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Abstract

The cornea is an avascular tissue in the eye that hasmultiple functions in the eye

to maintain clear vision which can significantly impair one’s vision when

subjected to damage. Peroxisome proliferator-activated receptors (PPARs), a

family of nuclear receptor proteins comprising three different peroxisome

proliferator-activated receptor (PPAR) isoforms, namely, PPAR alpha (α),
PPAR gamma (γ), and PPAR delta (δ), have emerged as potential therapeutic

targets for treating corneal diseases. In this review, we summarised the current

literature on the therapeutic effects of PPAR agents on corneal diseases. We

discussed the role of PPARs in the modulation of corneal wound healing,

suppression of corneal inflammation, neovascularisation, fibrosis, stimulation

of corneal nerve regeneration, and amelioration of dry eye by inhibiting

oxidative stress within the cornea. We also discussed the underlying

mechanisms of these therapeutic effects. Future clinical trials are warranted

to further attest to the clinical therapeutic efficacy.
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Impact statement

The cornea constitutes a vital element of the ocular structure which exerts a profound

impact on vision when compromised. The application of peroxisome proliferator-

activated receptor (PPAR) agents has been widely documented particularly in the

treatment of metabolic conditions such as hyperlipidemia and diabetes. Yet, their

therapeutic potential in the context of corneal diseases remains not well-understood.

This review article summarises the reported therapeutic effects of PPAR agents in the

management of corneal inflammation, neovascularisation, wound healing, fibrosis, nerve
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regeneration, and dry eye. With further clinical validation, PPAR

agents may serve as a new avenue in the treatment of a variety of

corneal diseases.

The cornea

The cornea is an avascular tissue that sits at the anterior-most

surface of the eye. It comprises both cellular and acellular

components; the former includes epithelial cells, keratocytes,

and endothelial cells, and the latter includes mainly collagen

and glycosaminoglycans.

Functionally, the cornea fulfills several crucial roles,

including protecting ocular integrity, preserving optical clarity,

and providing refractive power to the eye. The cornea provides a

protective barrier against the environment, facilitated by the

intercellular junctions within its epithelium and the

continuous regeneration of the corneal epithelial cells [1, 2].

Consequently, damage to the cornea through trauma renders it

compromised, which in turn triggers a corneal wound healing

response consisting of inflammatory and fibrotic reactions.

Excessive corneal wound healing responses lead to corneal

scarring and opacification, profoundly impacting vision. The

World Health Organization stated that cornea opacity is a

priority eye disease and is one of the main causes of low

vision and visual impairment, affecting 146 million people

worldwide with an increase of 1.5–2.0 million new cases every

year [3, 4]. This underscores the importance of corneal wound

healing process, emphasizing a need to develop more efficacious

interventions to accelerate this restorative process.

The cornea is also the most densely innervated tissue in our

body, richly supplied by sensory and autonomic nerve fibres [5].

Corneal nerves sustain corneal health and homeostasis by

facilitating tear secretion and providing trophic support to

epithelial and stromal cells [6, 7]. In conditions such as

diabetic keratopathy or corneal surgery, corneal nerve

degeneration manifests, causing decreased corneal sensitivity

and increased vulnerability to corneal ulceration [8, 9].

Therefore, interventions targeting corneal nerve regeneration

constitute a pivotal approach to enhancing cornea health.

Researchers have previously explored potential therapeutic

agents aimed at these fundamental aspects of corneal health. In

this review, we explore a promising therapeutic avenue, namely,

the peroxisome proliferator-activated receptor family, on

corneal diseases.

The expression of PPARs in eyes

The PPARs are a group of transcription factors belonging to

the nuclear hormone receptor family [10]. The PPAR family

comprises three isotypes: PPAR alpha (α), PPAR gamma (γ), and
PPAR delta (δ), each exhibiting distinct tissue expression

patterns and involved in the regulation of diverse biological

functions [11]. At the molecular level, while the PPAR

isoforms exhibit a sequence identity of 60%–70% within their

ligand-binding domains (LBDs), significant variations in the

overall pocket size of the three-dimensional structures of these

LBDs exist, leading to distinctive binding affinities of each PPAR

isoform with specific compounds [12]. The discovery of PPAR’s

mechanism as a distinct transcription factor capable of targeted

activation by peroxisome proliferators for potential therapeutic

application, by Issemann and Green in 1990, paved the

groundwork for further research into PPAR [13]. Since then,

prior research has firmly established the role of PPARs as

modulators of adipocyte differentiation, glucose and lipid

metabolism, and inflammation [11, 13, 14]. Within the eye, all

3 PPAR isoforms exhibit distinct localisation patterns within

ocular structures [15]. Specifically, PPARα and PPARγ are found
in the cornea, conjunctiva, retina, meibomian, and lacrimal

glands, whereas PPARδ is expressed in the cornea, retina, and

lacrimal glands, all demonstrating varied levels of expression

across various tissue types [15, 16]. Beyond the eye, PPARα is

localised in the kidneys, liver, muscle, and heart; PPARδ displays
ubiquitously across numerous organs and tissues, while PPARγ is
found in adipocytes and small intestines [17, 18]. Clinically, they

are routinely used as therapeutic agents such as fenofibrate, a

PPARα agonist, for hyperlipidaemia, as well as pioglitazone, a

PPARγ agonist for diabetes [19, 20].

