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Abstract

The cornea is an avascular tissue in the eye that has multiple functions in the eye
to maintain clear vision which can signi�cantly impair one’s vision when
subjected to damage. Peroxisome proliferator-activated receptors (PPARs), a
family of nuclear receptor proteins comprising three different peroxisome
proliferator-activated receptor (PPAR) isoforms, namely, PPAR alpha (�),
PPAR gamma (�), and PPAR delta (�), have emerged as potential therapeutic
targets for treating corneal diseases. In this review, we summarised the current
literature on the therapeutic effects of PPAR agents on corneal diseases. We
discussed the role of PPARs in the modulation of corneal wound healing,
suppression of corneal in�ammation, neovascularisation, �brosis, stimulation
of corneal nerve regeneration, and amelioration of dry eye by inhibiting
oxidative stress within the cornea. We also discussed the underlying
mechanisms of these therapeutic effects. Future clinical trials are warranted
to further attest to the clinical therapeutic ef�cacy.
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Impact statement

The cornea constitutes a vital element of the ocular structure which exerts a profound
impact on vision when compromised. The application of peroxisome proliferator-
activated receptor (PPAR) agents has been widely documented particularly in the
treatment of metabolic conditions such as hyperlipidemia and diabetes. Yet, their
therapeutic potential in the context of corneal diseases remains not well-understood.
This review article summarises the reported therapeutic effects of PPAR agents in the
management of corneal in�ammation, neovascularisation, wound healing, �brosis, nerve
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regeneration, and dry eye. With further clinical validation, PPAR
agents may serve as a new avenue in the treatment of a variety of
corneal diseases.

The cornea

The cornea is an avascular tissue that sits at the anterior-most
surface of the eye. It comprises both cellular and acellular
components; the former includes epithelial cells, keratocytes,
and endothelial cells, and the latter includes mainly collagen
and glycosaminoglycans.

Functionally, the cornea ful�lls several crucial roles,
including protecting ocular integrity, preserving optical clarity,
and providing refractive power to the eye. The cornea provides a
protective barrier against the environment, facilitated by the
intercellular junctions within its epithelium and the
continuous regeneration of the corneal epithelial cells [1, 2].
Consequently, damage to the cornea through trauma renders it
compromised, which in turn triggers a corneal wound healing
response consisting of in�ammatory and �brotic reactions.
Excessive corneal wound healing responses lead to corneal
scarring and opaci�cation, profoundly impacting vision. The
World Health Organization stated that cornea opacity is a
priority eye disease and is one of the main causes of low
vision and visual impairment, affecting 146 million people
worldwide with an increase of 1.5–2.0 million new cases every
year [3, 4]. This underscores the importance of corneal wound
healing process, emphasizing a need to develop more ef�cacious
interventions to accelerate this restorative process.

The cornea is also the most densely innervated tissue in our
body, richly supplied by sensory and autonomic nerve �bres [5].
Corneal nerves sustain corneal health and homeostasis by
facilitating tear secretion and providing trophic support to
epithelial and stromal cells [6, 7]. In conditions such as
diabetic keratopathy or corneal surgery, corneal nerve
degeneration manifests, causing decreased corneal sensitivity
and increased vulnerability to corneal ulceration [8, 9].
Therefore, interventions targeting corneal nerve regeneration
constitute a pivotal approach to enhancing cornea health.

Researchers have previously explored potential therapeutic
agents aimed at these fundamental aspects of corneal health. In
this review, we explore a promising therapeutic avenue, namely,
the peroxisome proliferator-activated receptor family, on
corneal diseases.

The expression of PPARs in eyes

The PPARs are a group of transcription factors belonging to
the nuclear hormone receptor family [10]. The PPAR family
comprises three isotypes: PPAR alpha (�), PPAR gamma (�), and
PPAR delta (�), each exhibiting distinct tissue expression

patterns and involved in the regulation of diverse biological
functions [11]. At the molecular level, while the PPAR
isoforms exhibit a sequence identity of 60%–70% within their
ligand-binding domains (LBDs), signi�cant variations in the
overall pocket size of the three-dimensional structures of these
LBDs exist, leading to distinctive binding af�nities of each PPAR
isoform with speci�c compounds [12]. The discovery of PPAR’s
mechanism as a distinct transcription factor capable of targeted
activation by peroxisome proliferators for potential therapeutic
application, by Issemann and Green in 1990, paved the
groundwork for further research into PPAR [13]. Since then,
prior research has �rmly established the role of PPARs as
modulators of adipocyte differentiation, glucose and lipid
metabolism, and in�ammation [11, 13, 14]. Within the eye, all
3 PPAR isoforms exhibit distinct localisation patterns within
ocular structures [15]. Speci�cally, PPAR� and PPAR� are found
in the cornea, conjunctiva, retina, meibomian, and lacrimal
glands, whereas PPAR� is expressed in the cornea, retina, and
lacrimal glands, all demonstrating varied levels of expression
across various tissue types [15, 16]. Beyond the eye, PPAR� is
localised in the kidneys, liver, muscle, and heart; PPAR� displays
ubiquitously across numerous organs and tissues, while PPAR� is
found in adipocytes and small intestines [17, 18]. Clinically, they
are routinely used as therapeutic agents such as feno�brate, a
PPAR� agonist, for hyperlipidaemia, as well as pioglitazone, a
PPAR� agonist for diabetes [19, 20].

