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Abstract

Tumor immune microenvironment is crucial for diffuse large B-cell lymphoma

(DLBCL) development. However, the mechanisms by which super-enhancers

(SEs) regulate the interactions between DLBCL cells and tumor-infiltrating

immune cells remains largely unknown. This study aimed to investigate the

role of SE-controlled genes in regulating the interactions between DLBCL cells

and tumor-infiltrating immune cells. Single-cell RNA-seq, bulk RNA-seq and

H3K27ac ChIP-seq data were downloaded from the Heidelberg Open Research

Data database and Gene Expression Omnibus database. HOMER algorithm and

Seurat package in R were used for bioinformatics analysis. Cell proliferation and

lactate dehydrogenase (LDH) release was detected by MTS and LDH release

assays, respectively. Interaction between B cell cluster and CD8+ T cell and NK

cell cluster was most obviously enhanced in DLBCL, with CD70-CD27, MIF-

CD74/CXCR2 complex, MIF-CD74/CD44 complex and CCL3-CCR5

interactions were significantly increased. NK cell sub-cluster showed the

strongest interaction with B cell cluster. ZZZ3 upregulated the transcription

of CD70 by binding to its SE. Silencing CD70 in DOHH2 cells significantly

promoted the proliferation of co-cultured NK92 cells and LDH release from

DOHH2 cells, whichwas counteracted by ZZZ3 overexpression in DOHH2 cells.

CD70 silencing combined with PD-L1 blockade promoted LDH release from

DOHH2 cells co-cultured with NK92 cells. In conclusion, DLBCL cells inhibited

the proliferation and killing of infiltrating NK cells by regulating ZZZ3/CD70 axis.

Targeting ZZZ3/CD70 axis combined with PD-L1 blockade is expected to be a

promising strategy for DLBCL treatment.
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Impact statement

In this study, we found that CD70 was a super-enhancer-

controlled gene that was driven by ZZZ3 for transcription in

diffuse large B-cell lymphoma cells. The ZZZ3/CD70 axis in

diffuse large B-cell lymphoma cells inhibited infiltrating natural

killer cell killing and proliferation, thereby promoting immune

evasion of diffuse large B-cell lymphoma cells. The ZZZ3/

CD70 axis has the potential to be a novel immunotherapy

target for diffuse large B-cell lymphoma. Targeting ZZZ3/

CD70 axis combined with PD-L1 blockade is expected to be a

promising immunotherapeutic strategy for the treatment of

diffuse large B-cell lymphoma.

Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most common

B-cell non-Hodgkin lymphoma with highly heterogeneous and

aggressiveness [1, 2]. Although therapeutic strategies such as

chemotherapy, radiotherapy and immunotherapy have

improved the survival of DLBCL patients, the prognosis

remains generally dismal for patients developing relapsed or

refractory DLBCL [3, 4]. Identification of novel therapeutic

targets is essential to improve the outcomes of patients with

DLBCL. Understanding the pathogenesis of DLBCL could

facilitate the development of novel molecular therapeutic targets.

Interactions between tumor cells and tumor-infiltrating

immune cells in the tumor microenvironment (TME) could

either induce tumor suppression or promote tumor

development [5–7]. For example, ligands on the surface of

tumor cells, such as programmed death-ligand 1 (PD-L1),

major histocompatibility complex class II (MHC-II),

fibrinogen-like protein 1 (FGL1) and galectin-9 (Gal-9),

interact with the inhibitory receptors of immune effector cells,

such as programmed cell death protein 1 (PD-1), lymphocyte-

activation gene 3 (LAG-3) and T cell immunoglobulin andmucin

domain 3 (TIM3), to inhibit cytotoxicity of immune cells and

promote tumor immune evasion [8–10]. The complex

interactions between tumor cells and various tumor-

infiltrating immune cells are involved in regulating the

immunosuppressive microenvironment of DLBCL [11–13].

Compared with solid tumors, DLBCL has a higher abundance

of infiltrating immune cells in the TME [6, 7]. However,

interactions between DLBCL cells and tumor-infiltrating

immune cells are still not well characterized.

Recently, single-cell RNA sequencing (scRNA-seq)

technology has become an important tool for studying the

lymphoma microenvironment, revealing the high

heterogeneity of tumor cells and their interactions with

immune cells. For instance, Roider et al. used scRNA-seq to

study DLBCL and shed light on the heterogeneity of nodal B-cell

lymphomas, emphasizing its relevance to personalized cancer

therapy [14]. Additionally, Steen et al. elucidated the DLBCL

microenvironment at a systems-level resolution and identified

potential therapeutic targets by integrating multiple scRNA-seq

datasets [15]. Despite these systematic insights into lymphoma

microenvironment heterogeneity, the epigenetic regulatory

mechanisms governing communication between tumor cells

and microenvironment cells remain elusive.

Aberrant epigenetic alterations regulate the phenotype of tumor

cells, and participate in the remodeling of tumor immune

microenvironment by affecting the interactions between tumor

cells and infiltrating immune cells [16–18]. Super-enhancer (SEs)

are large spatially clustered transcriptionally active enhancers,

typically spanning several kilobases, that can be predicted by

strong occupancy signals of specific histone modifications such as

H3K27 acetylation (H3K27ac) [19–21]. Enhancer components in

SEs are functionally non-redundant which act in a synergistic or

additive manner, enabling SEs to drive target genes transcription

more robustly than typical enhancers [22–24]. SEs combine with

transcription factors to powerfully drive the transcription of genes

that control and define cell identity [21]. SEs andmaster transcription

factors that regulate target gene expression are essential for DLBCL

progression [25, 26]. However, the precise mechanisms by which SEs

regulate the interactions between DBLCL cells and tumor-infiltrating

immune cells remain elusive.

