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Abstract

Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease with a

poor prognosis. Its non-specific clinical symptomsmake accurate prediction of

disease progression challenging. This study aimed to develop molecular-level

prognostic models to personalize treatment strategies for IPF patients. Using

transcriptome sequencing and clinical data from 176 IPF patients, we developed

a Random Survival Forest (RSF) model through machine learning and

bioinformatics techniques. The model demonstrated superior predictive

accuracy and clinical utility, as shown by the concordance index (C-index),

the area under the operating characteristic curve (AUC), Brief scores, and

decision curve analysis (DCA) curves. Additionally, a novel prognostic staging

system was introduced to stratify IPF patients into distinct risk groups, enabling

individualized predictions. The model’s performance was validated using a

bleomycin-induced pulmonary fibrosis mouse model. In conclusion, this

study offers a new prognostic staging system and predictive tool for IPF,

providing valuable insights for treatment and management.
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Impact statement

The lack of specificity of the clinical symptoms of IPF makes it difficult to predict the

prognosis of IPF patients by clinical symptoms, and the establishment of a prediction

model by identifying prognostic genes has become another possible method to determine

the prognosis of IPF patients. To establish a prediction model with higher predictive
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performance, we compared the predictive performance of the

conventional model and machine learning model, identified a

prediction model with the best predictive performance, and

developed it into a prediction tool. The current study provides

a new tool for individualized treatment of IPF.

Introduction

IPF is a chronic, progressive interstitial lung disease defined

by fibrosis, inflammation, and lung structure destruction [1, 2].

Predominantly affecting the elderly and middle-aged, IPF carries

a poor prognosis [3], with a median survival time of 2–4 years

post-diagnosis [3]. The current therapeutic mainstays,

pirfenidone and nintedanib, offer only symptomatic relief by

slowing the fibrotic progression [4, 5]. Identifying effective

methods to understand the disease progression and prognosis

of IPF patients is crucial for clinicians to enhance the

management of IPF patients and formulate individualized

treatment regimens. However, the non-specific clinical

symptoms of IPF, such as dyspnea and cough, overlap with

many other diseases, rendering the prediction of disease

progression unreliable based on respiratory function and

imaging examination alone. Therefore, there is a need to

explore molecular-level biomarkers and develop an accurate

prognostic model tool to track and evaluate the prognosis of IPF.

Recently, machine learning-based prediction models have

emerged as potential tools for disease progression prediction [6,

7]. These models are believed to better handle complex, high-

dimensional data relationships and more accurately reflect the

associations between variables and outcomes compared to

traditional linear models such as the Cox model. However, no

studies have yet established a machine learning-based prognostic

model for IPF, and the comparative predictive efficacy of

traditional versus machine learning models in IPF

remains unclear.

Given the non-specificity clinical manifestations in patients

with IPF, prediction models based on these clinical

manifestations, respiratory function, and imaging

examinations have shown limited predictive power. With

advancements in bioinformatics, molecular-level

understanding of disease prognosis has been applied across

various diseases. Identifying differentially expressed genes

(DEGs) in IPF patients can aid clinicians in accurately

determining the individualized prognosis by selecting

prediction models with superior predictive performance.

Additionally, establishing a prognostic staging system based

on the most accurate predictive model can more precisely

identify high-risk IPF patients.

The essence of IPF, a chronic progressive interstitial lung

disease, lies in the fibrotic process, which involves tissue fibrosis,

epithelial cell damage, and aberrant tissue repair [8, 9]. While

previous studies have highlighted the role of immune cell

infiltration in fibrotic injury and repair [8–10], few have

investigated the molecular mechanisms that differentiate IPF

patients across various risk groups. Our study employs

enrichment analysis to identify pathways specifically enriched

in different risk groups of IPF patients and to explore the extent

of immune cell infiltration in the high-risk groups, potentially

enhancing our understanding of the molecular mechanisms in

high-risk IPF populations.