All 3 PPAR isoforms have been reported to exhibit

expression within the retina, each with differing functions.

PPARα has been reported to possess protective and anti-

inflammatory effects in the retina across several studies

[21–24]. A study reported the PPARα’s anti-apoptotic

properties in retinal ischaemia [21], whilst another

demonstrated anti-oxidative and anti-angiogenic effects of

PPARα in age-related macular degeneration [22]. In a similar

vein, PPARα has illustrated their anti-inflammatory role in

treating diabetic retinopathy and experimental autoimmune

uveoretinitis [23, 24]. PPARγ has been reported to exhibit

neuroprotective effects on retinal ganglion cells, preventing

retinal dysfunction following optic nerve crush [25]. The

existing therapeutic options to address corneal pathological

processes remains limited. Within corneal inflammation,

topical corticosteroid or non-steroidal anti-inflammatory

drugs (NSAIDs) serve as the main agents for treatment.

However, both anti-inflammatory treatment options are

accompanied by significant adverse side-effects, including

increased intraocular pressure, cataract formation due to

corticosteroid use [26], and NSAID-induced corneal melting

[27]. The current treatment options of steroids or mitomycin

C for corneal fibrosis also present with limitations with particular

concerns pertaining to long-term drug safety profile [28]. Lastly,

recombinant nerve growth factor (NGF) emerges as the singular

drug approved by the Food and Drug Administration (FDA) to

treat neurotrophic keratopathy. However, this treatment option
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remains costly and dictates the need for frequent topical

administration [29]. Given that inflammation and

angiogenesis are closely associated with corneal scar tissue

formation, the various therapeutic effects of PPAR agents,

positions them as promising therapeutic candidates for

corneal diseases. Additionally, several PPAR agents such as

fenofibrate and rosiglitazone are existing drugs widely used in

the treatment of metabolic diseases, offering the advantages of

drug repurposing in contrast to de novo drug discovery. This

includes reduced developmental time and costs, alongside well-

established pharmacokinetic considerations [30]. In this review,

we focus on the therapeutic potential and underlying work of

action of the different PPAR isoforms on corneal diseases,

including corneal wound healing, corneal inflammation,

fibrosis, neovascularisation, corneal nerve regeneration, and

dry eye disease.

PPARs on corneal wound healing

Corneal wound healing is a complex process driven by local

molecular factors and endogenous soluble factors. It is a widely

accepted notion that transforming growth factor-beta (TGF-β)
and tumour necrosis factor alpha (TNF-α) play pivotal roles in

regulating cellular responses during wound healing [31, 32].

Previous studies examined the 3 PPAR isoforms in relation to

corneal wound healing, uncovering mechanisms that accelerate

the process.

PPARα’s involvement in corneal wound healing has been

recently elucidated through its role in regulating corneal cell

metabolism [33]. In vitro studies have revealed that

mitochondrial oxidative phosphorylation is a primary source

of adenosine triphosphate (ATP) production for human corneal

epithelial cells. Significantly reduced mitochondria metabolism

and subsequently, impaired corneal healing process in PPARα
knockout mice, compared to wild-type mice, were found,

suggesting the role of PPARα as a key regulator of

mitochondrial metabolism and corneal wound healing. In

addition, PPARα expression was downregulated in diabetic

human corneas compared to non-diabetic groups, reinforcing

the role of PPARα in mitochondria metabolism and corneal

healing in light of well-documented delayed wound healing

observed in diabetic corneas. Administration of fenofibrate, a

PPARα agonist, ameliorated mitochondrial dysfunction and

enhanced corneal wound healing in diabetic mice and

humans, further underscoring the role of PPARα in corneal

wound healing [33].

Regarding the role of PPARγ in corneal wound healing, in-

vitro epithelial cell proliferation was significantly accelerated

following adenoviral gene transfer of PPARγ [34].

