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Abstract

Liver fibrosis has become a serious public health problem that can develop into

liver cirrhosis and hepatocellular carcinoma and even lead to death. Cannabidiol

(CBD), which is an abundant nonpsychoactive component in the cannabis plant,

exerts cytoprotective effects in many diseases and under pathological

conditions. In our previous studies, CBD significantly attenuated liver injury

induced by chronic and binge alcohol in a mouse model and oxidative bursts in

human neutrophils. However, the effects of CBD on liver fibrosis and the

underlying mechanisms still need to be further explored. A mouse liver

fibrosis model was induced by carbon tetrachloride (CCl4) for 10 weeks and

used to explore the protective properties of CBD and related molecular

mechanisms. After the injection protocol, serum samples and livers were

used for molecular biology, biochemical and pathological analyses. The

results showed that CBD could effectively improve liver function and reduce

liver damage and liver fibrosis progression in mice; the expression levels of

transaminase and fibrotic markers were reduced, and histopathological

characteristics were improved. Moreover, CBD inhibited the levels of

inflammatory cytokines and reduced the protein expression levels of p-NF-

κB, NF-κB, p-IκBα, p-p38 MAPK, and COX-2 but increased the expression level

of PPAR-α. We found that CBD-mediated protection involves inhibiting NF-κB
and activating PPAR-α. In conclusion, these results suggest that the

hepatoprotective effects of CBD may be due to suppressing the

inflammatory response in CCl4-induced mice and that the NF-κB and PPAR-

α signaling pathways might be involved in this process.
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Impact statement

In this study, CBD had a hepatoprotective effect on CCl4-

induced liver fibrosis in mice by increasing antioxidant effects,

and its mechanism of action may be related to the regulation of

the NF-κB and PPAR-α signaling pathways. Therefore, CBD and

related compounds could represent novel pharmacological

agents to treat fibrosis.

Introduction

Liver fibrosis is mainly caused by the progression of various

chronic liver diseases. Worldwide, chronic liver diseases mainly

include alcoholic hepatitis, nonalcoholic steatohepatitis (NASH),

nonalcoholic fatty liver disease (NAFLD), viral hepatitis

[hepatitis B (HBV) and hepatitis C (HCV)] and cholestatic

liver disease [1–3]. In liver fibrosis, the most important

pathological change in the liver is the formation and

deposition of extracellular matrix (ECM) [4, 5]. The amount

of type I collagen (COL-I) deposition positively correlates with

the severity of fibrosis [6, 7]. The activation of hepatic stellate

cells (HSCs), which express alpha-smooth muscle actin (α-SMA)

and secrete and synthesize ECM and various autocrine or

paracrine cytokines, such as tumor necrosis factor-α (TNF-α),
interleukin 1β (IL-1β) and interleukin 6 (IL-6), is a crucial link in

the occurrence of liver fibrosis. Many intracellular signaling

pathways, including the transforming growth factor-β1 (TGF-

β1) [8–10] and nuclear factor kappa B (NF-κB) [11, 12]

pathways, are involved in HSC activation.

Hepatic injury involves stress signaling [e.g., mitogen-

activated protein kinase p38 (p38MAPK) and c-Jun

N-terminal kinase (JNK)] [13] and proinflammatory pathways

[e.g., NF-κB [14, 15] and cyclooxygenase-2 (COX2)] [16] in

various cell types, which in turn modulate important

inflammatory and cell death processes. NF-κB is a key

regulator that stimulates the expression of inflammatory

factors, chemokines and adhesion molecules and plays an

important role in cell growth, differentiation and apoptosis.

COX-2 is an important enzyme in the synthesis of

prostaglandins from arachidonic acid and plays a key role in

the inflammatory response [17]. The interaction of peroxidase

proliferator-activated receptor-α (PPAR-α) with other signaling

pathways can also regulate cellular redox status. For example,

PPAR-α activation can inhibit the transcription of NF-κB and

oxidative stress and reduce the release of inflammatory

cytokines [18].

