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Abstract

Advancements in artificial intelligence (AI) are transforming strabismus

management through improved screening, diagnosis, and surgical planning.

Deep learning has notably enhanced diagnostic accuracy and optimized

surgical outcomes. Despite these advancements, challenges such as the

underrepresentation of diverse strabismus types and reliance on single-

source data remain prevalent. Emphasizing the need for inclusive AI systems,

future research should focus on expanding AI capabilities with large model

technologies, integrating multimodal data to bridge existing gaps, and

developing integrated management platforms to better accommodate

diverse patient demographics and clinical scenarios.
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Impact statement

Early diagnosis and treatment of strabismus are crucial for preventing irreversible

visual impairment and improving patient outcomes. This review explores the

transformative potential of AI in strabismus management, highlighting significant

advancements in screening, diagnosis, and surgical planning that have improved

diagnostic accuracy and surgical outcomes. It addresses current challenges such as the

underrepresentation of diverse strabismus types and reliance on single-source data,

emphasizing the need for inclusive AI systems integrating multimodal data. As the

first dedicated review on AI’s role in strabismus, it provides valuable insights and guides

future research. This new information highlights AI’s potential to enhance patient

outcomes, improve ophthalmic care, and contribute to societal welfare, setting the

stage for further advancements in AI applications in strabismus management.
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Introduction

Strabismus, a prevalent ocular disorder characterized by the

misalignment of eyes [1], predominantly affects children, leading

to rapid deterioration of binocular vision, monocular

suppression, anomalous retinal correspondence, and

ultimately, irreversible and permanent visual impairment.

While primarily seen in children, strabismus can occur at any

age, significantly impacting visual function, appearance, learning

abilities, employment opportunities [2], and mental health [3],

thus constituting a significant societal concern [4]. Delays in

diagnosis and treatment often culminate in binocular vision

dysfunction or irrevocable vision loss [5]. Given its subtle

onset and diverse subtypes, early diagnosis significantly

enhances recovery chances. Certain types of infantile

strabismus, such as intermittent esotropia in infants under

6 months, may naturally improve by the age of one,

advocating for close monitoring to circumvent premature

surgical interventions [6]. In light of the above, implementing

screening for high-risk groups and precisely diagnosing subtypes

of strabismus, coupled with early and appropriate interventions

(such as surgery), is of paramount importance. Screening refers

to a binary classification process aimed at determining the

presence or absence of strabismus, assisting in identifying

cases that require referral for further evaluation. Diagnosis, on

the other hand, involves multi-class classification to determine

the specific subtype of strabismus, which is critical for deciding

on appropriate treatment options. However, current strabismus

screening and diagnosis are primarily conducted manually by

strabismus and pediatric ophthalmologists using methods such

as the corneal light reflex test and cover test, which heavily rely on

patient cooperation and the physician’s skill and experience.

Recent years have seen an exponential growth in artificial

intelligence (AI) technology, encompassing research on all

common ocular diseases, including anterior segment diseases

like keratoconus [7] and cataracts [8], and posterior segment

diseases such as retinal diseases [9] and optic nerve-related

conditions [10]. The year 2023 witnessed unprecedented

breakthroughs in medical AI capabilities, propelled by the

transformative development of large models, such as ChatGPT

[11]. Google’s Med-PaLM [12], achieving expert-level

performance on U.S. medical licensing examination questions,

and the publication of foundational large model articles in

prestigious journals like Nature [13], have underscored the

emerging landscape of medical AI large models. The

substantial potential of AI has markedly improved the accuracy

of ocular disease screening and diagnosis, contributing to reduced

healthcare workload, lower medical costs, and addressing the

shortage of ophthalmologists, thereby striving for

comprehensive healthcare resource coverage and enhanced

public health. Notably, AI research in strabismus treatment and

prognosis prediction has also been flourishing. This article, set

against the backdrop of large model intelligence in medicine,

primarily outlines the current state of research on AI

applications in the screening, diagnosis, surgical parameter

estimation, and prognosis prediction of strabismus, and

provides a perspective on its research trends. Figure 1 and

Table 1 summarize the relevant studies and applications discussed.

AI in strabismus screening
and diagnosis

AI-driven strabismus detection using eye
movement videos

The integration of videos with artificial intelligence (AI) in

strabismus diagnosis represents a significant advancement in

pediatric ophthalmology, offering a nuanced understanding of

ocular misalignments through precise and dynamic assessment.