Additionally, PPARγ effectively preserved the corneal

epithelial basement membrane in the alkali-burned corneas

subjected to adenoviral gene transfer. Expression of matrix

metalloproteinase-2 (MMP-2) and TGF-β within the corneal

epithelium was significantly suppressed by PPARγ gene transfer

using real-time RT-PCR [34]. Given the TGF-β’s inhibitory role
in epithelial cell growth and MMP’s role in extracellular matrix

degradation, this indicates PPARγ’s participation in corneal

wound healing.

PPARδ has also been shown to promote corneal healing via

facilitating proliferative capacity in rat alkali burn models [35].

This was evidenced by significantly increased Ki67-positive cells

and Ki67 mRNA expression following four topical

administration of 0.05% GW50516 solution, a PPARδ agonist

[35]. Compensatory elevation of PPARδ expression during

corneal wound healing in both animal and human corneal

models was reported, and topical administration of PPARδ
agonist further inhibited corneal epithelial cell death, thereby

facilitating corneal wound healing [36].

PPARs on corneal inflammation

PPARα’s involvement in corneal inflammation has been

explored by assessing the anti-inflammatory effects in rat

corneal chemical injury models [37, 38]. Significant

suppression of inflammatory cell infiltration was observed in

the cornea following alkali burn after the instillation of 0.05%

fenofibrate twice daily for 14 days, in comparison to the vehicle

group [38]. Western blotting also demonstrated a significantly

reduced expression of nuclear factor-kappa B (NF-κB), a key

transcription factor in inflammation, in the PPARα group versus

the vehicle group [38].

Similarly, another study investigating the anti-inflammatory

effects of fenofibrate following rat corneal alkali injury

demonstrated a reduction in corneal inflammatory processes

[37]. This was evidenced by significantly reduced mRNA

expression of proinflammatory cytokines and chemokines

such as interleukin-1 (IL-1), IL-6, IL-8 and monocyte

chemoattractant protein-1 (MCP-1) [37]. Following corneal

chemical injury, staining with a PPARα antibody highlighted

the primary localisation of PPARα-positive cells within the

regenerating epithelial basement cell, indicating the vital role

of PPARα in inflammatory responses [37].

PPARγ was also explored for its potential corneal anti-

inflammatory effects [39]. Similar to the effects observed

with PPARα, topical application of PPARγ agonist,

specifically pioglitazone hydrochloride, significantly

decreased neutrophilic and macrophage infiltration after

alkali-burn injury in rats, whilst significantly increasing

anti-inflammatory M2 macrophages. Further real-time

reverse transcription polymerase chain reaction (RT-PCR)

analysis revealed the suppression of IL-1, IL-6, IL-8, TGF-

β1, and MCP-1 in corneas [39]. Similarly, in another study

using an alkali injury model, a significant reduction in TNF-α
mRNA expression and upregulation of M2 macrophage
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polarisation upon PPARγ agonist treatment were observed,

enhancing the role of PPARγ in the context of corneal

inflammation [40].

Topical application of a synthetic PPARδ-specific agonist,

GW5015116, twice daily for 7 days, also significantly inhibited

neutrophil and macrophage infiltration in rat corneal alkali burn

models. Significantly lower expression levels of NF-Κb and

inflammatory cytokines were also observed in the PPARδ
group compared to the vehicle group on the real-time RT-

PCR analysis [41].

The anti-inflammatory effects of the PPAR agonists within

the cornea have been postulated to be orchestrated through

several pathways. Western blotting analyses indicate that the

interference of the PPAR isoforms with activity of key

proinflammatory transcription factors such as NF-kB pathway,

which may underlie the significantly decreased immune cell

infiltration observed in the cornea across these studies. This is

in line with previous studies which has shown that the

attenuation of NF-kB activity by PPARα agents may be

achieved through the maintenance of a negative regulator,

nuclear expression of the kappa light polypeptide gene

enhancer in the B cell inhibitor, alpha (IkB-α), which plays a

role in inhibiting NF-kB activation [42]. Additionally, PPAR

agonists may exert immunomodulatory effects in corneal

inflammation by enhancing monocyte differentiation to

M2 macrophages. In the context of macrophage-driven

inflammation, M1 macrophages are distinguished as tissue

injury-type macrophages which serve as potent effector cells

that kill microorganisms and produce pro-inflammatory

cytokines such as IL-6 and TNF-α, inducing inflammation

[43]. Conversely, M2 macrophages function to dampen

inflammation through the production of anti-inflammatory

factors, promoting tissue remodelling and repair [44]. The

decrease in pro-inflammatory cytokines like MCP-1 may

additionally contribute to the reduced immune cell

infiltration, given its crucial role in promoting immune cell

infiltration [45]. Thus, the observed reduction in pro-

inflammatory cytokine expression in these studies may be

ascribed to the immunomodulatory effects of PPAR agonists

during corneal inflammation.