Cannabidiol (CBD) is the main nonpsychoactive component

of the cannabis plant and has many beneficial pharmacological

effects, such as anti-inflammatory and antioxidant effects

[19–21]. Studies have shown that CBD can be used for

alcohol use disorder (AUD) and alcohol-related damage to the

brain and liver [22]; CBD can be used to treat conditions such as

colitis, arthritis and type 1 diabetes, alcohol-induced

lipodystrophy, or hypoxia-ischemia-induced brain damage [23,

24]; and CBD greatly alleviates liver inflammation, oxidative/

nitrative stress, and cell death and inhibits bacterial endotoxin-

induced NF-κB activation and TNF-α production in Kupffer cells
[25]. Currently, there are limited treatment options for liver

fibrosis, and it is of great clinical importance to identify drugs

that can prevent fibrosis progression or even reverse it. This study

examined the protective effect of CBD in CCl4-inducedmice with

liver fibrosis, which involved the NF-κB and PPAR-α signaling

pathways, and revealed its potential mechanism of action.

Materials and methods

Experimental reagents and equipments

The following reagents were used: CBD (Sigma,

United States); colchicine (Beyotime, China); CCl4 (Aladdin,

China); peanut oil (Yuanye, China); ELISA kits (Novus,

United States); hematoxylin and eosin (HE) and Masson assay

kits (Beyotime, China); aspartate aminotransferase (AST) and

hyaluronic acid (HA) kits (Nanjing Jiancheng Bioengineering

Institute, China); RIPA lysis buffer and a BCA kit (Solaibao,

China); COX-2, p-IκBα, and IκBα antibodies (Wanleibio, China);

p-NF-κB, NF-κB, p-p38 MAPK, and p-38 MAPK antibodies

(CST, United States); TGF-β1, α-SMA, COL-I, PPAR-α and

GAPDH antibodies (Abcam, United States); horseradish

peroxidase-labeled secondary antibodies (Bioprimacy, China);

chemiluminescence (ECL) color developing solution (Merck,

United States); an RNeasy mini kit (Axygen, United States); a

PrimeScript RT reagent kit with gDNA Eraser and SYBR Green

Master Mix (Takara, Japan); an automatic chemical analyzer

(Hitachi, Japan); and light microscopy (Nikon, Japan).

Experimental animals and treatments

Forty mice (C57BL/6J) were purchased from Guizhou

Medical University. All animal experiments were approved by

the Guizhou Medical University Animal Care Welfare

Committee. Male (6–8 weeks old) mice weighing

approximately 20 g were adapted to the animal environment,

and food and water were available randomly. One week later, the

mice were randomly divided into five groups with the following

injection for 10 weeks: (Ⅰ) In the control group, normal mice were

treated with a peanut oil solution twice weekly (n = 8). (Ⅱ) In the

CCl4 group, mice were intraperitoneally administered a 30%

CCl4 peanut solution (5 mL/kg) twice weekly (n = 8). (Ⅲ) In the

4 mg/kg CBD group, mice were administered 4 mg/kg CBD

intraperitoneally and the same CCl4 as the CCl4 group (n =

8). (Ⅳ) In the 8 mg/kg CBD group, mice were administered

8 mg/kg CBD intraperitoneally and the same CCl4 as the CCl4
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group (n = 8). (V) In the colchicine group, mice were

administered 0.2 mg/kg colchicine intraperitoneally and the

same CCl4 peanut solution as the CCl4 group (n = 8). Two

hours before each intraperitoneal injection of CCl4, the mice in

the CBD and colchicine groups were intraperitoneally injected

with the appropriate drug at the indicated dose (4, 8 mg/kg CBD,

0.2 mg/kg colchicine), and mice in the control group and model

group were injected with normal saline. All mice were euthanized

by anesthesia 24 h after the last administration, and blood and

liver tissues were collected for further examination. The left lobe

of the liver was quickly fixed in 4% paraformaldehyde, and the

remaining liver samples were collected, frozen in liquid nitrogen

and stored at −80°C.

Serum biochemical analysis

Serum was obtained by centrifuging (3,000 × g, 4°C, for

10 min) whole blood. AST and HA levels were determined using

a clinical chemical analyzer.

ELISA analysis of inflammatory cytokines

Liver tissues were promptly removed and washed in

precooled normal saline. Liver tissues (0.1 g) were completely

homogenized with cold saline (0.9 mL) by sonication on ice to

obtain 10% tissue homogenate, and the supernatant was obtained

by centrifugation. The Coomassie brilliant blue method was used

to measure the total protein content, and the level of IL-1β was

measured using the corresponding assay kit. Serum levels of IL-6

and TNF-α were measured by Valukine ELISA kits according to

the manufacturer’s instructions.