This approach capitalizes on the temporal and spatial accuracy of

eye tracking to capture subtle deviations in gaze behavior, which

are often elusive in traditional examination settings. By

harnessing the computational power of AI, these systems

analyze complex eye movement patterns efficiently,

uncovering diagnostic insights that transcend human

observation. Furthermore, the ability to conduct these

assessments in a non-invasive, patient-friendly manner

reduces the stress associated with conventional diagnostic

procedures, facilitating a more comfortable experience for

pediatric patients. The amalgamation of eye-tracking

technology and AI not only streamlines the diagnostic process

but also enhances its accuracy, paving the way for early

intervention strategies that are critical in mitigating the long-

term visual consequences of strabismus.

In a groundbreaking study published in Nature Biomedical

Engineering, Long et al. [14] investigated deep learning for

diagnosing visually impaired infants, focusing on strabismus.

Using a dataset of over 4,196 infants, they employed a temporal

segment network on full-length videos to identify visual

impairment patterns. The study highlighted Duane Syndrome

and achieved high accuracy with area under the curve (AUC)

metrics of 86.4%–93.0% for congenital conditions. This research

validates deep learning’s potential in diagnosing complex

strabismus and underscores video-based behavioral analysis as

a non-invasive pediatric ophthalmology tool [14]. Chen et al. [15]

published a multicenter study in Nature Medicine, revealing a

deep learning-based screening method for pediatric ophthalmic

diseases, capable of diagnosing 16 common eye conditions in

children, including strabismus. The study used cartoon videos to

engage children, while advanced imaging recorded their head

and eye movements. The neural network analyzed gaze patterns

and facial features, distinguishing specific conditions. Using a

dataset of 3,652 subjects and over 25 million video frames, the

model achieved an AUC of 0.940 for internal validation and

0.843 for external validation [15].
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While the studies mentioned offer significant insights into

screening multiple pediatric eye diseases, including strabismus,

their accuracy specifically for strabismus diagnosis highlights

room for improvement. Given the potential of AI and eye-

tracking technologies to advance strabismus diagnosis,

automating this process presents a more accurate and efficient

alternative to traditional methods. Therefore, previous studies

have been published that focus specifically on AI-based

strabismus screening and diagnosis using eye movement

videos. Miao et al. [16] innovatively apply Virtual Reality

(VR) to strabismus diagnosis, introducing a VR-based system

that utilizes infrared cameras for measuring ocular deviation. In

clinical trials, the VR system achieved a mean deviation of 0.4° ±

0.2° in orthotropic patients and 8.1° ± 5.5° in exotropic patients,

closely mirroring doctor evaluations [16]. In the study by Saisara

et al. [17], a novel strabismus screening approach combining eye

tracking and gaming is proposed through the integration of the

Gazepoint GP3 Eye Tracker with custom games. The system was

tested on 50 volunteers, effectively identifying strabismus cases

with a specific threshold value [17]. Chen et al. [18]’s study

employs the Tobii X2-60 eye tracker to automate strabismus

diagnosis. By contrasting object positions with eye fixations, their

method identifies strabismus types. Precision is ensured through

a 25-point calibration test, proving effective in diagnosing

conditions like hypertropia [18]. Valente et al. [19] explore

automated strabismus diagnosis through digital video analysis

of the cover test. The study outlines an eight-step methodology

culminating in a diagnostic accuracy of 93.33% for exotropia,

with a specificity of 100% and a sensitivity of 80%. Furthermore,

the system reported an average error of 2.57° in deviation

measurement [19]. Chen et al. [20] developed a deep learning

model capable of diagnosing strabismus by leveraging six

different convolutional neural networks (CNNs) - AlexNet,

VGG-S, VGG-M, VGG-16, VGG-F, and VGG-19. They

collected eye-tracking data as participants looked at nine

specific points, represented through gaze deviation (GaDe)

images, from 42 subjects for model training and verification.

Among the tested networks, VGG-S emerged as the most

effective, demonstrating a specificity of 0.960 and sensitivity of

0.941 [20]. These findings highlight the tremendous potential of

DL algorithms based on eye movement videos in the field of

strabismus screening and subtype diagnosis.

AI-driven strabismus diagnosis using
ocular position photos

While eye-tracking technology, with its spatial and temporal

accuracy, excels at capturing subtle deviations in gaze behavior

and leverages the AI for precise and dynamic evaluation of eye

FIGURE 1
Overview of integrating AI in Strabismus management. This figure summarizes the use of different data modalities and AI algorithms in
strabismus management tasks, highlighting their advantages and disadvantages. Disadvantages are indicated in bold.
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TABLE 1 Summary of AI applications in strabismus management.