Suppression of corneal fibrosis of PPARs

Corneal fibrosis arises from abnormalities in corneal wound

healing, characterised by excessive production of aberrant

extracellular matrix (ECM) proteins and corneal crystalline

enzymes by myofibroblasts. Whilst corneal fibrogenesis acts

to restore corneal integrity following injury, excessive wound

remodeling causes corneal scars, resulting in visual impairment

or blindness [46]. In corneal fibrogenesis, TGF-β1 is a key

cytokine responsible for promoting keratocyte differentiation

into active myofibroblasts [47, 48]. The profibrotic properties

of TGF-β1 are achieved through multiple intracellular signaling

pathways such as Smad, p38 mitogen-activated protein

kinase (MAPK), and extracellular signal-regulated kinase

(Erk) [49, 50]. Given the established anti-fibrotic properties

of PPARγ in the lungs and kidneys [51, 52], corneal studies have
explored the possible role of PPARγ in alleviating corneal

scarring [53–56].

Instillations of pioglitazone, a PPARγ agonist, demonstrated

a significant inhibitory effect on corneal fibroblast migration,

conducted on cultured corneal fibroblasts using scrape-wound

assays [53]. It also led to a significant reduction in corneal lattice

contraction, as illustrated by significantly greater lattice

diameters in corneal fibroblasts seeded in free-floating

collagen gels. Significant decreases in matrix

metalloproteinase-2 (MMP-2) and MMP-9 secretion,

alongside significantly reduced collagen I and fibronectin

protein synthesis, demonstrated in western blotting, were

also observed.

Moreover, PPARγ downregulated the expression of TGF-β1-
induced connective tissue growth factor (CTGF), which is a

major autocrine growth factor enhancing TGF-β1’s pro-

fibrogenic role in myofibroblast differentiation [54]. This

highlights PPARγ’s anti-fibrotic effect on corneal fibroblasts

by inhibiting crucial components in developing corneal

scarring. PPARγ is involved in two distinct profibrotic

signaling pathways, specifically in the p38 MAPK and Smad

signalling pathways. Within the p38 MAPK signalling pathway,

PPARγ ligands, including troglitazone, rosiglitazone, and 15d-

PGJ2, significantly reduced the levels of phosphorylated

p38 MAPK in a dose-dependent manner [55]. Addition of

PPARγ ligands down-regulated β-catenin expression—a

component of p38 MAPK signalling by blocking the TGF-β1-
induced p38 MAPK phosphorylation. The involvement of β-
catenin acts as a downstream mediator of p38 MAPK signalling,

significantly enhancing α-SMA production in western blot

analysis [56].

PPARγ’s anti-fibrotic action in the TGF-β1-induced Smad

signalling has been demonstrated through the application of

lobeglitazone, a PPARγ agonist, in a combination of type I

collagen and corneal fibroblast isolated from the human

stroma. Notably, western blot analysis of Smad2/3 and

P-Smad2, key proteins in the Smad signalling pathway,

indicated a significant inhibition in Smad signalling and

myofibroblast differentiation [57].

The application of PPARs for corneal
nerve regeneration

Degeneration of corneal nerves can occur in conditions such

as diabetic keratopathy, which is a common microvascular

complication of diabetes. This arises from the accumulation of

advanced glycation end products and the generation of reactive
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FIGURE 1
Representative corneal subbasal nerve images of healthy controls and type 2 diabetic patients before and after oral fenofibrate treatment.
Corneal subbasal nerve of healthy controls (A, B). Corneal subbasal nerve before (C, D) and after (E, F) oral fenofibrate treatment, demonstrating an
increase in nerve fiber density (9.25 ± 4.24 vs. 18.99 ± 8.49 n/mm2) and corneal nerve fiber width (0.0215 ± 0.0002 vs. 0.0224 ± 0.0005 µm2/mm2)
after treatment.
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oxygen species (ROS) [58], triggered by prolonged

hyperglycaemia, which reduces microvascular supply to

Schwann cells and neurons through increased oxidative stress

and inflammation impacting the capillaries [59]. As

hyperlipidemia is a known risk factor for diabetic neuropathy

[8], PPARα has been explored for its potential therapeutic effects

in diabetic corneal neuropathy.

PPARα-knockout mice presented with significant decrease in

corneal nerve fiber density (CNFD), as well as significantly

decreased corneal sensitivity, compared to the wild-type mice

[60], suggesting PPARα’s supportive role in maintaining corneal

nerve health. The protective role of PPARα agonist in diabetic

corneal neuropathy further revealed that fenofibrate had a

significantly positive effect in ameliorating corneal nerve

degeneration in diabetic rat models. A restoration of PPARα

expression in corneal epithelium and significantly increased

CNFD were observed following treatment with chow

containing 0.014% fenofibrate, a PPARα agonist, for 4 months

[60]. Our group further demonstrated that topical fenofibrate eye

drops enhanced the CNFD, corneal nerve fiber length, and ocular

surface integrity, as well as suppressed the corneal

neuroinflammation, in diabetic keratopathy [61].