This study aimed to investigate the key regulators controlled

by SEs in DLBCL cells that regulate the interactions between

DLBCL cells and tumor-infiltrating immune cells. We analyzed

immune cell clusters with significantly enhanced interactions

with B cell cluster in DLBCL. Ligand-receptor interactions of

B cell cluster and infiltrating immune cell clusters were identified.

Subsequently, we identified SE-controlled ligand-encoding gene

and its transcription factor. Finally, we explored the effects of the

SE-controlled ligand-encoding gene and its transcription factor

in DLBCL cells escape from natural killer (NK) cell killing

in vitro. This study is expected to provide new therapeutic

targets for the treatment of DLBCL.

Materials and methods

Single-cell RNA sequencing (scRNA-seq)
data analysis

The scRNA-seq gene expression matrix of DLBCL and

reactive non-malignant lymph node (rLN) samples were

downloaded from the Heidelberg Open Research Data

database (heiDATA,1) under accession code VRJUNV [14],

and the Gene Expression Omnibus database (GEO,2) under

1 https://heidata.uni-heidelberg.de/

2 http://www.ncbi.nlm.nih.gov/geo/
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accession code GSE182434 [15]. Uniform manifold

approximation and projection (UMAP) dimensionality

reduction analysis of scRNA-seq data was conducted using the

“RunUMAP” in R package “Seurat” to generate 2D plots to

visualize cell clusters and sub-clusters [27]. Cell clusters and sub-

clusters were annotated according to the well-recognized cell-

specific markers using CellMarker 2.0 web tool3 [28]. The

number and strength of interactions among cell clusters or

sub-clusters were evaluated using the CellChat v1.6.1.

Chromatin immunoprecipitation followed
by sequencing (ChIP-seq) data analysis

H3K27ac ChIP-seq data of 28 DLBCL cell lines were

downloaded from the GSE182214 dataset [25]. Enhancers were

defined as the H3K27ac-enriched regions using the “findPeaks” tool

in HOMER algorithm. Enhancer constituents clustered within

12.5 kb were stitched together. The “super enhancer” tool in

HOMER algorithm was used to rank enhancers according to the

H3K27ac signals. Threshold for SE screening was the tangent

slope >1 for the rank ordered set. To define the SE-controlled

gene, the “annotatePeaks” tool in HOMER algorithm was used to

assign enhancers to the nearest genes on the genome. H3K27ac

signals at the CD70 locus were visualized using the UCSC Genome

Browser database4.

Survival and immune score analysis

Bulk transcriptomic data and clinical information of

928 DLBCL patients were downloaded from the

GSE117556 dataset [29]. Overall survival (OS) and progression-

free survival (PFS) of DLBCL patients was assessed by Kaplan-Meier

analysis and log-rank test using the X-tile software. Log-rank test P<
0.05 indicated a significant difference. The immune score within the

bulk transcriptomic data was calculated using both the CIBERSORT

and xCell algorithms. Subsequently, Pearson’s analysis was

employed to assess the correlation between MIF, CCL3 and

CD70 expression levels and the immune scores.

Prediction of transcription factor
binding sites

Transcription factor binding sites for CD70 were predicted

using the Cistrome Data Browser database5 [30, 31].

Cell culture

The human DLBCL cell line, DOHH2, was purchased from

MeisenCTCC (Zhejiang, China) and cultured in RPMI

1640 medium (Gibco, MA, United States) with 10% fetal bovine

serum (FBS; Sigma-Aldrich, MO, United States) and 1% penicillin/

streptomycin (Invitrogen, CA, United States) at 37°C with 5% CO2.

The human NK cell line, NK92, was acquired from American

Type Culture Collection (ATCC; VA, United States). NK92 cells

were cultured in complete RPMI 1640 medium at 37°C with 5%

CO2, and activated with 200 U/mL interleukin-2 (IL-2; Sigma-

Aldrich, MO, United States).

JQ1 treatment

DOHH2 cells were seeded into 96-well plates at density of 2 ×

103 cells per well and cultured at 37°C for 48 h. The bromodomain

and extra-terminal domain (BET) inhibitor JQ1 (Solarbio, Beijing,

China) was added into each well to the indicated concentrations

(0 or 1 μM) and incubated for 24 h.

Cell transfection

Small interfering RNAs (siRNAs) targeting CD70 (siCD70)

and ZZZ3 (siZZZ3), and negative control siRNA (siNC) were

obtained from GenePharma (Shanghai, China). The eukaryotic

plasmid pcDNA3.1 for ZZZ3 overexpression (OE-ZZZ3) and the

empty pcDNA3.1 plasmid (OE-NC) were synthesized by

GenePharma (Shanghai, China). DOHH2 cells were seeded

into 6-well plates and cultured until the cell confluency

reached approximately 80%. Cell transfection was conducted

using Lipofectamine 3000 (Invitrogen, CA, United States)

according to the manufacturer’s instructions.

RNA isolation and quantitative real-time
PCR (qRT-PCR)

Total RNA of DOHH2 cells was isolated using TRIzol

reagent (Invitrogen, CA, United States) according to the

manufacturer’s instructions. cDNA was generated with 500 ng

RNA per reaction using the PrimeScript™ RT Master Mix

(Takara, Tokyo, Japan). Quantitative PCR (qPCR) was

performed with SYBR Green Master Mix (Takara, Tokyo,

Japan). Relative expression levels of CD70 and ZZZ3 were

calculated by the 2−ΔΔCT formula with GAPDH as the internal

reference. Primers to amplify genes are listed as follows:

CD70, forward: 5′-GACCCCAGGCTATACTGGCA-3′;
reverse: 5′-CAGGCTGATGCTACGGGAG-3’.
ZZZ3, forward: 5′-AAACGAGCTTGTCGATGTCTT-3′;
reverse: 5′-GACAGCCAAATAGCCTGTGAT-3′.