Examination of pathological changes

Fresh liver samples were fixed in 4% paraformaldehyde for

24 h and paraffin-embedded tissue sections (4 µm). The extent of

inflammation and cell necrosis in the liver was observed using

HE staining. Liver fibrosis was effectively and widely evaluated at

the histological level by staining collagen fibers with Masson’s

trichrome staining. The histological degree of liver fibrosis was

observed using light microscopy by a pathologist who was

blinded to this test.

Immunohistochemical staining

The sections were dewaxed, hydrated, boiled in citrate

buffer for 5 minutes, cooled to room temperature, and

washed three times in PBS buffer. Next, sections were

incubated in 3% H2O2 for 10 min to block endogenous

peroxidase activity and were blocked with 10% bovine serum

in a water bath at 37°C for 30 min to block nonspecific binding.

Immunohistochemistry was performed by incubating the

sections overnight at 4°C with primary antibodies (1/1000)

(α-SMA and COL- I) and rinsing the sections three times

with PBS. Biotinylated secondary antibodies were added

according to the kit instructions. The sections were

incubated with the DAB reagent for 3 min to develop the

color, and the sections were counterstained with Mayer’s

hematoxylin. Finally, the sections were dehydrated in

ethanol, cleared in xylene and sealed with neutral gum.

Specific primary antibodies were substituted with PBS or

nonimmune isotype-matched sera as the negative control.

Images were captured by light microscopy, five fields were

randomly selected, and the percentage of the area was

assessed by ImageJ.

Western blotting

The liver tissue was washed with precooled saline and then

dried with filter paper. Protein samples were obtained from liver

tissues in RIPA lysis solution with sonication on ice, and then the

protein concentration was determined by the BCA method. A

total of 30 µg of protein was used for western blot analysis.

Protein samples were separated by 10% SDS-PAGE and then

transferred to PVDF membranes. The PVDF membranes were

incubated with the appropriate primary antibodies (TGF-β1 1/

1000, α-SMA 1/10,000, COL-I 1/1000, p-NF-κB 1/500, NF-κB 1/

1000, p-p38 MAPK 1/1000, p38 MAPK 1/1000, p-IκBα 1/500,

IκBα1/500, COX-2 1/1000, PPAR-α 1/500, and GAPDH 1/

10,000) at 4°C overnight and then with the corresponding

horseradish peroxidase-conjugated secondary antibodies. Next,

the chromogenic solution was added dropwise, and the

corresponding protein bands were detected after exposure.

ImageJ software was used to measure the gray values of the bands.

Quantitative real-time polymerase chain
reaction (PCR)

Liver tissues (0.1 g) were homogenized, and mRNA was

isolated using the RNeasy mini kit following the

manufacturer’s instructions. Reverse transcription was

performed using the PrimeScript RT reagent kit with gDNA

Eraser and SYBR Green Master Mix. Real-time PCR was

performed for each sample using a Roche Real-Time PCR

System. Transcription specificity was confirmed by melting

curve profiles generated at the end of the PCR program. The

data are expressed as the expression of the target genes

normalized to the expression of GAPDH and were quantified

using the comparative cycle threshold Ct method (2−ΔΔCT)

(Table 1).
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Statistical analysis

Values are expressed as the mean ± standard deviation.

The statistical significance of differences was determined

using Student’s t-test (for two groups) or one-way ANOVA

(for more than two groups) followed by the LSD

multiple comparisons test. All analyses were performed

with PASW statistics 26 (SPSS). p < 0.05 was considered

significant.

Results

CBD treatment ameliorated liver damage

The levels of AST and HA are considered important markers

for evaluating liver function. We found that CCl4 significantly

increased the levels of AST and HA compared to those in the

control group; the administration of CCl4 to mice treated with

CBD and colchicine markedly reduced the levels of AST and HA.