All 3 PPAR isoforms have been reported to exhibit
expression within the retina, each with differing functions.
PPAR� has been reported to possess protective and anti-
in�ammatory effects in the retina across several studies
[21–24]. A study reported the PPAR�’s anti-apoptotic
properties in retinal ischaemia [21], whilst another
demonstrated anti-oxidative and anti-angiogenic effects of
PPAR� in age-related macular degeneration [22]. In a similar
vein, PPAR� has illustrated their anti-in�ammatory role in
treating diabetic retinopathy and experimental autoimmune
uveoretinitis [23, 24]. PPAR� has been reported to exhibit
neuroprotective effects on retinal ganglion cells, preventing
retinal dysfunction following optic nerve crush [25]. The
existing therapeutic options to address corneal pathological
processes remains limited. Within corneal in�ammation,
topical corticosteroid or non-steroidal anti-in�ammatory
drugs (NSAIDs) serve as the main agents for treatment.
However, both anti-in�ammatory treatment options are
accompanied by signi�cant adverse side-effects, including
increased intraocular pressure, cataract formation due to
corticosteroid use [26], and NSAID-induced corneal melting
[27]. The current treatment options of steroids or mitomycin
C for corneal �brosis also present with limitations with particular
concerns pertaining to long-term drug safety pro�le [28]. Lastly,
recombinant nerve growth factor (NGF) emerges as the singular
drug approved by the Food and Drug Administration (FDA) to
treat neurotrophic keratopathy. However, this treatment option
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remains costly and dictates the need for frequent topical
administration [29]. Given that in�ammation and
angiogenesis are closely associated with corneal scar tissue
formation, the various therapeutic effects of PPAR agents,
positions them as promising therapeutic candidates for
corneal diseases. Additionally, several PPAR agents such as
feno�brate and rosiglitazone are existing drugs widely used in
the treatment of metabolic diseases, offering the advantages of
drug repurposing in contrast to de novo drug discovery. This
includes reduced developmental time and costs, alongside well-
established pharmacokinetic considerations [30]. In this review,
we focus on the therapeutic potential and underlying work of
action of the different PPAR isoforms on corneal diseases,
including corneal wound healing, corneal in�ammation,
�brosis, neovascularisation, corneal nerve regeneration, and
dry eye disease.

PPARs on corneal wound healing

Corneal wound healing is a complex process driven by local
molecular factors and endogenous soluble factors. It is a widely
accepted notion that transforming growth factor-beta (TGF-�)
and tumour necrosis factor alpha (TNF-�) play pivotal roles in
regulating cellular responses during wound healing [31, 32].
Previous studies examined the 3 PPAR isoforms in relation to
corneal wound healing, uncovering mechanisms that accelerate
the process.

PPAR�’s involvement in corneal wound healing has been
recently elucidated through its role in regulating corneal cell
metabolism [33]. In vitro studies have revealed that
mitochondrial oxidative phosphorylation is a primary source
of adenosine triphosphate (ATP) production for human corneal
epithelial cells. Signi�cantly reduced mitochondria metabolism
and subsequently, impaired corneal healing process in PPAR�
knockout mice, compared to wild-type mice, were found,
suggesting the role of PPAR� as a key regulator of
mitochondrial metabolism and corneal wound healing. In
addition, PPAR� expression was downregulated in diabetic
human corneas compared to non-diabetic groups, reinforcing
the role of PPAR� in mitochondria metabolism and corneal
healing in light of well-documented delayed wound healing
observed in diabetic corneas. Administration of feno�brate, a
PPAR� agonist, ameliorated mitochondrial dysfunction and
enhanced corneal wound healing in diabetic mice and
humans, further underscoring the role of PPAR� in corneal
wound healing [33].

Regarding the role of PPAR� in corneal wound healing, in-
vitro epithelial cell proliferation was signi�cantly accelerated
following adenoviral gene transfer of PPAR� [34].
Additionally, PPAR� effectively preserved the corneal
epithelial basement membrane in the alkali-burned corneas
subjected to adenoviral gene transfer. Expression of matrix

metalloproteinase-2 (MMP-2) and TGF-� within the corneal
epithelium was signi�cantly suppressed by PPAR� gene transfer
using real-time RT-PCR [34]. Given the TGF-�’s inhibitory role
in epithelial cell growth and MMP’s role in extracellular matrix
degradation, this indicates PPAR�’s participation in corneal
wound healing.