More recently, our group published a clinical trial in which

30 patients with type 2 DM were treated with oral fenofibrate for

1 month. On in vivo confocal microscopy evaluation, there was

significant stimulation of corneal nerve regeneration and a

reduction in nerve oedema after oral fenofibrate treatment, as

evidenced by significant improvement in CNFD and corneal

nerve fiber width, respectively (Figure 1). There was also a

significant improvement in the corneal epithelial cell

FIGURE 2
Schematic diagram of the neuroprotective effects of PPARα agent, fenofibrate, in diabetic corneal neuropathy. ST6GAL1, Beta-galactoside
alpha-2,6-sialytransferase 1; TTC9, Tetratricopeptide repeat protein 9A; RAB5A, ras-related protein; SMAD1, Suppressor of mothers against
decapentaplegic homolog 1.
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morphology in terms of cell circularity. More importantly,

fenofibrate significantly improved patients’ neuropathic ocular

surface status by increasing tear breakup time along with a

reduction of corneal and conjunctival punctate keratopathy.

Amelioration of ocular surface neuroinflammatory status was

also found, evidenced by a significant increase in tear substance P

level. On the quantitative proteomic analysis, fenofibrate

significantly upregulated and modulated the neurotrophin,

MAPK signaling pathways and linoleic acid (LA) metabolism,

which may account for the neurotrophic effects of fenofibrate

clinically [62; 63]. In addition, the expression of proteins involved

in the regulation of nervous system function such as beta-

galactoside alpha-2,6-sialytransferase 1 (ST6GAL1),

tetratricopeptide repeat protein 9A (TTC9), ras-related protein

(RAB5A) and suppressor of mothers against decapentaplegic

homolog 1 (SMAD1) were significantly increased post-treatment

[63]. On the pathway analysis, we identified the following

potential underlying therapeutic mechanisms in corneal nerve

regeneration: 1) Upregulation of neuronal pathways 2) lipid

modulation, 3) anti-inflammation and 4) anti-coagulation.

Fenofibrate demonstrated an upregulation of the

neurotrophin, MAPK signaling pathway and linoleic acid

metabolism which are crucial key players in neuroprotection.

Neurotrophins are a class of growth factors that regulate

neuronal development, survival, death and plasticity [6].

Within the cornea, neutrophins facilitates corneal nerve

branching, maintenance of corneal nerve density, and

promoting nerve regeneration [7]. Activation of MAPK has

been demonstrated to mediate neurite outgrowth-promoting

effects in vitro [64]. In addition, the metabolism of LA is

highly important given its role of gamma LA production, an

vital component of neuronal membrane phospholipid, as well as

playing a role to preserve nervous blood flow to coordinate nerve

regeneration [65]. Suppression of the ribosome family expression

by fenofibrate may also account for its neuroprotective effects

[63], particularly as axonal ribosomes are associated as a marker

for diseased axons in neurogenerative conditions (Figure 2) [66].

The therapeutic effect of fenofibrate in corneal regeneration

and peripheral nerve improvements may also be attributed to its

well-established effect as an anti-hyperlipidaemic agent.

Fenofibrate’s antihyperlipidaemic effect is expressed through

the stimulation of lipoprotein lipase activation, which

promotes the synthesis of high-density lipoprotein (HDL)

cholesterol and fatty acid oxidation pathway whilst conversely

facilitating a rapid degradation of low-density lipoprotein (LDL)

and triglycerides within tissues [67]. Given that

hypertriglyceridemia, hyperlipidemia and decreased HDLc

serve as significant risk factors for diabetic peripheral

neuropathy, the lipid-modulating effects of fenofibrate may

partly account for its neuroprotective impact in both

peripheral neuropathy and corneal nerve regeneration. Other

studies have also postulated that the peripheral neuroprotective

role of PPARα agents is achieved through PPARα activation in

satellite glial cells of dorsal root ganglia to stimulate axon

regeneration and the activation of the PPAR-α-AMPK-PGC-

1α pathway to ameliorate neuronal and endothelial damage

[68–70]. This is also reinforced in the Fenofibrate Intervention

and Event Lowering in Diabetes (FIELD) study which reported

that fenofibrate significantly reduced microvascular

complications such as diabetic neuropathy alongside a 37%

risk reduction of amputation in T2DM patients [71].