However, no significantly different expression levels of AST and

HA were found after 4 mg/kg and 8 mg/kg CBD injection

(Figures 1A, B). Liver injury was assessed by HE staining. In

the liver tissue of the control group, liver cells were neatly

arranged and showed no necrosis, indicating normal liver

tissue structure. In the CCl4 group, hepatocyte disorder,

necrosis, swelling, and a large amount of inflammatory cell

infiltration indicated serious liver damage. Compared with the

CCl4 group, the CBD and colchicine groups had significantly

reduced liver damage, with only mild necrosis and a relatively

stable cell structure (Figure 1C). Masson staining showed that the

liver tissue of the control group exhibited a normal lobular

structure, the radial hepatic cords were neatly arranged, and

there was no collagen accumulation around the blood vessels; the

structure of the liver lobules in the CCl4 group was severely

damaged, a large amount of collagen was deposited, and pseudo

lobules had formed, indicating that the model of liver fibrosis was

successfully established; and in the CBD and colchicine groups,

the liver was not significantly damaged, the accumulation of

collagen was reduced, and the degree of fibrosis was significantly

improved compared with that in the CCl4 group. The histological

changes observed in both fibrosis models were significantly

attenuated by CBD (Figure 1D). The extent of the

improvement did not increase with the CBD dose. Combined

with the serological results, these data showed that CBD had

hepatoprotective effects on CCl4-induced mice.

CBD treatment attenuated CCl4-induced
liver fibrosis

In the liver tissue of the control group, α-SMA and COL-Ⅰ
were weakly expressed in the portal area and central vasculature

wall; in the CCl4 group, α-SMA, and COL-Ⅰ were widely

expressed, mainly distributed in the portal ducts of fibrous

tissue proliferation and the interarea interval, and diffuse

expression was also observed between the central vein and

hepatocytes; and the sites of α-SMA and COL-Ⅰ expression in

the CBD group and colchicine groups were the same as those in

the CCl4 group, but the areas were markedly reduced (Figures

2A, B). Positive area expression analysis also showed similar

decreases in α-SMA and COL-Ⅰ after CBD administration.

However, no significant differences in the expression of α-
SMA and COL-Ⅰ were found between 4 mg/kg and 8 mg/kg

CBD (Figures 2C, D).

CBD treatment alleviated the production
of inflammatory mediators

Inflammatory cytokines play a pivotal role in liver fibrosis.

The levels of the inflammatory markers IL-6, IL-1β, and TNF-

α in the different treatment groups were measured by ELISA.

CCl4 treatment markedly elevated the levels of serum IL-6 and

TNF-α and liver IL-1β compared with those in the control

group. Treatment with CBD significantly reversed the

increases in the expression of IL-6, IL-1β, and TNF-α, and
the same results were obtained after colchicine treatment

TABLE 1 Primer sequences for quantitative real-time polymerase chain reaction.

Gene Forward primer (59-39) Reverse primer (59-39)

GAPDH AAGAAGGTGGTGAAGCAGGCATC CGGCATCGAAGGTGGAAGAGTG

COL-Ⅰ ACGCCATCAAGGTCTACTGC ACTCGAACGGGAATCCATCG

α-SMA GCCATCTTTCATTGGGATGGA CCCCTGACAGGACGTTGTTA

TGF-β GCTGAACCAAGGAGACGGAA ATGTCATGGATGGTGCCCAG

IL-1β CTTCAGGCAGGCAGTATC CAGCAGGTTATCATCATCATC

IL-6 CCCCAATTTCCAATGCTCTCC CGCACTAGGTTTGCCGAGTA

TNF-α TCAGTTCCATGGCCCAGAC GTTGTCTTTGAGATCCATGCCATT
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(Figures 3A–C). Semiquantitative q-PCR analysis also showed

similar decreases in IL-6, IL-1β, and TNF-αmRNA expression

after CBD administration. The levels of the inflammatory

markers IL-6, IL-1β, and TNF-α were not significantly

different between 4 mg/kg and 8 mg/kg CBD (Figure 3D).

CBD treatment attenuated the expression
levels of TGF-β1, α-SMA, and COL-I

In response to CCl4, the expression levels of TGF-β1, α-SMA,

and COL-I in the liver in the CCl4 group increased significantly,

and these expression levels were effectively reduced by CBD

and colchicine (Figures 4A–D). The semiquantitative q-PCR

results showed increased expression of TGF-β1, α-SMA and

Col-Ⅰ in liver tissues in the CCl4 group compared with the

control group; compared with that in the CCl4 group, the

expression of TGF-β1, α-SMA and Col-Ⅰ markedly decreased

after treatment with CBD and colchicine (Figure 4E). The

western blot and Semiquantitative q-PCR results showed that

the expression levels of TGF-β1, α-SMA, and COL-I were

similar between 4 mg/kg and 8 mg/kg CBD. Importantly, the

results showed that CBD treatment attenuated CCl4-induced

liver fibrosis.