3 http://bio-bigdata.hrbmu.edu.cn/CellMarker/index.html

4 http://genome.ucsc.edu/

5 http://dbtoolkit.cistrome.org
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GAPDH, forward: 5′-GGAGCGAGATCCCTCCAAAAT-3′;
reverse: 5′-GGCTGTTGTCATACTTCTCATGG-3′.

ChIP-qPCR

DOHH2 cells were fixed with 1% formaldehyde for 10 min at

25°C and quenched with 0.125 M glycine for 5 min. Cells were lysed

with SDS lysis buffer for 10 min at 4°C, and then sonicated using a

M220 Focused-ultrasonicator (Covaris, MA, United States) for

10 min in 0.5 min pulse intervals. The ultrasound products were

incubated with anti-H3K27ac (ab4729, abcam, United States) or IgG

(ab172730, abcam, United States) at 4°C overnight. The

immunoprecipitated DNA was purified using the DNA

Purification Kit (Beyotime, Shanghai, China), and then subjected

to qPCR reactions. Primers used for ChIP-qPCR are listed as follows:

CD70-SE1, forward: 5′-CTGCCAGTGGAAGTGTTTGC-3′;
reverse: 5′-ACGTCAGAAGTGCAGCCTTT-3′.
CD70-SE2, forward: 5′-CACGGACGTAAGCAGAGAGG-
3′; reverse: 5′-TTTGCAGCGTAGAGAGTCCG-3′.
CD70-SE3, forward: 5′-TTCACTGAAGTGCCTCCGAC-3′;
reverse: 5′-TGACAGTTTGAGATGCCCCC-3′.

Cell proliferation assay for DLBCL cells

Cell proliferation of DOHH2 cells was determined using

an MTS Assay Kit (abcam, United States). DOHH2 cells were

FIGURE 1
Five cell clusters were identified in DLBCL and rLN based on the VRJUNV and GSE182434 datasets. (A) dimensionality reduction was performed
by UMAP. (B) Dot plots depicting the expression levels of cell-specific markers in each cell cluster, as well as the expression percentage of the
markers. (C) Feature plots showed the expression of cell-specific markers in global cell clusters.
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FIGURE 2
Interaction analysis of five cell clusters in DLBCL compared with rLN based on the VRJUNV and GSE182434 datasets. (A) UMAP plots of five cell
clusters in DLBCL and rLN were analyzed respectively. (B, C) Networks of differential interaction numbers (B) and strengths (C) in DLBCL compared
with rLN. Red lines represented upregulation of interaction number or strength in DLBCL compared with rLN, while blue lines represented
downregulation. The thicker the line, the greater difference in the interaction number or strength. (D)Dot plots of B cell ligands and CD8+ T cell
and NK cell receptors interactions that were significantly different between DLBCL and rLN.
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seeded into 96-well plates with 1 × 104 cells per well, and

cultured for 0, 1, 2, and 3 days. 10 μL MTS reagent was added

into each well at each time point and incubated for 4 h at 37°C.

Absorbance at 490 nm (A490) was detected using a microplate

reader (Bio-Rad, CA, United States).

Cell proliferation assay for NK cells

NK92 cells were precultured with 200 U/mL IL-2 for

activation. DOHH2 cells were treated with 25 μg/mL

mitomycin C for 1 h at 37°C to prevent cell proliferation.

Mitomycin C pretreated DOHH2 cells were co-cultured with

activated NK92 cells at a ratio of 1:1, 2:1 and 5:1 in RPMI

1640 medium for 48 h. Proliferation of NK92 cells was

determined using an MTS Assay Kit (abcam, United States)

according to the manufacturer’s instructions. A490 was

detected using a microplate reader (Bio-Rad, CA,

United States).

Lactate dehydrogenase (LDH)
release assay

DOHH2 cells were co-cultured with IL-2 activated

NK92 cells as indicated ratios for 48 h. The co-culture

systems were treated with or without anti-PD-L1 (ab205921,

abcam, United States) or IgG (ab172730, abcam, United States).

LDH release were measured using the Cytotoxicity LDH Assay

Kit-WST (Dojindo, Kyushu, Japan) according to the

manufacturer’s instructions. Absorbance at 490 nm was

detected using a microplate reader (Bio-Rad, CA, United States).

FIGURE 3
Expression and distribution analysis of CCL3, MIF, CD70, and CD274 in the ten B cell sub-clusters based on the VRJUNV and
GSE182434 datasets. (A) UMAP plots of the ten sub-clusters of B cell cluster in DLBCL and rLN. (B) UMAP dimensionality reduction plots for DLBCL
and rLN, respectively. (C)Dot plots of the expression levels and percentages of CCL3, MIF, CD70, andCD274 in the ten B cell sub-clusters. (D) Feature
plots of the distribution of CCL3, MIF, CD70, and CD274 expression in B cell cluster.
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FIGURE 4
Expression and distribution analysis of CCR5, CD74, CD44, CXCR2, CD27, and PDCD1 in the four sub-clusters of CD8+ T cell and NK cell cluster
based on the VRJUNV and GSE182434 datasets. (A) UMAP plots of the distribution of the four sub-clusters of CD8+ T cell and NK cell cluster (NK cell
sub-cluster, native CD8+ T cell sub-cluster, NKT cell sub-cluster, and CD8+ T cell sub-cluster) in DLBCL and rLN. (B) UMAP plots of NK cell, native
CD8+ T cell, NKT cell, andCD8+ T cell sub-clusters distribution in DLBCL and rLN, respectively. (C)Dot plots of specificmarker genes expression
in the four sub-clusters of CD8+ T cell and NK cell cluster together with the expression percentage of the marker genes. (D) Feature plots of specific

(Continued )
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Statistical analysis

Statistical data were analyzed using R software (version 4.1.2)

and GraphPad Prism (version 9.0), and presented as mean ±

standard deviation (SD). Differences among multiple groups

were analyzed by one-way analysis of variance (ANOVA)

followed by Tukey’s post hoc test. Differences between two

groups were analyzed by Student’s t-test. P < 0.05 indicated a

statistical significance.