The anti-inflammatory effect of fenofibrate through the

suppression of NF-κB expression, as explored earlier, also plays a

neuroprotective role through the reduction of neuroinflammation

whilst promoting neurodevelopmental processes such as

neurogenesis, neuritogenesis and axoneogenesis [40, 72–74].

Fenofibrate has also been reported to play a role in anti-

coagulation by inhibiting complement and coagulation cascades

alongside platelet activation pathways [63]. We contend that this

results in knock-on effects on fenofibrate’s neuroprotective effects

given the significant association between low platelet time and

platelecrit levels with decreased nerve conduction function and

prevalence of neuropathy in T2DM patients [75].

PPARs on dry eye disease

Dry eye diseases have multifaceted origins and are characterised

by a loss of homeostasis of the tear film [76]. These conditions are

accompanied by ocular symptoms, including tear film instability,

hyperosmolarity, ocular surface inflammation and damage, and

neurosensory abnormalities [77, 78]. Dry eye conditions have

been associated with oxidative stress [79], and diabetes given that

the generation of oxidative stress is a core pathologicalmechanismof

diabetes [80]. The pathogenic processes associated with oxidative

stress encompass a disruption in the equilibrium between the

oxidative and antioxidant systems, culminating in hindered

neutralisation of oxygen free radicals [81]. The crucial role of

PPARγ expression in the lacrimal and meibomian glands and

dry eye has been explored in mouse models [16]. Qualitative

PCR revealed that rats with dry eyes had significantly decreased

PPARγ expression compared to healthy rats [16]. PPARγ agents

have been shown to directly influence the transcription of

antioxidants through the activation of PPAR response elements

located in their respective promoter regions, such as catalases,

superoxide dismutases 1 and 2 [82]. As such, they have been

employed in the inhibition of the occurrence of oxidative stress [83].

Rosiglitazone, a PPARγ agonist, has been evaluated in the

context of diabetes-related and hyperlipidemia-related dry eye in

mouse models [82, 84]. Daily rosiglitazone administration

effectively reduced ROS accumulation in the lacrimal glands

of diabetes-related dry eye rat models in 4 weeks [82]. This effect

was observed through a significant decrease in ROS fluorescein

intensity in the rosiglitazone-treated group, distinguishing itself

from both the non-treatment and vehicle groups of diabetes-

related dry eye rat models [82].
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Further real-time RT-PCR analysis revealed significantly

increased mRNA expression levels of antioxidant enzymes

glutathione peroxidase 3 (GPx3) and heme oxygenase-1 (HO-

1) in the lacrimal gland of the rosiglitazone-treated group [82].

Tear production was also significantly increased following

rosiglitazone administration. Apart from its beneficial effects

in stimulating tear production in the lacrimal glands, it

alleviated ocular surface damage as evidenced by significant

improvements in corneal fluorescein staining score compared

to the non-treatment group [82]. Additionally, rosiglitazone led

to significantly decreased ROS levels within the cornea,

determined through comparisons of ROS fluorescein intensity

[82]. In a separate study, rosiglitazone effectively reduced pro-

inflammatory cytokines and inflammatory cell infiltration within

the meibomian glands of hyperlipidaemic rat models, yielding

favourable effects in alleviating meibomian gland dysfunction

and evaporative dry eye disease [84]. These findings highlight the

potential therapeutic role of PPARγ in the management of dry

eye disease.

Fenofibrate, a PPARα agonist, has been reported to suppress

the formation of ocular surface squamous metaplasia, a

pathological process of dry eye disease. In a rat model study

where tear film instability was induced by topical benzalkonium

chloride (BAC), topical fenofibrate demonstrated a reduction in

abnormal corneal epidermal differentiation [85]. This reduction

was evidenced by decreased expression of K10 keratin, an

epidermal keratinocyte-specific intermediate filament, within

the corneal epithelium of the fenofibrate-treated group

compared to the non-treatment/vehicle groups through

immunostaining [85]. Additionally, objective markers

evaluating tear film instability, including corneal fluorescein

sodium staining scoring was significantly improved in the

fenofibrate-treated [85]. As such, fenofibrate has displayed its

potential effectiveness in reducing the inflammatory response

and offering a treatment option for use as a preventive agent in

patients with high risks of dry eye [85].

PPARs on corneal neovascularisation

Corneal angiogenesis typically occurs in wound healing and

tissue repair. The pathogenesis of corneal neovascularisation

stems from an interplay of the disequilibrium between

proangiogenic and anti-angiogenic factors [86]. Keratocytes

have been suggested to be integral in corneal

neovascularisation formation given their expression of

vascular endothelial growth factors (VEGFs) and MMP-13.