Materials and methods

Data acquisition and normalization

The GSE70866 dataset comprises gene expression profiles

and clinical data from 176 bronchoalveolar lavage cells of IPF

patients. It includes gene expression data from 112 IPF patients

collected using the GPL14550 platform (Agilent-

028004 SurePrint G3 Human GE 8 × 60 K Microarray,

Agilent Technologies) and from 64 IPF patients using the

GPL17077 platform (Agilent-039494 SurePrint G3 Human GE

v2 8 × 60 K Microarray). We merged the data from these two

platforms using inSilicoMerging and subsequently performed

batch effect removal analysis to generate a consolidated

expression matrix [11]. To verify the effectiveness of the batch

effect removal, we conducted Principal Component Analysis

(PCA) on the dataset’s expression matrix both before and

after the removal process. PCA is a dimensionality reduction

technique that extracts key feature vectors from high-

dimensional data, transforming it into a lower-dimensional

representation and visualizing these features in 2D or 3D graphs.

Variance analysis

The “limma” package was used to identify DEGs between

176 IPF and 20 normal samples [12]. The Benjamin-Hochberg

method was used to adjust original p-values, while the false

discovery rate (FDR) procedure was employed to determine fold-

changes (FC). Expressions with |logFC|>1.5 and FDR<0.05 were
considered significantly different. Heat maps and volcano maps

were constructed to show the details of the variance analysis.

Weighted correlation network
analysis (WGCNA)

To investigate the co-expression relationships among genes

and their association with phenotypes, we constructed a gene co-

expression network utilizing the “WGCNA” package in R

software [13]. For all calculation of pair-wise genes, Pearson’s

correlation were performed. Using the TOM (Topological

Overlap Matrix) model, average linkage hierarchical clustering
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was performed on Genes with similar expression profiles to

classify them into Gene modules. Modules with a distance

under 0.25 were combined, resulting in 24 co-

expression modules.

Enrichment analysis

Gene Ontology (GO) [14] analysis is a common method to

perform large-scale functional enrichment studies. The Kyoto

Encyclopedia of Genes and Genomes (KEGG) [15] is a widely

used database that stores information about genomes, biological

pathways, diseases, and drugs. The biological process enrichment

of hub genes was performed by the R package clusterprofiler with

input filtering criteria of p.adj <0.05 and FDR value (q.value) <
0.5 statistically significant. Gene set enrichment analysis (GSEA)

is a calculation method that determines whether a set of prior

defend genes show statistically significant and consistent

differences between two biological states [16]. In this study,

GSEA was employed to discern the biological processes and

signaling pathways that varied between the high-risk and low-

risk IPF groups using the R package clusterProfiler. Significance

was determined with a p-value threshold of less than 0.05.

Identification of prognostic genes

The Least Absolute Shrinkage and Selection Operator

(LASSO) is a linear regression technique that incorporates

shrinkage, making it suitable for survival analysis with high-

dimensional data. In this study, we employed the R package

glmnet, which facilitates LASSO regression analysis, to identify

the most influential variables among the hub genes in our train

set. Subsequently, we conducted a multivariate Cox regression

analysis using the variables selected by the LASSO

regression analysis.

The development and evaluation of model

Model development are performed based on the scikit-

survival module for the Python platform, including algorithm

optimization and training. For the RSF model, we employed

grid search for algorithm optimization and utilized the RSF

algorithm within ML for model training. Grid search fine-

tuned the RSF model’s hyperparameters, which included the

number of estimators (10, 100, and 500), minimum of samples

split (3, 5, 6, and 10), minimum of samples leaf (1, 2, 4, and

10), and maximum depth (2, 5, 10, and None). Model

performance was assessed using the test set, with

evaluations based on the C-index and AUC at 1, 2, and

3 years. The C-index is a widely recognized metric that

quantifies the ability of a model to predict outcomes. A

model with an AUC greater than 0.75 is generally

considered to exhibit excellent discrimination [7].

Calibration was appraised using the Brier score at the same

time points; a Brier score of 0.25 or less signifies favorable

model calibration [17]. DCA was conducted to determine the

clinical net benefit, a method that calculates the net benefit

under a risk threshold and is primarily employed to assess the

clinical utility of the model [18].

The interpretation of model

Clinicians require a straightforward method to elucidate how

the model predicts patient survival. The Shapley Additive

Explanations (SHAP) plot serves as an effective tool for this

purpose. This game-theoretic approach to model output

interpretation reveals the contribution of each variable to the

predicted outcome [19]. The SHAP plot is generated utilizing the

scikit-survival module within the Python environment.