PPAR� has also been shown to promote corneal healing via
facilitating proliferative capacity in rat alkali burn models [35].
This was evidenced by signi�cantly increased Ki67-positive cells
and Ki67 mRNA expression following four topical
administration of 0.05% GW50516 solution, a PPAR� agonist
[35]. Compensatory elevation of PPAR� expression during
corneal wound healing in both animal and human corneal
models was reported, and topical administration of PPAR�
agonist further inhibited corneal epithelial cell death, thereby
facilitating corneal wound healing [36].

PPARs on corneal in�ammation

PPAR�’s involvement in corneal in�ammation has been
explored by assessing the anti-in�ammatory effects in rat
corneal chemical injury models [37, 38]. Signi�cant
suppression of in�ammatory cell in�ltration was observed in
the cornea following alkali burn after the instillation of 0.05%
feno�brate twice daily for 14 days, in comparison to the vehicle
group [38]. Western blotting also demonstrated a signi�cantly
reduced expression of nuclear factor-kappa B (NF-�B), a key
transcription factor in in�ammation, in the PPAR� group versus
the vehicle group [38].

Similarly, another study investigating the anti-in�ammatory
effects of feno�brate following rat corneal alkali injury
demonstrated a reduction in corneal in�ammatory processes
[37]. This was evidenced by signi�cantly reduced mRNA
expression of proin�ammatory cytokines and chemokines
such as interleukin-1 (IL-1), IL-6, IL-8 and monocyte
chemoattractant protein-1 (MCP-1) [37]. Following corneal
chemical injury, staining with a PPAR� antibody highlighted
the primary localisation of PPAR�-positive cells within the
regenerating epithelial basement cell, indicating the vital role
of PPAR� in in�ammatory responses [37].

PPAR� was also explored for its potential corneal anti-
in�ammatory effects [39]. Similar to the effects observed
with PPAR�, topical application of PPAR� agonist,
speci�cally pioglitazone hydrochloride, signi�cantly
decreased neutrophilic and macrophage in�ltration after
alkali-burn injury in rats, whilst signi�cantly increasing
anti-in�ammatory M2 macrophages. Further real-time
reverse transcription polymerase chain reaction (RT-PCR)
analysis revealed the suppression of IL-1, IL-6, IL-8, TGF-
�1, and MCP-1 in corneas [39]. Similarly, in another study
using an alkali injury model, a signi�cant reduction in TNF-�
mRNA expression and upregulation of M2 macrophage
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polarisation upon PPAR� agonist treatment were observed,
enhancing the role of PPAR� in the context of corneal
in�ammation [40].

Topical application of a synthetic PPAR�-speci�c agonist,
GW5015116, twice daily for 7 days, also signi�cantly inhibited
neutrophil and macrophage in�ltration in rat corneal alkali burn
models. Signi�cantly lower expression levels of NF-�b and
in�ammatory cytokines were also observed in the PPAR�
group compared to the vehicle group on the real-time RT-
PCR analysis [41].

The anti-in�ammatory effects of the PPAR agonists within
the cornea have been postulated to be orchestrated through
several pathways. Western blotting analyses indicate that the
interference of the PPAR isoforms with activity of key
proin�ammatory transcription factors such as NF-kB pathway,
which may underlie the signi�cantly decreased immune cell
in�ltration observed in the cornea across these studies. This is
in line with previous studies which has shown that the
attenuation of NF-kB activity by PPAR� agents may be
achieved through the maintenance of a negative regulator,
nuclear expression of the kappa light polypeptide gene
enhancer in the B cell inhibitor, alpha (IkB-�), which plays a
role in inhibiting NF-kB activation [42]. Additionally, PPAR
agonists may exert immunomodulatory effects in corneal
in�ammation by enhancing monocyte differentiation to
M2 macrophages. In the context of macrophage-driven
in�ammation, M1 macrophages are distinguished as tissue
injury-type macrophages which serve as potent effector cells
that kill microorganisms and produce pro-in�ammatory
cytokines such as IL-6 and TNF-�, inducing in�ammation
[43]. Conversely, M2 macrophages function to dampen
in�ammation through the production of anti-in�ammatory
factors, promoting tissue remodelling and repair [44]. The
decrease in pro-in�ammatory cytokines like MCP-1 may
additionally contribute to the reduced immune cell
in�ltration, given its crucial role in promoting immune cell
in�ltration [45]. Thus, the observed reduction in pro-
in�ammatory cytokine expression in these studies may be
ascribed to the immunomodulatory effects of PPAR agonists
during corneal in�ammation.