Results

Five cell clusters were identified in DLBCL
and rLN

Immune microenvironment plays a crucial role in the

tumorigenesis of DLBCL. To describe the heterogeneity of the

immune microenvironment in DLBCL, we performed UMAP

dimensionality reduction on DLBCL and rLN samples according

to the VRJUNV and GSE182434 datasets. Dimensionality

reduction by UMAP resulted in five cell clusters, including

CD4-expressing (CD4+) T cell cluster, CD8-expressing (CD8+)

T cell and NK cell cluster, B cell cluster, dendritic cell cluster, and

macrophage cluster (Figure 1A). The five cell clusters were

identified by unique cell-specific marker genes expression as

follow: CD8A for CD8+ T cells and NK cells, CD4 for CD4+

T cells, LYZ for macrophages, CD19 for B cells, and CD83 for

dendritic cells (Figure 1B). Subsequently, these clusters were

reclassified into global cellular compartments based on the

expression of cell-specific markers (Figure 1C). Taken

together, five cell clusters, including CD4+ T cell cluster, CD8+

T cell and NK cell cluster, B cell cluster, dendritic cell cluster, and

macrophage cluster, were identified in DLBCL and rLN.

The enhanced interaction of B cell cluster
to CD8+ T cell and NK cell cluster was
most prominent in DLBCL compared
with rLN

To investigate DLBCL-specific immune cell interactions, we

described immune cell clusters in DLBCL and rLN respectively

(Figure 2A). Subsequently, we analyzed the differences in the

number and strength of cell cluster interactions between DLBCL

and rLN. The interaction numbers of B cell cluster to the other

four cell clusters (CD4+ T cell cluster, CD8+ T cell and NK cell

cluster, dendritic cell cluster, and macrophage cluster) were

increased in DLBCL compared with rLN (Figure 2B). The

interaction strengths of B cell cluster to CD4+ T cell cluster

and dendritic cell cluster were attenuated in DLBCL compared

with rLN (Figure 2C). However, the interaction strengths of B cell

cluster tomacrophage cluster and CD8+ T cell and NK cell cluster

were enhanced in DLBCL compared with rLN (Figure 2C).

Especially, the interaction strength of B cell cluster to CD8+

T cell and NK cell cluster was most dramatically enhanced in

DLBCL compared with rLN (Figure 2C). Furthermore, we

analyzed the differential interactions between B cell ligands

and CD8+ T cell and NK cell receptors in DLBCL and rLN. A

total of four pairs of ligand-receptor interactions (including

CD70-CD27, MIF-CD74/CXCR2 complex, MIF-CD74/

CD44 complex, and CCL3-CCR5) were significantly

upregulated in DLBCL compared with rLN (Figure 2D).

Collectively, these findings suggested that the enhanced

interaction of B cell cluster to CD8+ T cell and NK cell cluster

was most prominent in DLBCL compared with rLN.

Strong interaction was found between
B cell cluster and NK cell sub-cluster
in DLBCL

To further investigate the interaction of B cell cluster with

CD8+ T cell and NK cell cluster, we classified B cell cluster into

ten sub-clusters based on the VRJUNV and GSE182434 datasets

(Figure 3A). Dimensionality reduction was performed on B cell

sub-clusters of DLBCL and rLN, respectively (Figure 3B). Then,

we analyzed the expression of ligand-encoding genes in the

upregulated ligand-receptor interaction pairs. CD70 was

mainly expressed in Bcell_1, Bcell_2, Bcell_5, Bcell_6 and

Bcell_7 sub-clusters; CCL3 was mainly expressed in Bcell_0,

Bcell_2, Bcell_4, Bcell_7 and Bcell_8 sub-clusters; MIF was

expressed in all of the ten sub-clusters (Figures 3C, D).

Additionally, we analyzed the expression of CD274 (PD-

L1 encoding gene) in each B cell sub-cluster. The results

showed that CD274 was mainly expressed in Bcell_2 and

Bcell_8 sub-clusters (Figures 3C, D).

CD8+ T cell and NK cell cluster of DLBCL and rLN was

classified into four sub-clusters including NK cell sub-cluster,

native CD8+ T cell sub-cluster, NKT cell sub-cluster, and CD8+

FIGURE 4 (Continued)
marker genes expression in the four sub-clusters of CD8+ T cell and NK cell cluster. (E) Expression levels and percentages of CCR5, CD74,
CD44, CXCR2, CD27, and PDCD1 in the four sub-clusters. (F) Distribution of CCR5, CD74, CD44, CXCR2, CD27, and PDCD1 expression in the CD8+

T cell and NK cell cluster.
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T cell sub-cluster (Figures 4A, B). We calculated the expression

distribution of specific marker genes of the four sub-clusters:

NKG7 for NK cells, CD8A for CD8+ T cells, CCR7 for native

CD8+ T cells, and CXCL13 for NKT cells (Figures 4C, D). These

results indicated that we obtained reliable annotations of sub-

clusters of CD8+ T cell and NK cell cluster. Then, we analyzed

the expression of receptor-encoding genes in the upregulated

ligand-receptor interaction pairs. CD27, CD74 and

CCR5 were mainly expressed in NK cell sub-cluster,

NKT cell sub-cluster, and CD8+ T cell sub-cluster (Figures

4E, F). CD44 was mainly expressed in NK cell sub-cluster,

native CD8+ T cell sub-cluster, and CD8+ T cell sub-cluster

(Figures 4E, F). CXCR2 was mainly expressed in NKT cell sub-

cluster (Figures 4E, F). PD1-encoding gene, PDCD1, was

mainly expressed in NK cell sub-cluster, NKT cell sub-

cluster, and CD8+ T cell sub-cluster (Figures 4E, F).

