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Abstract

Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder

characterized by progressive cognitive decline. Genetic factors have been

implicated in disease susceptibility as its etiology remains multifactorial. The

CD33 and the HLA-DRB1 genes, involved in immune responses, have emerged

as potential candidates influencing AD risk. In this study, 644 Lebanese

individuals, including 127 AD patients and 250 controls, were genotyped, by

KASP assay, for six SNPs selected from the largest GWAS study in 2021. Logistic

regression analysis assessed the association between SNP genotypes and AD

risk, adjusting for potential confounders. Among the six SNPs analyzed,

rs1846190G>A in HLA-DRB1 and rs1354106T>G in CD33 showed significant

associations with AD risk in the Lebanese population (p < 0.05). Carriers of the

AG and AA genotypes of rs1846190 in HLA-DRB1 exhibited a protective effect

against AD (AG: OR = 0.042, p = 0.026; AA: OR = 0.052, p = 0.031). The GT

genotype of rs1354106T>G inCD33was also associatedwith reduced risk (OR=

0.173, p = 0.005). Following Bonferroni correction, a significant correlation of

rs1354106T > G with AD risk was established. Our results might highlight the

complex interplay between genetic and immunological factors contributing to

the development of the disease.
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Impact statement

Neuroinflammation and innate immunity have recently emerged as important

contributors to AD pathology. GWAS studies pinpointed the association of

immunity-related gene SNPs, including, rs1354106T>G in CD33 rs1846190G>A in

HLA-DRB1, with AD. However, these studies were limited in the applicability to non-

European populations. Our study reports a significant association of rs1354106T>G with

AD in a Middle Eastern population, the Lebanese population, for the first time. This

further confirms association results and improves the equity of the previously generated

genetic information. On the other hand, the importance of our findings lies in providing
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further genetic support for the role of immunity-related genes

and SNPs in AD. Our study establishes the protective role of

rs1354106T>G SNP, in CD33, against AD, previously reported in

Sherva et al., 2014 [1] and highlights a potential protective effect

of rs1846190G>A in HLA-DRB1 against AD. These protective

variants could enhance AD risk assessment in asymptomatic

individuals and offer potential drug targets.

Introduction

Alzheimer’s disease (AD) is the most common

neurodegenerative disorder, leading to memory loss and

multiple cognitive impairments, and is the fourth leading

cause of death worldwide among the elderly population [2].

There are two main forms of AD: familial and sporadic [3].

Familial AD typically presents as autosomal dominant and

early onset (EOAD), in individuals under 65 years of age,

accounting for 1–5% of all cases. EOAD has been linked to

mutations in three genes, the presenilin 1 gene (PSEN1),

which is identified in up to 70% of cases with familial AD

cases; the presenilin 2 gene (PSEN2) and the Amyloid

precursor protein gene (APP) [4]. Sporadic AD, or late-

onset AD (LOAD) occurs in individuals older than

65 years, with age being the primary risk factor [5]. LOAD

is a complex disorder with several identified risk factors

including female sex, traumatic brain injury, depression,

environmental pollution, physical inactivity, social

isolation, low academic level, and metabolic syndrome [6].

Genetic susceptibility also plays a significant role, particularly

the ε4 allele of apolipoprotein E (APOE) [7]. The heritability

of LOAD is estimated to be between 60–80% [8]. AD is

associated with the presence of β-amyloid (Aβ)-containing
extracellular plaques and tau-containing intracellular

neurofibrillary tangles in the brains of patients [9].

However, the utility of Aβ as a biomarker for AD has

faced challenges, with its detection in about 30% of

cognitively normal elderly individuals and with the absence

of significant clinical improvements after removing Aβ from

the brains of AD patients [10–12]. Neuroinflammation,

triggered by pathological damage in the central and

peripheral nervous system, is recognized as a significant

contributor to AD pathogenesis [13]. This leads to the

release of proinflammatory cytokines, chemokines,

complement cytokines, and small molecule messengers like

prostaglandins, nitric oxide (NO), and reactive oxygen

species (ROS) [14]. In addition, persistently activated

microglia produce high levels of proinflammatory

cytokines and chemokines, leading to neuronal dysfunction

[15]. Furthermore, microglia are implicated in synaptic loss,

tau phosphorylation, and cognitive decline [16]. Genome-

wide association studies (GWAS) indicate that a large

percentage of AD risk genes are associated with innate

immunity and inflammation, highlighting the critical role

the immune system plays in AD pathology [17–19].