Prognostic staging system for IPF patients

The X-tile is a bio-informatics tool utilized for biomarker

assessment and optimization of outcome-based cut-points [20].

Kaplan Meier (KM) curve analysis serves as the method to

analyze and infer patient survival times from the data,

examining the relationship between survival times, outcomes

and the influence of various factors along with their relative

impact. The individual risk score, derived from the output of the

RSF model, stratified IPF patients in both the train and test sets

into high-risk and low-risk groups. A comparison of overall

survival between these two groups was conducted using KM

curve survival analysis, with the log-rank test employed for

statistical testing.

Immune function analysis

To identify immune characteristics of IPF and normal

samples, as well as high-risk and low-risk groups, we analyzed

their expression data using the Cell-type Identification By

Estimating Relative Subsets Of RNA Transcripts

(CIBERSORT) web portal1. The analysis was conducted

iteratively 1,000 times to ascertain the relative percentages of

22 distinct immune cell types [21]. Subsequently, we compared

these relative percentages across IPF and normal samples, in

addition to high-risk and low-risk groups.

1 http://CIBERSORT.stanford.edu/
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FIGURE 1
Results of theWGCNA. (A) The corresponding scale-free topological model fit indices at different soft threshold powers. (B) The corresponding
mean connectivity values at different soft threshold powers. (C) Cluster dendrogram of samples. (D) Cluster dendrogram of module feature. (E)
Cluster dendrogram of genes. (F) Correlations between different modules and clinical traits. (G) Correlation of module membership and gene
significance in the darkturquoise module.
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Validation of the PF model

The PF mouse model was established through a single

intratracheal administration of Bleomycin (BLM) at a dosage

of 2 mg/kg (MCE, USA) [22]. On day 14 post-administration,

lung tissues were harvested from the sacrificed mice to proceed

with further experiments. Lung fibrosis severity was evaluated

through Masson’s trichrome staining and Western blot analysis.

Furthermore, the expression levels of hub genes integrated into

the RSF model were validated using Quantitative Reverse

Transcription-Polymerase Chain Reaction (qRT-PCR) assays.

Statistical analysis

For the statistical analysis, we employed R, a programming

language and software environment for statistical computing (R

Foundation for Statistical Computing, Vienna, Austria), and the

Sangerbox platform. Model training was conducted using Python

(Version 3.10), developed by Guido van Rossum in Scotts Valley,

CA, United States. Both the Cox model and the RSF model were

implemented utilizing the scikit-survival module (Version 0.19.0).

Results

Identification of hub genes in IPF

The flow chart of the study is shown in Supplementary Figure

S1 mRNA expression data obtained from the GPL14550 platform

and GPL17077 platform of GSE80776 were merged and

subjected to a batch effect removal analysis to obtain a

combined expression matrix with 176 IPF and 20 healthy

people involving 19,531 Genes. After removing the batch

effect we can observe a uniform distribution of the merged

matrix (Supplementary Figure S2).

A total of 4,187 DEGs were obtained by variance analysis and

included 3,970 upregulated and 217 downregulated genes

(Supplementary Figure S3). The DEGs were visualized by the

volcano map (Supplementary Figure S3A) and heatmap

(Supplementary Figure S3B).

WGCNAwas used to identify IPF-related hub genes. As shown

in Figures 1A, B, the horizontal axis is the soft threshold and the

vertical axis is the evaluation parameters of scale-free network. The

higher the value of evaluation parameters, the more consistent the

network is with the characteristics of scale-free network. The

optimal soft-thresholding power was set as 14 with R square

value of 0.87. Finally, 24 modules are identified by hierarchical

clustering and optimal soft threshold capability (Figures 1C–E). The

darkturquoise module, which exhibited the highest positive

correlation with IPF, contained 28 genes (Figures 1F, G).

A venn diagram was utilized to identify DEGs selected in

both variance analysis and WGCNA analysis. Consequently,

22 IPF-related hub genes were determined (Figure 2A). In IPF

patients, heatmaps and boxplots revealed significant

upregulation of these 22 genes (Figures 2B, C).