Furthermore, we analyzed the interactions of the four

upregulated interacting ligand-receptor pairs between the

ten B cell sub-clusters and the four CD8+ T cell and NK cell

sub-clusters. CCL3 and CCR5 showed strong interactions in

Bcell_0 and Bcell_7 sub-clusters to NK cell sub-cluster

(Figure 5A). CD70 and CD27 showed strong interactions in

Bcell_1, Bcell_2, Bcell_5 and Bcell_7 sub-clusters to NK cell sub-

cluster (Figure 5B). Interactions of MIF to CD74/CD44 receptor

complex were strong in Bcell_0, Bcell_1, Bcell_2, Bcell_4 and

Bcell_5 sub-clusters to NK cell sub-cluster (Figure 5C).

Interactions of MIF to CD74/CXCR2 receptor complex were

strong in Bcell_1, Bcell_2, Bcell_4 and Bcell_5 sub-clusters to NK

FIGURE 5
CCL3-CCR5 (A), CD70-CD27 (B), MIF-CD74/CD44 complex (C), andMIF-CD74/CXCR2 complex (D) interaction networks of the ten B cell sub-
clusters with NK cell, native CD8+ T cell, NKT cell, and CD8+ T cell sub-clusters. Interaction networks were constructed based on the VRJUNV and
GSE182434 datasets. The thicker the line, the stronger the interaction.
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cell sub-cluster (Figure 5D). Importantly, CCL3-CCR5, CD70-

CD27, MIF-CD74/CD44 complex, and MIF-CD74/

CXCR2 complex interacted more strongly between B cell

cluster and NK cell sub-cluster than interactions between

B cell cluster and native CD8+ T cell sub-cluster, NKT cell

sub-cluster, or CD8+ T cell sub-cluster (Figure 5).

To further validate the impact of MIF, CCL3 and

CD70 expression on the prognosis of DLBCL patients, we

analyzed bulk transcriptomic data from the

GSE117556 dataset. High MIF expression indicated lower OS,

but showed no significant difference in PFS (Supplementary

Figures S1A, B). Low CCL3 expression was associated with

worse PFS, but OS did not show any statistical difference

(Supplementary Figures S1C, D). Patients with high

CD70 expression exhibited significantly worse OS and PFS

compared to those with low CD70 expression (Supplementary

Figures S1E, F). Additionally, immune scores were calculated

based on bulk transcriptomic data using CIBERSORT and xCell

algorithms. Pearson’s analysis was performed to correlate the

immune scores with MIF, CCL3 and CD70 expression levels.

Integrating the results of the two algorithms, we found that MIF

had the strongest correlation with B cell immune scores, while

CCL3 correlated most strongly with CD8+ T cells and

macrophages (Supplementary Figure S2). CD70 showed the

strongest correlation with CD8+ T cells, but the correlation

coefficient was relatively low (R < 0.3) (Supplementary Figure

S2). Unfortunately, we did not find a significant correlation

between MIF, CCL3 and CD70 with NK cell immune scores

(Supplementary Figure S2).

Taken together, the interaction between B cell cluster and NK

cell sub-cluster was the strongest in DLBCL, and this interaction

may have potential clinical significance. Therefore, we focused on

this interaction for further investigation.

CD70 was identified as a SE-controlled
gene in DOHH2, HBL1, and NU-DHL1 cells

SEs are key factors driving oncogene expression in tumor

cells [22–24]. We wondered whether the expression of CD70,

MIF and CCL3 in DLBCL cells is regulated by SEs. H3K27ac

signals at the CCL3, CD70 and MIF loci in 28 DLBCL cell lines

were analyzed based on ChIP-seq data from the

GSE182214 dataset. The results showed that SE was present at

the CCL3, CD70 or MIF locus in 3 DLBCL cell lines, whereas it

was absent in the other 25 cell lines (Figure 6A). HBL1, NU-

DHL1 and DOHH2 cells were found to exhibit SE only at the

CD70 locus, but not at the MIF and CCL3 loci (Figure 6B). The

3 cell lines were ranked in descending order according to the

H3K27ac peak score for SE at the CD70 locus as follows:

DOHH2, HBL1, and NU-DHL1 cells (Figure 6B). We

identified SE at the CD70 locus in DOHH2, HBL1 and NU-

DHL1 cells based the GSE182214 dataset. SE of CD70 was

divided into three regions (SE1, SE2, and SE3) based on the

enrichment of H3K27ac signals (Figure 6C). Since DOHH2 cells

had the highest H3K27ac peak score for SE of CD70, we validated

the SE regions at the CD70 locus in DOHH2 cells using ChIP-

qPCR. H3K27ac in SE1, SE2 and SE3 regions was significantly

enriched in DOHH2 cells (Figure 6D). JQ1 treatment

significantly inhibited H3K27ac enrichment in the three SE

regions (Figure 6D), and significantly downregulated CD70

transcription in DOHH2 cells (Figure 6E). Collectively,

CD70 was identified as a SE-controlled gene in DLBCL cells.