The cluster of differentiation 33 gene, CD33, on chromosome

19p13.3, is one of the top-ranked AD risk genes identified by

genome-wide association studies (GWAS) and has been

replicated in numerous genetic analyses [20, 21]. CD33

belongs to the sialic acid-binding immunoglobulin (Ig)-like

family and is a myeloid cell receptor, exclusively expressed by

myeloid cells and microglia. It has several functions in cell

adhesion, anti-inflammatory signaling, and endocytosis [22].

Clinical and biochemical evidence implicates CD33 in Aβ-
associated pathology by affecting microglia-mediated Aβ
clearance [23–25].

CD33 has been implicated in modulating AD susceptibility

and the pathology of late-onset Alzheimer’s Disease (LOAD)

[25–27]. Higher CD33 expression in the parietal lobe is shown to

be associated with more advanced cognitive decline or disease

status [24]. Other studies show that reduced expression of CD33

allows more efficient phagocytic clearance of pathogenic Aβ by

microglia and thus protects against AD [25].

HLA, located within the major histocompatibility complex

(MHC) on chromosome 6p21, consists of several highly

polymorphic and tightly linked genes [28]. Numerous

association studies have confirmed significant associations

between certain HLA gene variants within MHC class I and II

regions and AD [29]. The upregulation of HLA class II antigens is

widely accepted as a definitive marker of activated microglia,

which are implicated in the formation of lesions characteristic

of AD [30].

The mechanism by which HLA may contribute to

Alzheimer’s disease (AD) involves the recognition and

processing of pathological protein deposits, such as Aβ
peptides, by microglia. Once engulfed by microglia, these

proteins are broken down and presented to T lymphocytes in

conjunction with specific HLA class I or II molecules. This

process triggers B lymphocytes to produce antibodies against

Aβ peptides, while activated T lymphocytes target cells producing

excessive Aβ for elimination [31].While this immune cascade is a

natural defense mechanism against harmful protein

accumulation, excessive reactions may lead to detrimental

effects [32, 33]. Consequently, an immune response’s severity,

scope, and duration can vary depending on the expression of

HLA molecules. Individuals carrying certain pathogenic HLA

alleles are at a higher risk of developing specific immune-

mediated diseases compared to those lacking these alleles [34].

A large GWAS study, including 1,126,563 individuals 90,338

(46,613 proxy) cases and 1,036,225 (318,246 proxy) controls,

identified 38 AD risk loci including CD33 and HLA-DRB1 with

SNP variants (RS1354106T>G) and (RS1846190G>A)
consecutively [20]. In this report, we aimed to investigate the

correlation between these SNPs and AD in a sample of

644 Lebanese individuals, including 127 AD patients and

250 controls.
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Materials and methods

Study subjects

Blood samples were obtained from 644 Lebanese individuals,

out of whom, 127 participants were diagnosed with Alzheimer’s

disease (AD) by neurologists after memory and cognitive tests,

functional assessment, physical and neurological exams,

diagnostic tests, and brain imaging. Subjects with no

Alzheimer’s disease were 58 years or older, selected based on

the absence of personal or familial psychiatric or cognitive

impairment history, and with a Mini-Mental State

Examination (MMSE) score above 26 (Table 2). Participants

were recruited in accordance with the latest version of the

Declaration of Helsinki for Ethical Principles for Medical

Research Involving Human Subjects. Ethical approval was

obtained from the local IRB Clinical Research Ethics

Committee at Beirut Arab University. Each participant

underwent a thorough consent process, which included a

consent form and questionnaire.

SNP selection

Six SNPs were selected for inclusion in this study based on

findings from the largest GWAS study to date conducted by

Wightman et al. (2021). This GWAS involved a total of

1,126,563 individuals, comprising 90,338 cases (46,613 proxy)

and 1,036,225 controls (318,246 proxy), and identified a total of

38 risk loci, including seven previously unidentified loci.

The SNPs were chosen according to the function and role of

their genes in AD pathology. Since this study aims to focus on the

role of the immune system in AD, the three SNPs,

rs1846190G>A, rs1354106T>G, and rs1582763G>A, were

selected based on their respective immunity related genes

HLA-DRB1, CD33 and MS4A4A with well documented

association with AD [20, 21, 29, 35]. The remaining three

SNPs were selected according to a variety of other functions

of their respective genes. These are rs2154482G>T in APP gene, a

major player of the amyloidogenic pathway of AD pathogenesis

[36], rs3935067G>C in EPHA1AS 1 long noncoding RNA gene

with significant association with AD [37], rs7912495A>G in

ECHDC3, which is responsible for type 2 diabetes Mellitus-

related episodic memory impairment [38].