Functional enrichment analysis

GO and KEGG pathway enrichment analyses were

conducted to deepen our understanding of the functions of

the identified hub genes. The analysis of KEGG revealed that

these hub genes were mainly associated with cell cycle,

p53 signaling pathway, FoxO signaling pathway, and Cellular

senescence (Supplementary Figures S4A, B). In addition, the

analysis of GO enrichment revealed that these hub genes were

primarily associated with the cell cycle, mitotic cell cycle, and cell

cycle process (Supplementary Figure S4C).

Identification of prognostic genes

As shown in Figure 3A, we conducted LASSO regression

analysis on 22 IPF-related hub genes screened and further

screened 14 hub genes. Subsequently, proceeded with a

multivariate Cox regression analysis, which led to the

identification of four significant prognostic genes. Among

these, one gene was identified as a potential risk gene, while

the other three were recognized as potential protective

genes (Figure 3B).

Model development and evaluation

We constructed both the Cox and RSF models using data

from the train set. The RSF model’s hyperparameters were

optimized through grid search, with the final configuration set

as follows: 10 estimators, 5 minimum of samples split and

1 minimum of samples leaf.

Model validation was conducted using the C-index, Brier

score and AUC. The validation of the models in the test set is

shown in Table 1. The results show that the C-index of RSF

model is 0.840, which is obviously superior to Cox model.

Similarly, the AUC (1-year, 2-year and 3-year) and Brier

scores (1-year, 2-year and 3-year) also have better

performance on the RSF model. Meanwhile, we used DCA to

assess the potential clinical significance of the RSF model, the

DCA regarding the RSF model showed fair clinical net benefits in

1, 2, and 3 years in Figure 4.

Model interpretation

The SHAP plot in Figure 5 was used to interpret visually the

global importance of variables in the RSF model, the variables in
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the RSF model were listed in descending order of importance. As

seen in Figure 5A, the contributions of all variables to the RSF

model were quantified to establish their ranking. The distribution

of the scatter plot in Figure 5B represents each variable across

all samples in the RSF model. Among these, CEP55 emerged as

the most influential variable, succeeded by KIF23, DTL

and PCLAF.

Prognostic staging system for IPF patients

Patients within the train set were assigned scores by the RSF

model, leading to the stratification of patients into high-risk (risk

score>23.1) and low-risk (risk score<=23.1) groups. Meanwhile, the

KM analysis and log-rank test results, which highlighted significant

differences between the high-risk and low-risk groups, are displayed

FIGURE 2
IPF-related hub genes. (A) 22 hub genes were obtained by taking the intersections of the DEGs, and darkturquoise module genes of the
WGCNA. (B, C) Heatmaps and boxplots demonstrated the expression of 22 hub genes in IPF patients.

FIGURE 3
Identification of prognostic genes. (A) Screening of characteristic genes by LASSO regression analysis. (B)Multivariate Cox regression analysis to
identification of prognostic genes in the train set.
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TABLE 1 The validation of the models in the test set.

Model C-index AUC Brier score

1-Year 2-Year 3-Year 1-Year 2-Year 3-Year

RSF model 0.840 0.941 0.942 0.958 0.099 0.120 0.007

Cox model 0.544 0.569 0.552 0.578 0.198 0.264 0.255

RSF, random survival forest.

FIGURE 4
The decision analysis curves of RSF model. (A) The 1-year decision analysis curve of RSF model. (B) The 2-year decision analysis curve of RSF
model. (C) The 3-year decision analysis curve of RSF model. In the decision analysis curve, the x-axis represented the threshold probability while the
y-axis represented the clinical net benefits.