FIGURE 1
Effects of CBD treatment on liver function in mice with CCl4-induced liver fibrosis. (A,B) Serum AST and HA levels in the indicated groups. (C)
Representative HE staining of liver sections. (D) Fibrosis deposition was observed by Masson trichrome staining. The values represent the means ±
SEM (n = 8). *p < 0.05 vs. the control group, #p < 0.05 vs. the CCl4 group, as determined by one-way ANOVA, followed by the LSD multiple
comparisons test. (a) Control group; (b) CCl4 group; (c) 4 mg/kg CBD group; (d) 8 mg/kg CBD group; (e) 0.2 mg/kg colchicine group.
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CBD treatment protected the liver by
inhibiting the NF-κB pathway and
activating the PPAR-α pathway

To explore the potential mechanism of CBD mediated

protection, we measured the expression of NF-κB and PPAR-

α related proteins in liver tissues by western blotting. Compared

with those in the control group, the expression levels of p-NF-κB,
NF-κB, and COX-2 and the p-IκBα/IκBα and p-p38/p38 ratios in
the CCl4 group were significantly increased. Interestingly, CBD

and colchicine treatment reversed these alterations in liver

fibrosis, suggesting that the effect of CBD on CCl4-induced

inflammation was associated with inhibiting the activation of

the NF-κB pathway. In addition, PPAR-αwas highly expressed in
the control group, and the expression of PPAR-α in the liver was

significantly decreased in the CCl4 group compared with the

control group. CBD and colchicine treatment significantly

increased the expression of PPAR-α in the liver, indicating

that CBD may modulate PPAR-α signaling in mice with

CCl4-induced liver fibrosis (Figures 5A–H).

Discussion

Liver fibrosis is the pathological result of abnormal ECM

accumulation in the liver and is closely related to hepatic

FIGURE 2
Effects of CBD on α-SMA and COL-Ⅰ in mice with CCl4-induced liver fibrosis. (A,B) Representative immunohistochemical staining of α-SMA and
COL-Ⅰ. (C,D)Quantification of positive staining areas was performed by ImageJ software. The values represent themeans ± SEM (n = 8). *p < 0.05 vs.
the control group, #p < 0.05 vs. the CCl4 group, as determined by one-way ANOVA, followed by the LSD multiple comparisons test. (a) Control
group; (b) CCl4 group; (c) 4 mg/kg CBD group; (d) 8 mg/kg CBD group; (e) 0.2 mg/kg colchicine group.
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morbidity and mortality [26]. Some studies have shown that the

development of liver fibrosis can be prevented by experimental

clinical treatments, but many patients do not have good reactions

[27]. Therefore, there is an urgent need for new therapeutic

approaches to reverse fibrosis. CBD is one of the main

components extracted from cannabis, and its level is second

only to that of tetrahydrocannabinol (THC) [19]. In recent years,

the medicinal value of CBD has become increasingly apparent,

and long-term use has shown good tolerance and no side effects in

humans [28, 29]. CBD can regulate the immune system in different

tissues and reduce oxidative/nitrative stress [30], cell death and

inflammatory responses, such as IL-6, COX2, and NF-κB,
neutrophil infiltration, and stress signaling [31–33]. Researchers