ZZZ3 interacted with the SE of CD70 to
drive CD70 expression

SEs driving transcription of target genes must be recognized

and bound by transcription factors [21]. Potential transcription

factors regulating CD70 were ranked in descending order

according to the peak set overlap score, with ZZZ3 ranking

first (Figure 7A). We successfully established ZZZ3-silenced cells

by transfecting siZZZ3 into DOHH2 cells (Figure 7B). Silencing

ZZZ3 significantly inhibited H3K27ac enrichment in SE1,

SE2 and SE3 regions of the CD70 locus in DOHH2 cells

(Figure 7C). Moreover, silencing ZZZ3 significantly

suppressed CD70 transcription in DOHH2 cells (Figure 7D).

DLBCL patients with high-ZZZ3 expression have significantly

worse OS than patients with low-ZZZ3 expression (Figure 7E).

High-ZZZ3 expression is associated with a poor PFS of DLBCL,

although not significantly (descriptive Log-rank P > 0.05;

Figure 7F). Taken together, ZZZ3 bound to SE of CD70 to

drive CD70 transcription.

The ZZZ3/CD70 axis in DLBCL cells
promoted their escape from NK cell killing

To investigate the impact of the ZZZ3/CD70 axis on DLBCL

cell proliferation, we established CD70-silenced and ZZZ3-

overexpressing cells by transfecting siCD70 or

ZZZ3 overexpression plasmids (OE-ZZZ3) into DOHH2 cells,

respectively. Transfection of siCD70 significantly inhibited

CD70 expression in DOHH2 cells (Figure 8A). Compared

with the DOHH2 cells transfected with the empty

pcDNA3.1 plasmids (OE-NC), ZZZ3 expression was

significantly upregulated in DOHH2 cells transfected with

OE-ZZZ3 (Figure 8B). The effect of CD70 silencing on the

proliferation of DOHH2 cells was determined by MTS assay.

Silencing CD70 had no significant effect on the proliferation of

DOHH2 cells (Figure 8C).

To investigate the impact of the ZZZ3/CD70 axis in DLBCL

cells on their resistance to NK cell-mediated killing, we

pretreated DOHH2 cells transfected with siNC, siCD70, or co-

transfected with siCD70 and OE-ZZZ3 with mitomycin C to
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block cell proliferation. The mitomycin C pretreated

DOHH2 cells were co-cultured with IL-2 activated NK92 cells

at ratios of 1:1, 2:1 and 5:1. The proliferation of NK92 cells co-

cultured with DOHH2 cells was detected by MTS assay. Co-

culture of CD70-silenced DOHH2 cells with NK92 cells

significantly promoted the proliferation of NK92 cells

compared with NK92 cells co-cultured with DOHH2 cells

transfected with siNC (Figure 8D). However, overexpression

of ZZZ3 in DOHH2 cells significantly attenuated the

promotion of NK92 cell proliferation by CD70 silence of

DOHH2 cells in the co-culture system (Figure 8D).

Then, we evaluated the effect of ZZZ3/CD70 axis on LDH

release from DOHH2 cells co-cultured with NK92 cells.

DOHH2 cells (without mitomycin C pretreatment) were co-

cultured with IL-2 activated NK92 cells at ratios of 1:1, 2:1 and 5:

1. Silencing CD70 in DOHH2 cells significantly elevated LDH

release from DOHH2 cells co-cultured with NK92 cells, which

was offset by overexpression of ZZZ3 in DOHH2 cells

(Figure 8E). Since interaction between PD1 and PD-L1

contributes to tumor immune evasion [11], we assessed the

effect of silencing CD70 in DOHH2 cells combined with anti-

PD-L1 treatment on LDH release fromDOHH2 cells co-cultured

with NK92 cells. DOHH2 cells (without mitomycin C

pretreatment) and NK92 cells (IL-2 activated) were co-

cultured at a ratio of 2:1. Anti-PD-L1 treatment or silencing

CD70 in DOHH2 cells significantly promoted LDH release from

DOHH2 cells co-cultured with NK92 cells (Figure 8F). Silencing

CD70 in DOHH2 cells combined with anti-PD-L1 treatment

significantly promoted LDH release from DOHH2 cells co-

cultured with NK92 cells more strongly than anti-PD-

L1 treatment alone (Figure 8F).

Taken together, the ZZZ3/CD70 axis in DLBCL cells

promoted their escape from NK cell killing.

Discussion

Interactions between DLBCL cells and tumor-infiltrating

immune cells are closely related to the development of

DLBCL [16–18]. SEs are key regulators in promoting the

malignant phenotype of tumor cells [25, 26], but the roles of

SEs in modulating the interactions between tumor cells and

infiltrating immune cells remain unknown. In the present

study, we found that the enhanced interaction between B cell

FIGURE 6
CD70was identified as a SE-controlled gene in DOHH2, HBL1 and NU-DHL1 cells. (A) Screening of DLBCL cell lines with SE at theCD70,MIF or
CCL3 locus based on the GSE182214 dataset. (B) Heatmap of H3K27ac peak score for SE at the CD70, MIF or CCL3 locus in HBL1, NU-DHL1, and
DOHH2 cells based on the GSE182214 dataset. (C) Identification of three SE regions (SE1, SE2, and SE3) at the CD70 locus in HBL1, NU-DHL1, and
DOHH2 cells based on the GSE182214 dataset. (D)ChIP-qPCRwas used to analysis the H3K27ac enrichment in three SE regions, and the effect
of JQ1 treatment on H3K27ac enrichment in SE regions in DOHH2 cells. **P < 0.01, anti-H3K27ac/0 μM JQ1 group vs. IgG/0 μM JQ1 group. ##P <
0.01, anti-H3K27ac/1 μM JQ1 group vs. IgG/1 μM JQ1 group. &&P < 0.01, anti-H3K27ac/1 μM JQ1 group vs. anti-H3K27ac/0 μM JQ1 group. (E) qRT-
PCR was used to detect the relative expression of CD70 in DOHH2 cells treated with 0 or 1 μM JQ1. **P < 0.01, 1 μM JQ1 group vs. 0 μM JQ1 group.
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cluster and CD8+ T cell and NK cell cluster in DLBCL compared