FIGURE 5
The SHAP plot of the RSF model and risk stratification of IPF patients. (A) A Shap plot after quantization of each variable. (B) A SHAP plot that
includes the distribution of variables for all patients, the color of the dot symbolized the numerical value of the variable. In the SHAP plot, the length of
the horizontal axis where each variable is located represents the variable’s contribution to the outcome. For example, the variable (CEP55) is themost
significant risk factor. The higher the expression of CEP55, the higher the probability of a poor prognosis. (C) KM survival curves after risk
stratification of patients in the train set. (D) KM survival curves after risk stratification of patients in the test set. In KM survival plots, the blue line
represents the high-risk group, the orange line represents the low-risk group, and the P-value in the plots is the log-rank test result. (E) The survival
state distribution of the train set. (F) The survival state distribution of the test set.
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in Figures 5C, Dwhich demonstrated a significant difference between

the two groups. The distribution of survival states for both the train

and test set is shown in Figures 5E, F. These findings indicate that the

RSFmodel, based on four prognostic genes, can effectively predict IPF

prognosis, demonstrating high accuracy in both the train and test sets.

Application of the RSF model in individual
survival prediction

We randomly selected three patients to demonstrate individual

survival prediction using the RSFmodel. Patient1: Expression levels of

DTL, CEP55, PCLAF, and KIF23 were 6.727230, 7.063076, 8.690206,

and 8.427149. Patient2: Expression levels of DTL, CEP55, PCLAF,

and KIF23 were 7.064931, 7.381497, 9.288345, and 8.425116.

Patient3: Expression levels of DTL, DTL, PCLAF, and KIF23 were

7.411715, 8.312722, 10.061563, and 8.447688. The individual

predicted outcomes for these patients are shown in Figure 6. The

personalized KM survival plots (Figure 6A) illustrate the survival

probability for each individual at specific time points, while the

individualized SHAP plots (Figures 6B–D) show the contribution

of gene expression levels to each patient’s prognosis.

To enable clinicians to use the RSF model and the prediction

tools, relevant files of the model have been uploaded to2. It

provides a quicker and more intuitive way of predicting.

GSEA enrichment analysis

The GSEA revealed that 32 pathways were significantly

enriched in IPF compared to normal samples. In the high-risk

group, 24 pathways were identified as enriched. After intersection

FIGURE 6
The individual survival prediction. (A) The estimated survival function of IPF patients. (B). The individualized SHAP plot of the patient 1. (C) The
individualized SHAP plot of the patient 2. (D) The individualized SHAP plot of the patient 3. In the individualized SHAP plot, red bands represent risk
factors and promote poor prognosis, while blue bands are relative protective factors.

2 https://github.com/Renrende0328/IPF-RSFmodel
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analysis, we identified 7 pathways that were consistently enriched

across both comparisons. The most significantly enriched pathways

in the high-risk group included ECM receptor interaction, the

MAPK signaling pathway, and focal adhesion, as illustrated in

Supplementary Figure S4D.

Immune function analysis

To evaluate the impact of immune function on IPF, we

employed the CIBERSORT algorithm to analyze differences in

22 types of infiltrating immune cells between IPF and normal

samples (Figures 7A, B). We observed that the levels of B cell

memory, B cells naive, T cells CD4 memory resting, T cells

CD4 memory activated, NK cells resting, M1 macrophages,

M2 macrophages, dendritic cells resting and neutrophils in the

IPF were lower than those health samples, while the opposite was

true for monocytes. Further analysis of the immune function of

these differentially expressed immune cells within low-risk and

high-risk groups revealed that the infiltration level of B cell naive

(P < 0.02) and dendritic cells resting (P < 0.03) were significantly

higher in the low-risk group than in the high-risk group (Figure 7C).

Validation of the PF model

Given the challenges in acquiring clinical samples from IPF

patients, we endeavored to validate the four hub genes identified

in this study using a PF mouse model. Given the challenges in

acquiring clinical samples from IPF patients, we endeavored to

validate the four hub genes identified in this study using a PF

mouse model [22]. The successful construction of the PF mouse

model was confirmed by Masson’s trichrome staining and

Western blot experiments (Figures 8A, B). RT-PCR was used

to validate the expression of the hub genes incorporated into the

RSF model and the results showed general agreement with the

bioinformatics results (Figure 8C).

Discussion

IPF is a chronic and progressive interstitial lung disease

characterized by a poor prognosis, and there is a current

deficiency in specific treatments [1–3]. The clinical symptoms

of IPF are nonspecific, complicating the assessment of disease

progression and prognosis based on clinical manifestations and

auxiliary examinations alone. Therefore, identifying biomarkers

and establishing a prognostic prediction model for IPF patients at

the molecular level could facilitate individualized treatment of IPF

patients, and benefit clinicians for themanagement of IPF patients.