These factors are identified to degrade type 1 collagen in the

cornea, thereby creating an environment conducive to corneal

neovascularisation [87]. While the mainstay initial treatment for

neovascular ophthalmopathy involves suppressing endothelial

cell growth through anti-VEGF agents, it is accompanied by

limitations including suboptimal treatment response, short-effect

duration, and side effects [88]. With established PPARα
expression in vascular endothelium and prior findings

indicating fenofibrate’s protective effects against retinal

vasculopathy by inhibiting vascular endothelium function,

combined with PPARγ’s potent molecular inhibition of

angiogenesis [89, 90], assessing PPAR agents as a therapeutic

target holds promise for the management of corneal

neovascularisation.

The expression of PPARα has demonstrated a notably

inverse correlation with corneal neovascularisation formation

and upregulation of VEGFr3 and MMP13 in alkali-burned

corneas of wild-type and PPAR-knockout mice [91].

Additionally, in PPARα knockout mice, significantly higher

VEGFr3 and MMP13 levels were exhibited versus wild-type

mice following corneal alkali burns. Wild-type mice that were

subjected to corneal alkali burn were divided into two groups and

administered with 200 μM topical fenofibrate or vehicle solution

daily for 5 days to investigate fenofibrate’s impact on corneal

neovascularisation. Corneal revascularisation was significantly

reduced in the fenofibrate-treated group upon clinical slit-lamp

examination compared to the vehicle group [91]. In another

study, fenofibrate effectively reduced the expression of VEGF

mRNA, as well as angiopoietin-1 (Ang-1) and Ang-2, which are

proangiogenic factors, in post-alkali burn corneas. These findings

suggest that PPARαmay play an inhibitory role in the context of

neovascularisation [38].

Sarayba et al. investigated the influence of PPARγ on corneal

neovascularisation formation in rats with three experimental

groups: implanted pellets containing both pioglitazone and

VEGF, pellets containing VEGF alone, and controls.

Quantitative image analysis based on digital ocular

photographs demonstrated a significant reduction in the mean

density of corneal neovascularisation formation in the corneas of

the VEGF/PPARγ group in comparison to the VEGF group at

day 7 after implantation, although there was no statistically

significant difference in the mean corneal neovascularisation

area between these two groups. This still illustrates, however,

the potential anti-angiogenic effect of PPARγ agonist, in

mitigating corneal neovascularisation [92].

Figure 3 summarizes the potentials and mechanisms of the

3 PPAR isoforms (PPARα, PPARγ, PPARδ) in mitigating the

pathogenesis of various corneal diseases. Each of the 3 PPAR

classes exhibited therapeutic effects in promoting corneal wound

healing via distinct mechanisms: 1) PPARα enhanced the main

energy source of corneal epithelial cells, specifically

mitochondrial metabolism 2) PPARδ augmented corneal

proliferative capacity, as illustrated by increased expression of

Ki67, a marker of cell proliferation. 3) PPARγ contributed to the

inhibition of MMP-2 and TGF-β, enzymes that impede corneal

wound healing. The anti-inflammatory capabilities of PPAR

agents have been evidenced by the modulation of key

inflammatory transcription factor, NF-κB via PPARα and

PPARδ and the pro-inflammatory cytokine expression by

Experimental Biology and Medicine
Published by Frontiers

Society for Experimental Biology and Medicine08

Chow et al. 10.3389/ebm.2024.10142

https://doi.org/10.3389/ebm.2024.10142


PPARγ. In the realm of anti-neovascularisation, the suppression

of pro-angiogenic factors like VEGFr3 and MMP13 by PPARα,
as well as VEGF by PPARγ confers anti-angiogenic benefits in

managing corneal neovascularisation. The therapeutic effects of

PPAR agents in dry eye diseases has been delineated through two

main mechanisms: firstly, the anti-oxidative function of PPARγ
in diminishing corneal ROS levels, thereby mitigating ocular

surface damage; and secondly, the role of PPARα in impeding

aberrant corneal epidermal differentiation and consequent

formation of ocular surface squamous metaplasia—a late

sequelae of dry eye disease. The corneal neurotrophic effects

of PPARα agent, fenofibrate, has also been highlighted through

the enhanced activation of neuronal pathways involving MAPK,

neurotrophin and LA metabolism. Additionally, fenofibrate’s

active role in anti-inflammation, anticoagulation, and lipid

modulation contributes to secondary neurotrophic effects,

creating an optimal environment for corneal nerve regeneration.

Clinical safety of PPAR agents

At present, the research of PPAR agents on ocular diseases

remains limited, with most studies focusing on in-vitro and

animal experiments, highlighting a paucity of data on the

safety of topical PPAR agents in corneal diseases, However,

the clinical application of systemic PPAR agents, notably the

PPARα agonists belonging to the fibrates class such as fenofibrate
and PPARγ agonists from the thiazolidinedione (TZD) class such

as rosiglitazone, are well-validated in the treatment of

dyslipidaemia and diabetes, respectively, with an established

safety profile [19, 20].