Genotyping

Genomic DNA was extracted from peripheral blood

leukocytes using FlexiGene® DNA kit (QIAGEN) according to

the manufacturer’s instructions. Genotyping was performed at

LGC group (Berlin, Germany) using KASP genotyping assay.

KASP is a homogeneous, fluorescence (fluorescence resonance

energy transfer) based assay that enables accurate biallelic

discrimination of known genetic variations such as SNPs and

insertions/deletions as describe previously [39].

Statistical analysis

All analysis was conducted using SPSS software version 24

(SPSS, Inc, Chicago, Illinois). All continuous variables were

expressed as mean ± standard deviation. Normality was tested

using Shapiro-Wilk test.

Association analysis of the six SNPs with
Alzheimer’s disease

A binary multiple logistic regression model was employed to

investigate the association between the presence of AD

(dependent variable, N = 377) and the genotypes of the six

SNPs, while adjusting for potential confounders. Covariates,

including age, gender, body mass index, educational level,

smoking status, and marital status, were selected based on

their established connections with AD and their potential to

introduce confounding effects into the SNP-disease

association analysis.

Results

The characteristics of all study participants are described

in Table 1. The average age is 61, with 37.4% being females. Of

612 participants, 28.1% had normal weight, 32.4% were

overweight, and 242 (39.5%) were obese. Education levels

varied also as 25.9% had no formal education, 59.0%

attended some school, 3.3% completed high school, and

12.0% attended university. Additionally, 38.1% of the

participants were smokers. Blood pressure and lipid

measurements were also recorded.

The characteristics of AD patients and controls are described

in Table 2. The mean age of AD patients (80.99 ± 7.94) was

significantly greater than the mean age of controls (70.06 ± 8.82)

(p < 0.001). Moreover, there were significant differences between

AD subjects and controls in terms of marital status, number

of smokers.

The SNP allele frequencies detected in our study showed

minimal variation from the allele frequencies in the Middle

Eastern populations (GnomAD) (Table 3). The minor allele

frequencies ranged from 0.23 to 0.49, suggesting that these

alleles were relatively common in the studied population. The

observed genotype frequencies of rs1846190G>A and

rs1354106T>G did not show significant deviations from the

Hardy-Weinberg equilibrium (HWE). AG and AA carriers of

the rs1846190G>A SNP had a decreased risk of AD (OR = 0.042,
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p = 0.026 and OR = 0.052, p = 0.031 respectively), indicating a

much lower likelihood of developing Alzheimer’s disease.

Likewise, the rs1354106GT genotype had a lower risk (OR =

0.173, p = 0.005) compared to the TT genotype, indicating a

significantly lower risk of Alzheimer’s disease in the studied

population.

Assessment of the association between the six SNPs and the

likelihood of developing AD, while adjusting for age, gender,

BMI, educational status and smoking showed a significant

association with AD for rs1846190G>A (AG; OR = 0.042, P =

0.026 and AA; OR = 0.052, P = 0.031) in HLA-DRB1 and

rs1354106T>G (GT; OR = 0.173, P = 0.005) in CD33

(Table 4). When applying Bonferroni correction, only

rs1354106T>G in CD33 remained significant thus showing a

robust association with AD.

Discussion

In our study, among the six SNPs analyzed, only

rs1846190G>A, a regulatory region variant in HLA-DRB1, and

rs1354106T>G, an intron variant in CD33, showed a significant

association with AD in the Lebanese population. Following

Bonferroni correction, only rs1354106T>G in CD33 remained

TABLE 1 Characteristics of all study participants.

Participants (n = 644)

Meana SDb

n = 638 Age (years) (n = 638) 60.834 18.715

n = 639 Gender n (female %) 239 (37.4)

n = 612 Body mass index (kg/mb) 28.971 6.313

Normal weight (<25) n (%) 172 (28.1)

Overweight (25-29.9) n (%) 198 (32.4)

Obesity (≥30) n (%) 242 (39.5)

n = 429 Educational level

None n (%) 111 (25.9)

School n (%) 253 (59.0)

High School n (%) 14 (3.3)

University n (%) 51 (11.9)

n = 544 Smoking n (%) 207 (38.1)