Suppression of corneal �brosis of PPARs

Corneal �brosis arises from abnormalities in corneal wound
healing, characterised by excessive production of aberrant
extracellular matrix (ECM) proteins and corneal crystalline
enzymes by myo�broblasts. Whilst corneal �brogenesis acts
to restore corneal integrity following injury, excessive wound
remodeling causes corneal scars, resulting in visual impairment
or blindness [46]. In corneal �brogenesis, TGF-�1 is a key
cytokine responsible for promoting keratocyte differentiation
into active myo�broblasts [47, 48]. The pro�brotic properties

of TGF-�1 are achieved through multiple intracellular signaling
pathways such as Smad, p38 mitogen-activated protein
kinase (MAPK), and extracellular signal-regulated kinase
(Erk) [49, 50]. Given the established anti-�brotic properties
of PPAR� in the lungs and kidneys [51, 52], corneal studies have
explored the possible role of PPAR� in alleviating corneal
scarring [53–56].

Instillations of pioglitazone, a PPAR� agonist, demonstrated
a signi�cant inhibitory effect on corneal �broblast migration,
conducted on cultured corneal �broblasts using scrape-wound
assays [53]. It also led to a signi�cant reduction in corneal lattice
contraction, as illustrated by signi�cantly greater lattice
diameters in corneal �broblasts seeded in free-�oating
collagen gels. Signi�cant decreases in matrix
metalloproteinase-2 (MMP-2) and MMP-9 secretion,
alongside signi�cantly reduced collagen I and �bronectin
protein synthesis, demonstrated in western blotting, were
also observed.

Moreover, PPAR� downregulated the expression of TGF-�1-
induced connective tissue growth factor (CTGF), which is a
major autocrine growth factor enhancing TGF-�1’s pro-
�brogenic role in myo�broblast differentiation [54]. This
highlights PPAR�’s anti-�brotic effect on corneal �broblasts
by inhibiting crucial components in developing corneal
scarring. PPAR� is involved in two distinct pro�brotic
signaling pathways, speci�cally in the p38 MAPK and Smad
signalling pathways. Within the p38 MAPK signalling pathway,
PPAR� ligands, including troglitazone, rosiglitazone, and 15d-
PGJ2, signi�cantly reduced the levels of phosphorylated
p38 MAPK in a dose-dependent manner [55]. Addition of
PPAR� ligands down-regulated �-catenin expression—a
component of p38 MAPK signalling by blocking the TGF-�1-
induced p38 MAPK phosphorylation. The involvement of �-
catenin acts as a downstream mediator of p38 MAPK signalling,
signi�cantly enhancing �-SMA production in western blot
analysis [56].

PPAR�’s anti-�brotic action in the TGF-�1-induced Smad
signalling has been demonstrated through the application of
lobeglitazone, a PPAR� agonist, in a combination of type I
collagen and corneal �broblast isolated from the human
stroma. Notably, western blot analysis of Smad2/3 and
P-Smad2, key proteins in the Smad signalling pathway,
indicated a signi�cant inhibition in Smad signalling and
myo�broblast differentiation [57].

The application of PPARs for corneal
nerve regeneration

Degeneration of corneal nerves can occur in conditions such
as diabetic keratopathy, which is a common microvascular
complication of diabetes. This arises from the accumulation of
advanced glycation end products and the generation of reactive
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FIGURE 1
Representative corneal subbasal nerve images of healthy controls and type 2 diabetic patients before and after oral feno�brate treatment.
Corneal subbasal nerve of healthy controls (A, B). Corneal subbasal nerve before (C, D) and after (E, F) oral feno�brate treatment, demonstrating an
increase in nerve �ber density (9.25 ± 4.24 vs. 18.99 ± 8.49 n/mm2) and corneal nerve �ber width (0.0215 ± 0.0002 vs. 0.0224 ± 0.0005 µm2/mm2)
after treatment.
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oxygen species (ROS) [58], triggered by prolonged
hyperglycaemia, which reduces microvascular supply to
Schwann cells and neurons through increased oxidative stress
and in�ammation impacting the capillaries [59]. As
hyperlipidemia is a known risk factor for diabetic neuropathy
[8], PPAR� has been explored for its potential therapeutic effects
in diabetic corneal neuropathy.