Systemic administration of the fibrate drug class such as

fenofibrate exhibits a relatively favourable side-effect profile, with

minor associated adverse side-effects spanning from

gastrointestinal discomfort, musculoskeletal symptoms, to

headaches [15]. Rare instances of rhabdomyolysis has also

been described in concurrent use of statin-fibrate therapy, and

highlights an increased risk in patients with hypothyroidism,

renal disease and diabetes mellitus [93]. Adverse effects of the

TZD class includes adverse cardiovascular effects, particularly

fluid retention, leading to congestive heart failure and peripheral

tissue oedema [94]. Whilst a potential association between TZD

use and the development of diabetic macular oedema in diabetic

patients has been postulated [95], this remains a topic of debate

with subsequent studies reporting no association between the

TZD use and diabetic macular oedema [96, 97]. Conversely, there

FIGURE 3
Illustration of the clinical applications of 3 PPAR isoforms in corneal diseases and its underlying mechanisms reported in the literature. Figure
was created with BioRender.com.
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is limited available data regarding the safety of PPARδ agonists.

Of note, the early clinical trials involving the PPARδ agonists,

GW501516, were halted due to concerns over accelerated

carcinogenicity observed in animal models [98].

Future directions

While the concept of utilising PPAR agents in corneal

diseases has gained momentum in recent years, additional

efforts are needed to further elucidate the role of the specific

PPAR isoforms. Firstly, there remains a need for a deeper

understanding of the specific PPAR isoforms involved in

specific corneal diseases. As illustrated in this review, different

isoforms play distinct roles and further delineation of their

functions within the cornea could open avenues for additional

therapeutic interventions. Understanding the crosstalk between

PPAR and other signalling pathways implicated in corneal

diseases could uncover synergistic or antagonistic effects,

providing a comprehensive picture of PPAR’s role in

maintaining corneal homeostasis.

Currently, the studies discussed in this article largely employ

the utilisation of animal models, showcasing great promise and

broadening our knowledge base on the underlying mechanisms

of PPAR agents in treating corneal diseases while serving as a

platform to test these novel PPAR therapeutic modalities. Further

directions on this aspect may include using in-vitro three-

dimensional human corneal models and human corneal cell

culture models, reducing reliance on animal models, and

offering the advantage of enhanced physiological resemblance

to in-vivo studies. Additionally, conducting clinical trials

assessing the efficacy and the long-term safety profile of

PPAR agonists in treating specific corneal diseases in a real-

world setting is imperative. Rigorous evaluation of the PPAR

agents in diverse patient populations will validate their

therapeutic potential and guide optimal dosing regimens.

Beyond the future endeavours aimed at establishing PPAR

agents’ efficacy in the landscape of corneal disease management,

there remains a considerable scope to develop novel drug

application techniques to bolster the efficacy of current PPAR

agents for improved clinical outcomes. The conventional delivery

method for the treatment of corneal diseases involves the

application of therapeutic agents via topical eye drops.

However, it presents with its own limitations, including rapid

precorneal drug loss and inability to sustain therapeutic drug

concentrations over extended periods [99]. Through

nanomedicine which utilises the use of nano-particles as

carriers to treat diseases, nano-based ocular delivery may offer

a more optimal drug delivery profile, specifically targeting

desired corneal cells to intercept pathological pathways [100].

The application of lipid nanoparticles for lipophilic agents like

fenofibrate presents a promising avenue, particularly in light of

its poor bioavailability due to limited penetration of corneal

epithelium [101]. Within the realm of PPAR agents, the

utilisation of nanomedicine as a carrier for PPARγ agent has

been tested for the treatment of chronic liver disease and have

shown to reduce liver fibrosis and inflammation [102]. As such,

these studies provide insight into the feasibility of nanomedicine

as an innovative delivery platform for PPAR formulations in

future. By amalgamating these diverse research trajectories, the

field can anticipate a more nuanced understanding and

application of PPARs in the therapeutic landscape of

corneal diseases.

Conclusion

This article has reviewed current studies detailing the

therapeutic effects of PPAR agents in various corneal diseases.

Many studies have validated the potential therapeutic effects of

PPAR agents in addressing aspects of corneal pathology,

including corneal wound healing, neovascularisation,

inflammation, fibrosis, nerve regeneration, and dry eye

disease. Future studies may involve more in-depth

examination of the specific PPAR isoforms in corneal diseases

and progress towards the integration of clinical trials, to further

attest the beneficial roles of PPAR agents in corneal diseases.
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