N = 377 Alzheimer n (%) 127 (33.7%)

n = 326 SBP (mmHg) 12.379 6.093

n = 323 DBP (mmHg) 7.885 10.050

n = 291 Hypertension n (%) 118 (40.5)

n = 182 Triglyceride (mg/dL) 147.577 78.687

High triglycerides levels n (%) (≥150) 65 (35.7)

n = 184 Total cholesterol (mg/dL) 173.087 45.739

High total cholesterol levels n (%) (≥190) 64 (34.8)

n = 180 HDL-C (mg/dL) 44.982 23.489

n = 179 Low HDL-C levels n (%) (≤50 F, ≤40 M) 105 (58.7)

n = 177 LDL-C (mg/dL) 108.992 83.662

High LDL-C levels n (%) (≥115) 67 (37.9)

aMean value for continuous variables and a percentage for categorical variables.
bSD, standard deviation (only for continuous variables).

LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; SBP, systolic blood pressure; DBP, diastolic blood pressure.
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significant, which highlights the potential importance of this gene

in the pathogenesis of AD.

SNPs have the potential to alter CD33’s expression level,

structure, and function, altering how microglia clear amyloid β
[25, 40, 41]. Two previously reported SNPs in CD33,

rs3865444 and rs12459419, have shown a protective effect

against AD [42]. The protective allele of the rs3865444, located

in the promotor region, plays a role in the reduction of both CD33

expression and insoluble Aβ42 levels in AD brain, especially in the

microglial cells [25]. Similarly, rs12459419, located in exon 2, and

in linkage disequilibrium with rs3865444, exhibits a protective

effect by enhancing exon skipping and promoting the production

of a short isoform of CD33, known as human CD33m [43]. Recent

studies using cell and animal models have highlighted the

functional significance of human CD33m, as a gain-of-function

variant that enhances Aβ1–42 phagocytosis in microglia [41].

Conversely, a recent computational analysis investigating the

3D structures of CD33 with rs2455069 A>G SNP suggests a

potential increase in the risk of Alzheimer’s disease. The study

proposes that over time, the CD33-R69G variant, which binds to

sialic acid, could boost CD33’s ability to inhibit the breakdown of

amyloid plaques [44].

Our study further explored the association of rs1354106 T>G
with AD, revealing a protective effect in Lebanese patients (GT; O.

R = 0.173 CI = 0.058–0.586, P = 0.005). This finding notably aligns

with the findings from a previous study which utilized a Bayesian

longitudinal low-rank regression (L2R2)model to explore the impact

of single nucleotide polymorphisms (SNPs). Their results revealed

that rs1354106 was associated with a reduced rate of decline in the

ADassessment scale cognitive score [1].Moreover, in the same study,

the effect of this SNP on the longitudinal trajectories of the

hippocampi was investigated. Results revealed that the minor

allele significantly slowed hippocampal atrophy compared to the

major allele. This suggests a potential protective effect associated with

theminor allele of rs1354106 in patients withAlzheimer’s disease and

mild cognitive impairment [45]. This is validated by our findings,

which indicated a protective role of the rs1354106 T>G in Lebanese

AD patients (GT; O. R = 0.173 CI = 0.051–0.586, P = 0.005).

The association between HLA gene variants and Alzheimer’s

disease (AD) risk has been extensively explored across diverse

populations. Our study on the Lebanese population, first revealed

a protective effect of rs1846190G>A, of HLA-DRB1 but the

association did not stand after Bonferroni correction. HLA-DRB1

13:02 protects against age-related neural network deterioration and

mitigates the deleterious effects of apoE4 on neural network

functioning [46]. Furthermore, a recent study, conducted on the

Japanese population, identified a significant association between the

HLA-DRB109:01-DQB1*03:03 haplotype and LOAD risk in APOE

ε4–negative individuals [47].Moreover, studies have emphasized the

protective function of HLA-DRB1*04 against AD, as its presence is

correlated with lower CSF tau levels and fewer neurofibrillary tangles

in AD subjects [48]. Conversely, HLA-DRB1*03 was identified as a

risk factor for late-onset AD (LOAD) in the German population

[31]. Additionally, the SNP rs9271192 in HLA-DRB5–DRB1 region

has been found to influence AD risk through large meta-analyses of

genome-wide association studies (GWAS) in Caucasian populations

[48]. These findings have been replicated successfully in two large-

scale studies conducted on the Chinese population [49, 50].

TABLE 2 Characteristics of AD patients and controls.