to rLN. Specific interactions included the CD70-CD27, which

contributes to the pathophysiology of autoimmunity [32]; the

MIF-CD74/CXCR2 complex, regulating immune cell migration

and inflammation [33]; the MIF-CD74/CD44 complex,

mediating multiple biological processes, including cell

proliferation and the inflammatory response [33, 34]; and the

CCL3-CCR5, mediating immune cell recruitment [35]. Notably,

a strong interaction between the B cell cluster and NK cell sub-

cluster was identified. CD70was screened as a SE-controlled gene

which was regulated by transcription factor ZZZ3 in DLBCL

cells. These results highlighting the role of the CD70-CD27

interaction in DLBCL cell evasion from NK cell killing.

Finally, effect of the ZZZ3/CD70 axis on the evasion of

DLBCL cells from NK cell killing were examined in vitro.

DLBCL is a disease with complex pathogenesis, which is

reflected not only in the genetic and epigenetic alterations of B

lymphocytes, but also in the complicated crosstalk between

tumor cells and tumor-infiltrating immune cells [36].In this

study, we characterized the immune cell profile of DLBCL

and identified five cell clusters (CD4+ T cell cluster, CD8+

T cell and NK cell cluster, B cell cluster, dendritic cell cluster,

and macrophage cluster). CD4+ T cells have cytotoxic or

immunoregulatory functions [37, 38]. A low proportion of

CD4+ T cells in the TME is associated with a poor prognosis

of primary central nervous system DLBCL [39]. CD8+ T cells

exert specific cytotoxic effects by secreting cytokines, releasing

perforin and granzyme to kill tumor cells [40]. NK cells express

cell surface receptors with stimulatory or inhibitory functions, or

secrete cytokines and chemokines to exert cytolytic activity

against target cells [41–43]. Dendritic cells exhibit strong

antigen-presenting capacity, and stimulate T cells activation to

trigger immune responses [44]. Macrophages are key regulators

in mediating tumor immune evasion [45]. However, the

interactions between DLBCL cells and tumor-infiltrating

immune cells remain largely unknown.

Recent studies have successfully created single-cell

transcriptome atlases for DLBCL. These atlases reveal

FIGURE 7
ZZZ3 interacted with the SE of CD70 to drive CD70 expression. (A) Dot plots of the predicted transcription factors of CD70. (B) qRT-PCR was
performed to measure the expression of ZZZ3 in DOHH2 cells transfected with siNC or siZZZ3. **P < 0.01, siZZZ3 group vs. siNC group. (C) ChIP-
qPCR was used to detect the H3K27ac enrichment in three SE regions at theCD70 locus in DOHH2 cells transfected with siNC or siZZZ3. **P < 0.01,
siZZZ3 group vs. siNC group. (D) qRT-PCR was performed to measure the expression of CD70 in DOHH2 cells transfected with siNC or siZZZ3.
**P < 0.01, siZZZ3 group vs. siNC group. (E,F) Kaplan–Meier overall survival (OS) and progression-free survival (PFS) curves of DLBCL patients with
high- and low-ZZZ3 expression were plotted based on the GSE117556 dataset.
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phenotypic diversity within DLBCL cases and interactions

between tumor cells and the microenvironment. Steen et al.

associate CXCR5+ CD8 T cells with the effectiveness of

bortezomib when added to standard therapy [15]. Roider

et al. propose that malignant B cells can receive both

costimulatory and coinhibitory signals from all major T-cell

subsets via CD80/CD86-CD28 and CD80/CD86-

CTLA4 interactions [14]. In this study, we found that the

enhanced interaction of B cell cluster to CD8+ T cell and NK

cell cluster was most pronounced in DLBCL compared with rLN.