PPAR�-knockout mice presented with signi�cant decrease in
corneal nerve �ber density (CNFD), as well as signi�cantly
decreased corneal sensitivity, compared to the wild-type mice
[60], suggesting PPAR�’s supportive role in maintaining corneal
nerve health. The protective role of PPAR� agonist in diabetic
corneal neuropathy further revealed that feno�brate had a
signi�cantly positive effect in ameliorating corneal nerve
degeneration in diabetic rat models. A restoration of PPAR�

expression in corneal epithelium and signi�cantly increased
CNFD were observed following treatment with chow
containing 0.014% feno�brate, a PPAR� agonist, for 4 months
[60]. Our group further demonstrated that topical feno�brate eye
drops enhanced the CNFD, corneal nerve �ber length, and ocular
surface integrity, as well as suppressed the corneal
neuroin�ammation, in diabetic keratopathy [61].

More recently, our group published a clinical trial in which
30 patients with type 2 DM were treated with oral feno�brate for
1 month. On in vivo confocal microscopy evaluation, there was
signi�cant stimulation of corneal nerve regeneration and a
reduction in nerve oedema after oral feno�brate treatment, as
evidenced by signi�cant improvement in CNFD and corneal
nerve �ber width, respectively (Figure 1). There was also a
signi�cant improvement in the corneal epithelial cell

FIGURE 2
Schematic diagram of the neuroprotective effects of PPAR� agent, feno�brate, in diabetic corneal neuropathy. ST6GAL1, Beta-galactoside
alpha-2,6-sialytransferase 1; TTC9, Tetratricopeptide repeat protein 9A; RAB5A, ras-related protein; SMAD1, Suppressor of mothers against
decapentaplegic homolog 1.
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morphology in terms of cell circularity. More importantly,
feno�brate signi�cantly improved patients’ neuropathic ocular
surface status by increasing tear breakup time along with a
reduction of corneal and conjunctival punctate keratopathy.
Amelioration of ocular surface neuroin�ammatory status was
also found, evidenced by a signi�cant increase in tear substance P
level. On the quantitative proteomic analysis, feno�brate
signi�cantly upregulated and modulated the neurotrophin,
MAPK signaling pathways and linoleic acid (LA) metabolism,
which may account for the neurotrophic effects of feno�brate
clinically [62; 63]. In addition, the expression of proteins involved
in the regulation of nervous system function such as beta-
galactoside alpha-2,6-sialytransferase 1 (ST6GAL1),
tetratricopeptide repeat protein 9A (TTC9), ras-related protein
(RAB5A) and suppressor of mothers against decapentaplegic
homolog 1 (SMAD1) were signi�cantly increased post-treatment
[63]. On the pathway analysis, we identi�ed the following
potential underlying therapeutic mechanisms in corneal nerve
regeneration: 1) Upregulation of neuronal pathways 2) lipid
modulation, 3) anti-in�ammation and 4) anti-coagulation.

Feno�brate demonstrated an upregulation of the
neurotrophin, MAPK signaling pathway and linoleic acid
metabolism which are crucial key players in neuroprotection.
Neurotrophins are a class of growth factors that regulate
neuronal development, survival, death and plasticity [6].
Within the cornea, neutrophins facilitates corneal nerve
branching, maintenance of corneal nerve density, and
promoting nerve regeneration [7]. Activation of MAPK has
been demonstrated to mediate neurite outgrowth-promoting
effects in vitro [64]. In addition, the metabolism of LA is
highly important given its role of gamma LA production, an
vital component of neuronal membrane phospholipid, as well as
playing a role to preserve nervous blood �ow to coordinate nerve
regeneration [65]. Suppression of the ribosome family expression
by feno�brate may also account for its neuroprotective effects
[63], particularly as axonal ribosomes are associated as a marker
for diseased axons in neurogenerative conditions (Figure 2) [66].

The therapeutic effect of feno�brate in corneal regeneration
and peripheral nerve improvements may also be attributed to its
well-established effect as an anti-hyperlipidaemic agent.
Feno�brate’s antihyperlipidaemic effect is expressed through
the stimulation of lipoprotein lipase activation, which
promotes the synthesis of high-density lipoprotein (HDL)
cholesterol and fatty acid oxidation pathway whilst conversely
facilitating a rapid degradation of low-density lipoprotein (LDL)
and triglycerides within tissues [67]. Given that
hypertriglyceridemia, hyperlipidemia and decreased HDLc
serve as signi�cant risk factors for diabetic peripheral
neuropathy, the lipid-modulating effects of feno�brate may
partly account for its neuroprotective impact in both
peripheral neuropathy and corneal nerve regeneration. Other
studies have also postulated that the peripheral neuroprotective
role of PPAR� agents is achieved through PPAR� activation in

satellite glial cells of dorsal root ganglia to stimulate axon
regeneration and the activation of the PPAR-�-AMPK-PGC-
1� pathway to ameliorate neuronal and endothelial damage
[68–70]. This is also reinforced in the Feno�brate Intervention
and Event Lowering in Diabetes (FIELD) study which reported
that feno�brate signi�cantly reduced microvascular
complications such as diabetic neuropathy alongside a 37%
risk reduction of amputation in T2DM patients [71].