In this study, we used transcriptional profiling data of

bronchoalveolar lavage fluid from IPF patients to explore the

correlation between biomarker levels and patient prognosis. First,

22 hub genes were identified, meanwhile, a Cox model and an

RSF model based on an ML algorithm were established, and the

results indicated that the RSF model had better predictive

FIGURE 7
Immune infiltration between IPF and contral samples. (A) The relative percentage of 22 immune cells in each sample. (B)Differences in immune
infiltration between IPF and contral samples. (C) Differences in immune infiltration between low-risk and high-risk groups.
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performance. The RSF model was then used to establish a new

prognostic staging system, which was able to discriminate IPF

patients into high-risk and low-risk groups, and the KM curve

showed that this prognostic staging system had better

discriminatory power. Finally, to gain further insight into the

molecular mechanisms underlying the high-risk group in IPF, we

used GSEA enrichment analysis to identify their main enriched

pathways and used the CIBERSORT algorithm to determine the

level of immune cell infiltration in the high-risk group.

Differently expressed 22 hub genes were obtained between

IPF and normal samples from the GSE70866 of the GEO dataset

by the different analysis of the limma and WGCNA module

methods. The 22 hub genes in IPF were all higher expressed than

normal samples. Through the GO enrichment analysis, we found

the 22 hub genes were significantly enriched in the cell cycle. In

particular, KEGG enrichment analysis showed that the 22 hub

genes were significantly enriched in p53 signaling pathway, FoxO

signaling pathway, cellular senescence, and cell cycle. The

p53 signaling pathway and FoxO signaling pathway have been

proven to be closely related to the development of fibrosis. Huang

et al. reported that the p53 signaling pathway could affect the

EMT progression of silica-induced pulmonary fibrosis [23].

Wang et al. had a similar conclusion in the model of renal

interstitial fibrosis induced by unilateral ureteral obstruction

[24]. Ma et al. reported the role of FoxO3a signal pathway in

pulmonary fibrosis [25]. The review by Parimon et al.

systematically expounded on the regulatory role of cellular

senescence in pulmonary fibrosis [26]. Lv et al. confirmed that

cell cycle inhibitor P21 promotes the development of pulmonary

fibrosis by suppressing lung alveolar regeneration, and further

confirmed that cell cycle is involved in the process of fibrosis [24].

These studies further substantiate the relevance of the

22 identified hub genes to fibrogenesis and disease progression.

On the basis of 22 hub genes, four prognostic genes

(DTL,CEP55,PCLAF,KIF23) were further identified. KIF23, a

microtubule-associated movement protein, is crucial in mitosis

FIGURE 8
PFmodel sample validation. (A) Results of Masson staining, scale bar 100 μm. (B) In the lung tissue of PFmice protein levels of α- SAM, Collagen I
(n = 3). (C) Expression levels of DTL, PCLAF, KIF23, and CEP55 were quantified using qRT-PCR analysis in lung tissue. p< 0.05, pp< 0.01, pppP <
0.001 by t-test. #p < 0.05 versus Con, t-test was used in (C).
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and cytokinesis [27]. Chen et al. reported that the downregulation

of MiR-17-5p alleviates renal fibrosis by targeting KIF23 [28],

which is consistent with the role of our RSF model, indicating that

KIF23 may be a potential protective factor in the process of

pulmonary fibrosis. The autophagy gene Cep55 is associated

with bleomycin-induced pulmonary fibrosis [29]. The model

established in this study suggests that a reduction in

CEP55 expression is beneficial to the survival of patients with

IPF. Similarly, DTL and PCLAF were also considered potential

protective factors in the process of pulmonary fibrosis in our study.

To develop a predictive model with enhanced accuracy and

clinical relevance, we employed various algorithms to construct the

model, selecting the one that demonstrated superior predictive

capabilities. We compared the traditional model (Cox algorithm)

and the RSF model (ML algorithm), and the results showed that the

RSF model based on the ML algorithm had better prediction

performance. Given the unique requirements of the medical

field, high predictive performance alone is insufficient to

guarantee clinical utility; thus, we sought an effective method to

elucidate the relationship between model variables and outcomes.