Furthermore, we found that NK cell sub-cluster interacted most

strongly with B cell cluster. NK cells are innate lymphocytes,

which are considered to be the first line of defense for host

immune detection and play important roles in the progression of

malignant tumors [46–48]. The number and activity of tumor-

infiltrating NK cells have significant impacts on the prognosis of

FIGURE 8
The ZZZ3/CD70 axis in DLBCL cells promoted their escape from NK cell killing. (A) qRT-PCR was performed to measure the expression of
CD70 in DOHH2 cells transfected with siNC or siCD70. **P < 0.01, siCD70 group vs. siNC group. (B) qRT-PCR was used to measure ZZZ3 expression
in DOHH2 cells transfected with OE-NC or OE-ZZZ3. **P < 0.01, OE-ZZZ3 group vs. OE-NC group. (C) MTS assay was used to determine the
proliferation of DOHH2 cells transfected with siNC or siCD70. Ns. non-significantly. (D) MTS assay was used to detect the proliferation of
NK92 cells co-cultured with mitomycin C pretreated DOHH2 cells. DOHH2 cells transfected with siNC, siCD70, or co-transfected siCD70 and OE-
ZZZ3 (mitomycin C pretreated) and NK92 cells (IL-2 activated) were co-cultured at ratios of 1:1, 2:1 and 5:1 for 48 h **P < 0.01, siCD70 group vs siNC
group. ##P < 0.01, siCD70 + OE-ZZZ3 group vs. siCD70 group. (E) LDH release from DOHH2 cells co-cultured with IL-2 activated NK92 cells.
DOHH2 cells transfected with siNC, siCD70, or co-transfected with siCD70 and OE-ZZZ3 (without mitomycin C pretreatment) were co-cultured
with IL-2 activated NK92 cells at ratios of 1:1, 2:1, 5:1. **P < 0.01, siCD70 group vs. siNC group. ##P < 0.01, siCD70 + OE-ZZZ3 group vs.
siCD70 group. (F) LDH release from DOHH2 cells co-cultured with IL-2 activated NK92 cells and treated with anti-PD-L1 or IgG. DOHH2 cells
transfected with siNC or siCD70 (without mitomycin C pretreatment) were co-cultured with IL-activated NK92 cells at a ratio of 2:1. **P < 0.01, vs.
siNC + IgG group. &P < 0.05, vs. siNC+anti-PD-L1 group. #P < 0.05, vs. siCD70 + IgG group.
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various cancers [48–50]. Patients with NK cell dysfunction have

higher cancer incidence rates [51, 52]. Interactions between

tumor cells and NK cells regulate the phenotype of NK cells,

thereby affecting NK cells viability or function [51–55].

NK cells have received increasing attention for their potential

in immunotherapy. However, studies on NK cells in DLBCL

remain scarce. Frank Vari et al found that NK cell-mediated

immune evasion is achieved by the interaction of PD1 and PD-L1

between NK cells and DLBCL cells [11]. However, the direct

crosstalk and regulatory mechanisms of DLBCL cell-NK cell

interaction remain largely enigmatic. Herein, we found that the

interactions of CCL3-CCR5, CD70-CD27, MIF-CD74/

CD44 complex, and MIF-CD74/CXCR2 complex between

B cell cluster and CD8+ T cells and NK cell cluster were

significantly enhanced in DLBCL compared with rLN, which

was mainly attributed to the strong interactions of B cell cluster

with NK sub-cluster. It is well known that SEs interact with

transcription factors to promote target genes transcription [21].

We wondered whether the expression of CCL3, CD70 andMIF is

regulated by SEs in DLBCL cells. We found that DOHH2,

HBL1 and NU-DHL1 cells had SEs only at the CD70 locus

but not at theMIF or CCL3 locus. Furthermore, we demonstrated

that CD70 was a SE-controlled gene in DOHH2 cells and its

expression was driven by the transcription factor ZZZ3.

CD70 is a member of the tumor necrosis factor (TNF) ligand

family [56]. It has been reported that CD70 expression in non-

Hodgkin lymphoma cells upregulates the proportion of

Foxp3+CD4+CD25- T cells and inhibits the proliferation of

infiltrating CD8+ T cells, thereby promoting an

immunosuppressive microenvironment [57]. Co-inhibition of

CD70 and PD-L1 rescued T cell depletion and effectively

inhibited lymphoma growth in vivo [58]. However, the role of

CD70 in regulating the interaction between DLBCL cells and NK

cells remains unclear.

ZZZ3 (zinc finger ZZ-type containing 3), a core subunit of

the ATAC complex, is required for ATAC complex-mediated

maintenance of histone acetylation and gene activation [59].

However, we have not found any studies of ZZZ3 in regulating

DLBCL progression. In this study, we found that high

ZZZ3 expression predicts a poor OS of DLBCL patients.

Importantly, we found that under co-culture of DOHH2 cells

and NK92 cells, silencing CD70 in DOHH2 cells significantly

promoted the proliferation of NK92 cells and LDH release from

DOHH2 cells, which could be partially counteracted by

ZZZ3 overexpression in DOHH2 cells. LDH is a ubiquitous

intracellular enzyme that is released outside the cells when cells

die [60]. LDH release is a key indicator of lytic cell death [60].

Thus, our results suggested that ZZZ3/CD70 axis in DLBCL cells

promoted their escape from infiltrating NK cell cytotoxicity and

inhibited the proliferation of infiltrating NK cells.

Moreover, mounting studies have provided that aberrant

expression of PD-L1 of lymphoma cells is critical for

mediating tumor immune evasion. Blocking the interaction

between PD-L1 and PD1 could restore the anti-tumor

immune response [11, 61, 62]. In this study, we found that

both CD70 and CD274 (PD-L1 encoding gene) were expressed in

Bcell_2 sub-cluster, and PDCD1 (PD1 encoding gene) was

expressed in NK cell sub-cluster, suggesting that targeting

CD70 and PD-L1 simultaneously may effectively enhance the

killing of DLBCL cells by NK cells. To verify this hypothesis, we

demonstrated that silencing CD70 in DOHH2 cells combined

with PD-L1 blockade significantly promoted killing of DLBCL

cells by NK cells. These results suggested that CD70 plays a key

role in the evasion of DLBCL cells fromNK cell killing. Targeting

CD70 in combination with anti-PD-L1 therapy could be a

promising strategy for DLBCL treatment.

Conclusion

CD70 was an SE-controlled gene that was driven by ZZZ3 for

transcription in DLBCL cells. The ZZZ3/CD70 axis in DLBCL

cells inhibited infiltrating NK cell killing and proliferation,

thereby promoting immune evasion of DLBCL cells. The

ZZZ3/CD70 axis has the potential to be a novel

immunotherapy target for DLBCL. Targeting ZZZ3/CD70 axis

combined with PD-L1 blockade is expected to be a promising

immunotherapeutic strategy for the treatment of DLBCL.
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