 0.02

allo-HSCT 0.198 (0.047–0.836) 0.028 0.158 (0.035–0.709) 0.016
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Likewise, patients with higher STING expression had a shorter

OS (332.9 vs. 612.7 days, p = 0.004, Figure 2C) as well as a shorter

DFS (178.3 vs. 507.8 days, p = 0.034, Figure 2D).

Univariate and multivariate analysis of
factors affecting OS and DFS

The correlation between high cGAS and STING expression with

inferior survival in AML patients indicated cGAS and STING

expression levels might be of prognostic importance for AML. The

results of univariate and multivariate analysis of factors affecting OS

and DFS were shown in Table 2. The factors shown in patient

characteristics were included in univariate analysis and variables with

p < 0.1 were further analyzed in multivariate analysis. In multivariate

Cox regression analysis, high cGAS expression was associated with

inferior OS (HR = 2.348, 95% CI: 1.012–5.447; p = 0.047) and DFS

(HR= 2.420, 95%CI: 1.071–5.469; p= 0.034). Nevertheless, it showed

that therewas no association between STINGgene expression andOS

or DFS. Besides, DNMT3a mutation, TET2 mutation were shown to

be associated with worse OS and DFS while receiving allo-HSCT was

associated with improved OS and DFS.

Positive correlation between cGAS and
STING gene expression

As the above results showed, cGAS and STING expression was

up-regulated in AML patients compared with normal controls.

Although cGAS and SING are the entry of cGAS-STING pathway,

previous study showed cGAS and STING expression could be

regulated inconsistently in NSCLC [19]. We wondered whether

cGAS and STINGwere up-regulated in a synchronized manner on

the context of AML. Our result showed that in AML, cGAS

expression was positively correlated with STING expression

(R = 0.77, 95% CI: 0.6884–0.8301, p < 0.0001, Figure 3).

Discussion

AML is a highly genetically heterogeneous malignant

myeloproliferative disorder of bone marrow, accounting for ~10%

of all hematological diseases [1, 20]. While the next-generation

sequencing technology has been tremendously developed,

numerous recurrent point mutations, epigenetic changes as well

as cytogenetic abnormality have been thoroughly recognized [21, 22].

Cytogenetics combined with mutations form the basis of the risk

classification system, which facilitates the risk stratification for

patients. However, up to 50% patients have been diagnosed as

intermediate risk AML with a wide range of clinical outcomes.

Thus, the identification of vital mechanisms affecting AML

management and patient survival may boost the development of

AML specific targeted therapies and meticulous risk stratification.

The results from current study indicated that high cGAS and

STING expression correlated to inferior survival in AML. In

multivariate analysis, only cGAS expression was found to be an

independent factor affecting OS and DFS. It was intriguing that the

expression level of STING showed impact on OS but not on DFS.

Since our result showed cGAS and STING had a strong positive

correlation, there might exist an overlapped effect of cGAS and

STING expression on the clinical outcomes. Besides, recent work has

demonstrated that cGAS and STINGmay act in an independent way

from one another. Upon etoposide-induced DNA damage, STING

could be activated independently from the catalytic function of cGAS

[23]. The exquisite molecular mechanism defining the acting pattern

of cGAS and STING inAML remained undetermined. In this regard,

future studies are needed to investigate whether combination of

cGAS and STING expression detection is necessary and cGAS gene

expression alone can be an indicator for prognosis in AML.

Previous studies indicated the activation of cGAS-STING

pathway contributed to cancer suppression by promoting host

immuno-surveillance and inducing cellular senescence [24–27]. In

line with these findings, cGAS-STING pathway was identified as a

prognostic biomarker for improved clinical outcomes in

hepatocellular carcinoma and non-small cell lung cancer

(NSCLC) [19, 28]. However, other studies revealed that cGAS-

STING pathway promoted tumor development and progression in

Lewis lung carcinoma, brain and colorectal cancer [14, 15, 29]. One

possible mechanismwas that chronic stimulation of cGAS-STING

pathway might lead to inflammation-driven carcinogenesis [30].

The topic that pro-inflammatory mediators are linked to AML cell

growth has gain traction in recent years. Plenty of studies reported

that chronic immune-stimulatory or autoimmune disease could be

sick factors for developing AML [31, 32]. Here, our results

suggested that cGAS-STING pathway also had a potential role

in driving malignant programs and suppressing antitumor

functions in AML. Whether hyper-activation of cGAS-STING

FIGURE 3
There existed a strong positive correlation between cGAS and
STING expression (R = 0.77, 95% CI: 0.6884–0.8301, p < 0.0001).
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pathway fueled the progression of AML via induction of

inflammation requires further exploration. Also, future studies

will be required to elucidate mechanism of hyper-activation cGAS-

STING signaling in AML.

At present, NRAS/KRASmutations are widely considered to be

associated with poor prognosis in a variety of cancers, including

colorectal cancer and serous ovarian cancer [33, 34]. NRAS

mutations were identified in 10%–11% of AML, and KRAS

mutations in an additional 5% [35, 36], however, how it affects

cGAS-STING levels in AML has not been reported. Only one study

in KRAS-mutant non-small-cell lung carcinoma lung cancer

(NSCLC) may be relevant. In this study, the authors found that

NRF2 promotes the transcription and expression of BRCA1 to

repair DNA damage, leading to inactivation of the STING pathway

[37]. In our study, the frequency of NRAS/KRAS mutation was

higher in both cGAS and STING high group. TBK1 is the

important downstream effector program of cGAS-STING

signaling [7]. Previous work presented that TBK1 supported key,

context specific tumorigenic activity in Ras-mutant/mesenchymal

NSCLC [38]. The interaction between cGAS-STING pathway

including its downstream signaling with NRAS/KRAS mutation

on the context of AML would be an interesting area of research.

Additionally, we found that elevated expression of cGAS was

associated with higher risk stratification and a lower CR rate.

Chromosomal instability (CIN) is a hallmark of cancer as well

as a primary source of cytosolic dsDNA and it promotes the

activation of cGAS-STING [39]. Intriguingly, some scholars

found that cGAS could exert the function of maintaining CIN,

which potentiated tumor evolution [40, 41]. In our study, AML

patients had shown hyper-activation of the cGAS-STING pathway

before treatment. The following chemotherapy further induced

CIN, which might cooperate with cGAS-STING, leading to

further perturbation of this pathway. Yet, the underlying

mechanisms that define the effect of cGAS-STING pathway on

treatment response in AML patients need further exploration.

In summary, our data revealed a prognosis role of cGAS-

STING pathway for clinical outcomes and a positive correlation

between cGAS and STING in AML. However, we recognize the

limitations to our study, including the limited number of patients

enrolled and the lack of relevant mechanism studied. In addition,

the cGAS-STING downstream signaling programs including

TBK1, IRF3, JAK2/STAT3, NF-κB were not studied in this

study. Besides, it is important to note that the dichotomous

roles of cGAS-STING in tumor immunity and development are

cell and context - dependent [42]. Thus, in future study, a pinpoint

cGAS-STING expression state should be better characterized in

both immune cells and non-immune cells including tumor cells as

well as stromal cell resident in bone marrow environment of AML

patients. Despite various approaches for AML investigated,

treatment resistance remains a leading cause of AML-related

deaths [43]. Based on the results of this study, further studies

of novel approaches targeting the cGAS-STING pathway in AML

may provide potential for advancing AML therapeutic strategies.
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