have found that CBD has some important effects on the central

nervous system, including antipsychotic, antianxiety, antiepileptic,

and analgesic effects [34]. In addition, CBD also has complex

immune regulation, anti-inflammatory and antioxidant effects

[35]. Studies have reported that CBD can induce apoptosis of

thymus cells and spleen cells, inhibit the proliferation of T cells

and macrophages, and have certain therapeutic effects on

autoimmune diseases [36, 37]. CBD can inhibit T-cell-mediated

chronic autoimmune myocarditis and myocardial reconstruction/

fibrosis and improve myocardial dysfunction [38]. CBD induces

functional Treg cells to induce immunosuppression under low-level

T-cell stimulation [39]. CBD is used to treat brain damage caused by

colitis, diabetic complications, drug-induced nephrotoxicity, alcohol

fat deposition or hypoxic-ischemia [40–42]. Treatment of mice with

cannabidiol markedly attenuated the cisplatin-induced oxidative/

nitrosative stress, inflammation, and cell death in the kidney, and it

improved renal function [43]. In the prevention and treatment of

skin and liver fibrosis, CBD inhibited collagen gene transcription

and synthesis and prevented TGF-β and IL-4 induced fibroblast

migration [44]. CBD treatment decreases the inflammatory and

remodelling processes in a murine model of ovalbumin induced

allergic asthma [45]. Previous studies have examined whether CBD

has a protective effect on alcoholic fatty liver disease [46], but its

effect on fibrosis and the detailed mechanisms in the context of

inflammation remain unclear. We analyzed the effects of CBD on

CCl4-induced liver inflammation and collagen deposition using a

well-established model that is very similar to human liver fibrosis

[47, 48]. Colchicine, which is an alkaloid agent that is generally used

to treat acute gout in the clinic, was used as the positive control for its

effects on improving liver fibrosis and ameliorating liver function

[49]. In this study, the CCl4-inducedmousemodel was used to study

the intervention effect of CBD on liver fibrosis and to explore

whether its potential mechanism is related to the inhibition of NF-

κB and activation of the PPAR-α signaling pathway and anti-

inflammatory and antioxidant stress damage.

Increasingly, we found that CCl4-induced liver fibrosis resulted

in significant weight loss, increased liver weight, and increased

serum AST and HA levels. Pathological analysis of liver tissue in

the CCl4 group showed massive liver cell necrosis, diffuse

FIGURE 3
Effects of CBD on inflammatory cytokines inmicewith CCl4-induced liver fibrosis. (A–C) Serum levels of IL-6 and TNF-α and liver levels of IL-1β.
(D) The mRNA levels of IL-6, IL-1β and TNF-α were measured by q-PCR. The values represent the means ± SEM (n = 8). *p < 0.05 vs. the control
group, #p < 0.05 vs. the CCl4 group, as determined by one-way ANOVA, followed by the LSD multiple comparisons test.
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inflammatory cells and high levels of collagen, indicating that CCl4
caused severe liver damage. This study showed that CBD reduced

the levels of AST andHA and reduced inflammatory infiltration and

collagen deposition in liver tissues, indicating that CBD significantly

alleviates CCl4-induced liver fibrosis, but there were similar effects

between 4 mg/kg and 8 mg/kg CBD.

TGF-β1 is an essential cytokine that regulates the production,

degradation and accumulation of ECM and plays a significant role

in the activation of HSCs. In normal liver tissue, the expression of

TGF-β1 in the liver is reduced. However, when liver injury occurs,

HSCs, Kupffer cells (KCs) and other related cells produce large

amounts of TGF-β1, which activates HSCs to formmyofibroblasts,

promotes the production of ECM and inhibits matrix degradation,

resulting in the accumulation of scar matrix and liver fibrosis [50,

51]. Activated HSCs secrete large amounts of fibrillar collagens,

mainly in the form of α-SMA and COL-I [52, 53], and the

expression of the COL-I gene could indicate the synthesis of

collagen. CBD inhibited the gene and protein expression of

COL-I, α-SMA and TGF-β1. However, within the CBD

concentration range set by the experiment, there was no

statistically significant difference between the 4 mg/kg and

8 mg/kg CBD groups in various detection results. These results

indicated that CBD inhibited collagen formation to prevent liver

fibrosis, and further research is needed to determine the signaling

pathways that mediate this protective effect on the liver.