Control Alzheimer P-value

N mean ±
SD

N mean ±
SD

Age (y) 250 70.06 ± 8.82 127 80.99 ± 7.94 <0.001

Sex female
male

N
98
150

%
71.5
63.0

N
39
88

%
28.5
37.0

0.094

Educational
level

none
School

High school
university

43
85
5
12

29.7
58.6
3.4
8.3

46
61
0
15

37.7
50.0
0
12.3

0.056

Marital
status

single
Married
Divorced
widowed

1
72
43
30

0.7
49.3
29.5
20.5

29
58
6
30

23.6
47.2
4.9
24.4

<0.001

Smoker no
Yes

131
77

63.0
37.0

87
28

75.7
24.3

0.025

TABLE 3 The loci, allele frequencies, and genetic effects of the six SNPs in this study.

SNP Position (GRCh38.p14) MAF Population Frequency Gene Consequence

rs1846190G>A 6:32616036 0.24 0.2279 HLA-DRB1 Intron variant

rs3935067G>C 7:143407238 0.37 0.3844 EPHA1-AS1 2KB Upstream Variant

rs7912495A>G 10:11,676,714 0.47 0.4728 ECHDC3 Non Coding Transcript Variant

rs1582763G>A 11:60254475 0.42 0.4252 MS4A4A Intron variant

rs1354106T>G 19:51234736 0.23 0.3129 CD33 Intron variant

rs2154482G>T 21:26148613 0.49 0.4863 APP Intron variant

SNP, single nucleotide polymorphism; MAF, minor allele frequency.
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A recent study examined global cortical amyloid PET burden,

incorporating the 38 gene variants, from the GWAS study, using

PRSice-2, to assess overall phenotypic variance in two cohorts [20].

The analysis revealed a strong association between AD risk variants

(such asAPOE, PICALM, CR1, andCLU) and amyloid PET levels in

both cohorts. Importantly, neither CD33 rs1354106T>A nor HLA-

DRB1 rs1846190G>A demonstrated an association with amyloid

PET levels in this study [51]. This underscores the alignment of our

findings with existing evidence concerning the protective effect of

both variants against Alzheimer’s disease risk.

In conclusion, understanding protective variants could

refine AD risk assessment in asymptomatic individuals,

aiding AD prevention. Furthermore, identifying genetic

variants that confer protection via a loss-of-function or

gain-of-function offers potential drug targets. Most drug

candidates never reach the clinic, but those with the same

mechanism as protective variants have a higher success rate.

Our current study has provided convincing statistical support

for an association between CD33 polymorphisms and LOAD.

Specifically, the carriage of GT alleles rs1354106 T>G in CD33

is linked to a protective effect against LOAD in the Lebanese

Population. The main limitation of this study is the sample

size used, probably affecting the statistical significance of

rs1846190 SNP and HLA-DRB1 association with AD after

Bonferroni correction. Further investigations involving larger

sample sizes and diverse ethnic groups are needed to validate

the role of rs1354106 and examine the potential role of

rs1846190 in LOAD.
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TABLE 4 Multiple Logistic Regression analysis of risk factors with
Alzheimer’s disease.

Alzheimer’s diseases (N = 377)

Or (95% C.I.) p

Age 65–69 1 0.435

70–74 2.245 (0.294–17.130)

75–79 2.233(0.388–12.836) 0.368

>80 4.341(0.792–23.803) 0.091

Gender Male 1

Female 0.629(0.203–1.956) 0.424

BMI <25 1

25–29.9 1.962(0.577–6.673) 0.281

≥30 0.245(0.040–1.532) 0.133

Educational level None 1

School 0.729(0.231–2.298) 0.589

High School 5.418(0.652–45.040) 0.118

University - -

Smoking No 1

Yes 0.388(0.103–1.454) 0.161

rs1846190 in HLA-DRB1 GG 1

AG 0.042(0.003–0.681) 0.026

AA 0.052(0.004–0.763) 0.031

rs3935067 in EPHA1-AS1 GG 1

GC 0.536(0.153–1.876) 0.329

CC 2.959(0.497–17.625) 0.234

rs7912495 in ECHDC3 AA

AG 0.498(0.136–1.829) 0.293

GG 0.581(0.101–3.331) 0.543

rs1582763 in MS4A4A GG

AG 1.855(0.534–6.441) 0.331

AA 3.332(0.640–17.349) 0.153

rs1354106 in CD33 TT 1

GT 0.173(0.051–0.586) 0.005

GG 0.233(0.024–2.270) 0.210

rs2154482 in APP TT

GT 3.658(0.796–16.817) 0.096

GG 1.740(0.300–10.074) 0.537
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