The “black box” nature of ML-based models, which obscures the

interpretation of results, has been a significant barrier to their clinical

application [30]. To address this, we used the SHAP algorithm to

render our model interpretable [31, 32], thereby clarifying the

contribution of each variable to the outcomes and enhancing the

model’s clinical utility. This high-performing prediction model

facilitates the establishment of a more refined prognostic staging

system for IPF patients, enabling more precise risk stratification and

supporting the development of personalized treatment strategies.

The RSF model has been refined into a user-friendly tool for

individual survival prediction, providing risk scores, personalized

Kaplan-Meier survival curves, and individualized SHAPplots. These

features render individual predictions more intuitive and precise. In

conclusion, we anticipate that this predictive tool will aid clinicians

in evaluating patient prognoses to formulate tailored treatment

plans. Furthermore, by quantifying individual prognosis risk

levels, it is expected to enhance communication between

clinicians and patients, thereby bolstering patient acceptance of

prognostic information and treatment plans.

Patients with IPF could be divided into high-risk and low-

risk groups based on prognostic staging systems. To deepen our

understanding of the molecular pathways enriched in individuals

at high risk for IPF, we performed GSEA on IPF patients and

normal samples, as well as on high-risk and low-risk groups. This

analysis identified seven significantly enriched pathways.

Notably, ECM receptor interactions and MAPK signaling

pathways have been reported to be closely associated with the

development of pulmonary fibrosis. Han et al reported the role of

ECM receptor interaction pathway in pulmonary fibrosis [33].

TGF-βs can regulate fibrosis via both canonical and non-

canonical signaling pathways [34]. MAPK signaling pathway,

as one of the non-canonical (non-Smad) signaling pathways, has

demonstrated its role in pulmonary fibrosis [35]. Further

exploration targeting these enriched pathways may be one of

the directions to improve the prognosis of IPF.

Multiple studies have underscored the pivotal role of

immunity in pulmonary diseases, including IPF [36]. Immune

dysregulation is considered to be one of the bases of chronic lung

diseases, including IPF [37]. Utilizing the CIBERSORT algorithm,

we analyzed RNA-sequencing data to assess immune cell

expression levels and derived the proportions of various

immune cells within samples [38]. In this study, CIBERSORT

was used to determine the level of immune cell infiltration between

IPF and normal samples, as well as between high-risk and low-risk

groups, and to determine two kinds of immune cells that may be

related to the prognosis of high-risk IPF group, including B cell

naive and dendritic cells resting. These two kinds of immune cell

infiltration levels are lower in the high-risk group than in the low-

risk group, indicating that they may be protective factors affecting

the prognosis of pulmonary fibrosis.

Our research also has some limitations. First, the RSF model

was established according to the GEO database, therefore, in

order to validate our model, further clinical prospective studies

are necessary. Second, functional experiments are needed to

further reveal the potential mechanisms of hub genes in

the future.

This study aims to establish a high-performance, clinically

valuable prognostic prediction model at the molecular level,

while also developing a new prognostic staging system that

can understand the individualized prognosis of IPF patients

and early identification of high-risk individuals. The study is

based on the GSE70866 dataset, which has been reported in

multiple studies, demonstrating its representativeness in IPF

[39–43]. To establish a prognostic prediction model with

universal applicability, unlike other previous studies that

focused only on certain biological processes related to IPF,

such as endoplasmic reticulum stress, autophagy, and

immune-related genes [40, 42, 43], this study starts with all

genes in IPF samples, aiming to screen out the most

representative hub differential genes in IPF to establish a

model. In addition, by constructing both traditional linear

models and machine learning algorithm-based RSF models,

the model with the best predictive performance was selected.

Therefore, this study differs from currently reported studies in

both variable selection and model algorithms. At the same time,

the molecular mechanisms of high-risk individuals were further

explored. Our findings provide a new and better tool for guiding

individualized therapy in IPF and also provide new insights at a

molecular level for improving the prognosis of IPF.
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