The anti-in�ammatory effect of feno�brate through the
suppression of NF-�B expression, as explored earlier, also plays a
neuroprotective role through the reduction of neuroin�ammation
whilst promoting neurodevelopmental processes such as
neurogenesis, neuritogenesis and axoneogenesis [40, 72–74].
Feno�brate has also been reported to play a role in anti-
coagulation by inhibiting complement and coagulation cascades
alongside platelet activation pathways [63]. We contend that this
results in knock-on effects on feno�brate’s neuroprotective effects
given the signi�cant association between low platelet time and
platelecrit levels with decreased nerve conduction function and
prevalence of neuropathy in T2DM patients [75].

PPARs on dry eye disease

Dry eye diseases have multifaceted origins and are characterised
by a loss of homeostasis of the tear �lm [76]. These conditions are
accompanied by ocular symptoms, including tear �lm instability,
hyperosmolarity, ocular surface in�ammation and damage, and
neurosensory abnormalities [77, 78]. Dry eye conditions have
been associated with oxidative stress [79], and diabetes given that
the generation of oxidative stress is a core pathological mechanism of
diabetes [80]. The pathogenic processes associated with oxidative
stress encompass a disruption in the equilibrium between the
oxidative and antioxidant systems, culminating in hindered
neutralisation of oxygen free radicals [81]. The crucial role of
PPAR� expression in the lacrimal and meibomian glands and
dry eye has been explored in mouse models [16]. Qualitative
PCR revealed that rats with dry eyes had signi�cantly decreased
PPAR� expression compared to healthy rats [16]. PPAR� agents
have been shown to directly in�uence the transcription of
antioxidants through the activation of PPAR response elements
located in their respective promoter regions, such as catalases,
superoxide dismutases 1 and 2 [82]. As such, they have been
employed in the inhibition of the occurrence of oxidative stress [83].

Rosiglitazone, a PPAR� agonist, has been evaluated in the
context of diabetes-related and hyperlipidemia-related dry eye in
mouse models [82, 84]. Daily rosiglitazone administration
effectively reduced ROS accumulation in the lacrimal glands
of diabetes-related dry eye rat models in 4 weeks [82]. This effect
was observed through a signi�cant decrease in ROS �uorescein
intensity in the rosiglitazone-treated group, distinguishing itself
from both the non-treatment and vehicle groups of diabetes-
related dry eye rat models [82].
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Further real-time RT-PCR analysis revealed signi�cantly
increased mRNA expression levels of antioxidant enzymes
glutathione peroxidase 3 (GPx3) and heme oxygenase-1 (HO-
1) in the lacrimal gland of the rosiglitazone-treated group [82].
Tear production was also signi�cantly increased following
rosiglitazone administration. Apart from its bene�cial effects
in stimulating tear production in the lacrimal glands, it
alleviated ocular surface damage as evidenced by signi�cant
improvements in corneal �uorescein staining score compared
to the non-treatment group [82]. Additionally, rosiglitazone led
to signi�cantly decreased ROS levels within the cornea,
determined through comparisons of ROS �uorescein intensity
[82]. In a separate study, rosiglitazone effectively reduced pro-
in�ammatory cytokines and in�ammatory cell in�ltration within
the meibomian glands of hyperlipidaemic rat models, yielding
favourable effects in alleviating meibomian gland dysfunction
and evaporative dry eye disease [84]. These �ndings highlight the
potential therapeutic role of PPAR� in the management of dry
eye disease.

Feno�brate, a PPAR� agonist, has been reported to suppress
the formation of ocular surface squamous metaplasia, a
pathological process of dry eye disease. In a rat model study
where tear �lm instability was induced by topical benzalkonium
chloride (BAC), topical feno�brate demonstrated a reduction in
abnormal corneal epidermal differentiation [85]. This reduction
was evidenced by decreased expression of K10 keratin, an
epidermal keratinocyte-speci�c intermediate �lament, within
the corneal epithelium of the feno�brate-treated group
compared to the non-treatment/vehicle groups through
immunostaining [85]. Additionally, objective markers
evaluating tear �lm instability, including corneal �uorescein
sodium staining scoring was signi�cantly improved in the
feno�brate-treated [85]. As such, feno�brate has displayed its
potential effectiveness in reducing the in�ammatory response
and offering a treatment option for use as a preventive agent in
patients with high risks of dry eye [85].