Inflammation is closely related to the development of CCl4-

induced liver fibrosis. IL-1β is one of the main factors inducing

fibrosis, which promotes the aggregation of fibroblasts and

inflammatory cells, as well as collagen and fibrin synthesis,

which further leads to ECM deposition. We examined a series

of inflammatory genes, including IL-6, IL-1β, and TNF-α, and
found that CCl4 enhanced the expression of IL-6, IL-1β, and
TNF-α. CBD blocked the inflammatory response in mouse liver

tissue, which supported the anti-inflammatory effect of CBD, and

FIGURE 4
Effects of CBD on TGF-β1, α-SMA, and COL- I in mice with CCl4-induced liver fibrosis. (A) The effects of CBD on the protein expression of TGF-
β1, α-SMA, andCOL- I weremeasured bywestern blotting. (B–D) ImageJ software was used tomeasure the grey values of the bands. (E) The effect of
CBD on the mRNA expression of TGF-β1, α-SMA, and COL- I was determined by q-PCR. The values represent the means ± SEM (n = 8). *p < 0.05 vs.
the control group, #p < 0.05 vs. the CCl4 group, as determined by one-way ANOVA, followed by the LSD multiple comparisons test.
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FIGURE 5
Effects of CBD on NF-κB- and PPAR-α-related proteins in mice with CCl4-induced liver fibrosis. (A,B) The effects of CBD on the protein
expression levels of NF-κB, p-NF-κB, p-IκBα, IκBα, p-p38 MAPK, p38 MAPK, COX-2, and PPAR-αwere measured by western blotting. (C–H) ImageJ
software was used to measure the grey values of the bands. The values represent the means ± SEM (n = 8). *p < 0.05 vs. the control group, #p < 0.05
vs. the CCl4 group, as determined by one-way ANOVA, followed by the LSD multiple comparisons test.
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the underlying mechanism may be associated with the inhibition

of inflammatory signaling pathways.

NF-κB is an important nuclear transcription factor in the cell

that participates in inflammatory and immune responses and can

regulate cell apoptosis and the stress response [54, 55]. The

phosphorylation of NF-κB inhibitory protein (IκB) enhanced

the activity of NF-κB, promoted the nuclear transport of the

NF-κB subunit, and triggered the transcription of downstream

inflammatory genes, such as TNF-α, IL-6, and IL-1β. According to
reports, activation of the NF-κB pathway can enhance the

inflammatory response and EMT in liver cells. In the present

study, we observed increased protein expression levels of total

p-NF-κB, NF-κB, p-IκBα/IκBα, and downstream TNF-α, IL-6, and
IL-1β in CCl4-induced mice. CBD treatment inhibited the

activation of NF-κB signaling and the increases in these

inflammatory cytokines, suggesting that CBD may inhibit NF-

κB signaling and reduce the inflammatory response [56].

p38 MAPK mitogen-activated protein kinase belongs to the

family of mitogen-activated protein kinases (MAPKs), which

regulate the cell cycle, inflammation, growth, apoptosis,

differentiation and other physiological processes. p38 MAPK

can be phosphorylated by many extracellular agonists through

the canonical MAPK pathway, and p-p38 MAPK can further

regulate many substrates, such as transcription factors and PPARs

[57]. PPAR belongs to the hormone nuclear receptor superfamily

and consists of three subtypes (PPAR-α, PPAR-β/δ, and PPAR-γ)
[58–60]. PPAR-α has important functions in regulating cells and is

involved in cell proliferation, differentiation, oxidative/nitrification

stress, inflammation and immune response. PPAR-α has been

reported to reverse fibrosis by reducing lipid peroxidation and

inhibiting activation of HSCs and KCs [61, 62]. Furthermore,

studies have shown that inhibiting p-p38 MAPK increased PPAR-

α expression to protect the liver against concanavalin A-induced

injury [57].We examined the expression of COX-2, p-p38/p38 and

PPAR-α and demonstrated that CBD treatment reduced COX-2

expression, inhibited p-p38 MAPK, activated the PPAR-α
signaling pathway, and protected the liver from fibrosis. These

findings suggest that CBD can protect against liver fibrosis by

activating the PPAR-α signaling pathway, and this study may

make great progress in the treatment of chronic liver fibrosis.

In summary, we have shown that intraperitoneal injection of

CBD exerts potent anti-inflammatory and antifibrotic activities

in vivo. Moreover, we found that the first time CBD efficacy in

reducing CCl4-induced hepatic fibrosis by multiple mechanisms.

These mechanisms may involve inhibition of NF-κB, activation
of the PPAR-α pathway, and inhibition of oxidative stress. Based

on these findings, CBD has the potential to be further developed

as a treatment for hepatic fibrosis, especially as a combination

therapy with the currently available therapies.
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