PPARs on corneal neovascularisation

Corneal angiogenesis typically occurs in wound healing and
tissue repair. The pathogenesis of corneal neovascularisation
stems from an interplay of the disequilibrium between
proangiogenic and anti-angiogenic factors [86]. Keratocytes
have been suggested to be integral in corneal
neovascularisation formation given their expression of
vascular endothelial growth factors (VEGFs) and MMP-13.
These factors are identi�ed to degrade type 1 collagen in the
cornea, thereby creating an environment conducive to corneal
neovascularisation [87]. While the mainstay initial treatment for
neovascular ophthalmopathy involves suppressing endothelial
cell growth through anti-VEGF agents, it is accompanied by
limitations including suboptimal treatment response, short-effect

duration, and side effects [88]. With established PPAR�
expression in vascular endothelium and prior �ndings
indicating feno�brate’s protective effects against retinal
vasculopathy by inhibiting vascular endothelium function,
combined with PPAR�’s potent molecular inhibition of
angiogenesis [89, 90], assessing PPAR agents as a therapeutic
target holds promise for the management of corneal
neovascularisation.

The expression of PPAR� has demonstrated a notably
inverse correlation with corneal neovascularisation formation
and upregulation of VEGFr3 and MMP13 in alkali-burned
corneas of wild-type and PPAR-knockout mice [91].
Additionally, in PPAR� knockout mice, signi�cantly higher
VEGFr3 and MMP13 levels were exhibited versus wild-type
mice following corneal alkali burns. Wild-type mice that were
subjected to corneal alkali burn were divided into two groups and
administered with 200 �M topical feno�brate or vehicle solution
daily for 5 days to investigate feno�brate’s impact on corneal
neovascularisation. Corneal revascularisation was signi�cantly
reduced in the feno�brate-treated group upon clinical slit-lamp
examination compared to the vehicle group [91]. In another
study, feno�brate effectively reduced the expression of VEGF
mRNA, as well as angiopoietin-1 (Ang-1) and Ang-2, which are
proangiogenic factors, in post-alkali burn corneas. These �ndings
suggest that PPAR� may play an inhibitory role in the context of
neovascularisation [38].

Sarayba et al. investigated the in�uence of PPAR� on corneal
neovascularisation formation in rats with three experimental
groups: implanted pellets containing both pioglitazone and
VEGF, pellets containing VEGF alone, and controls.
Quantitative image analysis based on digital ocular
photographs demonstrated a signi�cant reduction in the mean
density of corneal neovascularisation formation in the corneas of
the VEGF/PPAR� group in comparison to the VEGF group at
day 7 after implantation, although there was no statistically
signi�cant difference in the mean corneal neovascularisation
area between these two groups. This still illustrates, however,
the potential anti-angiogenic effect of PPAR� agonist, in
mitigating corneal neovascularisation [92].

Figure 3 summarizes the potentials and mechanisms of the
3 PPAR isoforms (PPAR�, PPAR�, PPAR�) in mitigating the
pathogenesis of various corneal diseases. Each of the 3 PPAR
classes exhibited therapeutic effects in promoting corneal wound
healing via distinct mechanisms: 1) PPAR� enhanced the main
energy source of corneal epithelial cells, speci�cally
mitochondrial metabolism 2) PPAR� augmented corneal
proliferative capacity, as illustrated by increased expression of
Ki67, a marker of cell proliferation. 3) PPAR� contributed to the
inhibition of MMP-2 and TGF-�, enzymes that impede corneal
wound healing. The anti-in�ammatory capabilities of PPAR
agents have been evidenced by the modulation of key
in�ammatory transcription factor, NF-�B via PPAR� and
PPAR� and the pro-in�ammatory cytokine expression by
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PPAR�. In the realm of anti-neovascularisation, the suppression
of pro-angiogenic factors like VEGFr3 and MMP13 by PPAR�,
as well as VEGF by PPAR� confers anti-angiogenic bene�ts in
managing corneal neovascularisation. The therapeutic effects of
PPAR agents in dry eye diseases has been delineated through two
main mechanisms: �rstly, the anti-oxidative function of PPAR�
in diminishing corneal ROS levels, thereby mitigating ocular
surface damage; and secondly, the role of PPAR� in impeding
aberrant corneal epidermal differentiation and consequent
formation of ocular surface squamous metaplasia—a late
sequelae of dry eye disease. The corneal neurotrophic effects
of PPAR� agent, feno�brate, has also been highlighted through
the enhanced activation of neuronal pathways involving MAPK,
neurotrophin and LA metabolism. Additionally, feno�brate’s
active role in anti-in�ammation, anticoagulation, and lipid
modulation contributes to secondary neurotrophic effects,
creating an optimal environment for corneal nerve regeneration.

Clinical safety of PPAR agents

At present, the research of PPAR agents on ocular diseases
remains limited, with most studies focusing on in-vitro and

animal experiments, highlighting a paucity of data on the
safety of topical PPAR agents in corneal diseases, However,
the clinical application of systemic PPAR agents, notably the
PPAR� agonists belonging to the �brates class such as feno�brate
and PPAR� agonists from the thiazolidinedione (TZD) class such
as rosiglitazone, are well-validated in the treatment of
dyslipidaemia and diabetes, respectively, with an established
safety pro�le [19, 20].

Systemic administration of the �brate drug class such as
feno�brate exhibits a relatively favourable side-effect pro�le, with
minor associated adverse side-effects spanning from
gastrointestinal discomfort, musculoskeletal symptoms, to
headaches [15]. Rare instances of rhabdomyolysis has also
been described in concurrent use of statin-�brate therapy, and
highlights an increased risk in patients with hypothyroidism,
renal disease and diabetes mellitus [93]. Adverse effects of the
TZD class includes adverse cardiovascular effects, particularly
�uid retention, leading to congestive heart failure and peripheral
tissue oedema [94]. Whilst a potential association between TZD
use and the development of diabetic macular oedema in diabetic
patients has been postulated [95], this remains a topic of debate
with subsequent studies reporting no association between the
TZD use and diabetic macular oedema [96, 97]. Conversely, there

FIGURE 3
Illustration of the clinical applications of 3 PPAR isoforms in corneal diseases and its underlying mechanisms reported in the literature. Figure
was created with BioRender.com.
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is limited available data regarding the safety of PPAR� agonists.
Of note, the early clinical trials involving the PPAR� agonists,
GW501516, were halted due to concerns over accelerated
carcinogenicity observed in animal models [98].

Future directions

While the concept of utilising PPAR agents in corneal
diseases has gained momentum in recent years, additional
efforts are needed to further elucidate the role of the speci�c
PPAR isoforms. Firstly, there remains a need for a deeper
understanding of the speci�c PPAR isoforms involved in
speci�c corneal diseases. As illustrated in this review, different
isoforms play distinct roles and further delineation of their
functions within the cornea could open avenues for additional
therapeutic interventions. Understanding the crosstalk between
PPAR and other signalling pathways implicated in corneal
diseases could uncover synergistic or antagonistic effects,
providing a comprehensive picture of PPAR’s role in
maintaining corneal homeostasis.

Currently, the studies discussed in this article largely employ
the utilisation of animal models, showcasing great promise and
broadening our knowledge base on the underlying mechanisms
of PPAR agents in treating corneal diseases while serving as a
platform to test these novel PPAR therapeutic modalities. Further
directions on this aspect may include using in-vitro three-
dimensional human corneal models and human corneal cell
culture models, reducing reliance on animal models, and
offering the advantage of enhanced physiological resemblance
to in-vivo studies. Additionally, conducting clinical trials
assessing the ef�cacy and the long-term safety pro�le of
PPAR agonists in treating speci�c corneal diseases in a real-
world setting is imperative. Rigorous evaluation of the PPAR
agents in diverse patient populations will validate their
therapeutic potential and guide optimal dosing regimens.

Beyond the future endeavours aimed at establishing PPAR
agents’ ef�cacy in the landscape of corneal disease management,
there remains a considerable scope to develop novel drug
application techniques to bolster the ef�cacy of current PPAR
agents for improved clinical outcomes. The conventional delivery
method for the treatment of corneal diseases involves the
application of therapeutic agents via topical eye drops.
However, it presents with its own limitations, including rapid
precorneal drug loss and inability to sustain therapeutic drug
concentrations over extended periods [99]. Through
nanomedicine which utilises the use of nano-particles as

carriers to treat diseases, nano-based ocular delivery may offer
a more optimal drug delivery pro�le, speci�cally targeting
desired corneal cells to intercept pathological pathways [100].
The application of lipid nanoparticles for lipophilic agents like
feno�brate presents a promising avenue, particularly in light of
its poor bioavailability due to limited penetration of corneal
epithelium [101]. Within the realm of PPAR agents, the
utilisation of nanomedicine as a carrier for PPAR� agent has
been tested for the treatment of chronic liver disease and have
shown to reduce liver �brosis and in�ammation [102]. As such,
these studies provide insight into the feasibility of nanomedicine
as an innovative delivery platform for PPAR formulations in
future. By amalgamating these diverse research trajectories, the
�eld can anticipate a more nuanced understanding and
application of PPARs in the therapeutic landscape of
corneal diseases.

Conclusion

This article has reviewed current studies detailing the
therapeutic effects of PPAR agents in various corneal diseases.
Many studies have validated the potential therapeutic effects of
PPAR agents in addressing aspects of corneal pathology,
including corneal wound healing, neovascularisation,
in�ammation, �brosis, nerve regeneration, and dry eye
disease. Future studies may involve more in-depth
examination of the speci�c PPAR isoforms in corneal diseases
and progress towards the integration of clinical trials, to further
attest the bene�cial roles of PPAR agents in corneal diseases.
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