Authors,
year

Task Age,
years

Disease type Data
type

Sample size AI algorithm Output

Strabismus Screening and Diagnosis

Long 2019 [14] Diagnosis 0–3 Visual impairment
(including
strabismus)

videos 4,196 subjects Temporal Segment
Networks

AUC = 0.816–0.930

Chen 2023 [15] Screening 0–4 Visual impairment
(including
strabismus)

videos 3,652 subjects EfficientNet-B4 AUC = 0.940 for internal
validation

AUC = 0.843 for external
validation

Miao 2020 [16] Ocular deviation
measurement

>6 Exotropia VR-based
pupil

tracking

17 subjects stepwise
approximation

Mean deviation of 0.4° ± 0.2°

in orthotropia, 8.1° ± 5.5° in
exotropia

Saisara 2017 [17] Screening 7–50 Strabismus Games and
Eye

tracking
data

50 subjects Gazepoint Analysis Identified
Dthreshold ≥0.05 for

strabismus

Chen 2015 [18] Diagnosis 3–63 Esotropia,
Exotropia and
Hypertropia

Eye
tracking
data

225 subjects Eye-tracking with
Tobii X2-60

Identified subjects’ fixation
accuracy

Valente
2017 [19]

Diagnosis — Exotropia Eye
tracking
videos

15 videos of
7 strabismic subjects

Image processing Sensitivity = 0.800
Specificity = 1.000
Accuracy = 0.933

Chen 2018 [20] Screening 25–63 Recessive,
intermittent, and

manifest
strabismus

Eye
tracking
images

42 subjects AlexNet
VGG-F
VGG-M
VGG-S
VGG-16
VGG-17

VGG-S:
Accuracy = 0.952
Specificity = 0.960
Sensitivity = 0.941

Ma 2020 [21] Screening 8–10 Strabismus,
myopia and
anisometropia

Images 100 subjects Image processing Accuracy = 0.940
Specificity = 0.980
Sensitivity = 0.800

Kang 2022 [22] Diagnosis — Strabismus Images 828 subjects U-Net Sclera Segmentation:
Accuracy = 0.998
Specificity = 0.975
Sensitivity = 0.999

DSC = 0.969
Limbus Segmentation:
Accuracy = 0.999
Specificity = 0.956
Sensitivity = 0.999

DSC = 0.957

Almeida
2015 [23]

Diagnosis — Exotropia,
Esotropia,

Hypertropia and
Hypotropia

Images 200 images of
40 strabismic subjects

SVM Accuracy:
0.880 (ET)
1.000 (XT)
0.803 (HT)
0.833 (HoT)

de Oliveira
Simoes

2019 [24]

Diagnosis — Exotropia,
Esotropia,

Hypertropia and
Hypotropia

Images 225 images of
45 strabismic subjects

U-Net,
ResNet

Accuracy = 0.966
Specificity = 1.000
Sensitivity = 0.958

Mesquita
2021 [25]

Diagnosis 5–15 Exotropia,
Esotropia,

Hypertropia and
Hypotropia

Images 224 subjects Image processing Accuracy = 0.845
Specificity = 0.844
Sensitivity = 0.895

Kappa coefficient = 0.430

De Figueiredo
2021 [26]

Diagnosis 6–87 Exotropia and
Esotropia

Images ResNet50 Accuracy = 0.420–0.920
Precision = 0.250–0.840

(Continued on following page)
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movements in both “resting” and “task” states, facilitating the

screening of multiple ocular diseases and identification of certain

strabismus subtypes, the collection of eye movement videos often

requires specialized equipment and is more time-consuming.

Additionally, video processing demands substantial

computational resources, unlike the convenience and lower

computational requirements of ocular position photos. Merely

a camera or even a smartphone can complete the image capture

process. Instant uploads can return diagnostic results within

milliseconds. Therefore, specifically for strabismus, AI systems

based on ocular position photos continue to play a unique and

indispensable role.

In the current realm of AI research for strabismus screening

and diagnosis using ocular position photos, two main approaches

TABLE 1 (Continued) Summary of AI applications in strabismus management.

Authors,
year

Task Age,
years

Disease type Data
type

Sample size AI algorithm Output

990 images of
110 strabismic

subjects

Recall = 0.380–0.920
F1 = 0.290–0.880

Val_Loss = 0.085–2.210

Huang 2021 [27] Screening — Strabismus Images 60 subjects ResNet-12 Accuracy = 0.805
Specificity = 0.768
Sensitivity = 0.842

Zheng 2021 [28] Screening — Exotropia and
Esotropia

Images 7,026 images for
training and 277 for
External Validation

VGG16,
Inception-V3,
Xception

Inception-V3:
AUC = 0.997

Accuracy = 0.968
Specificity = 0.993
Sensitivity = 0.940

Mao 2021 [29] Screening 1–65 Exotropia Images 5,797 subjects InceptionResNetV2 AUC = 0.998
Accuracy = 0.990
Specificity = 0.983
Sensitivity = 0.991

Wu 2024 [30] Screening 1–74 Exotropia,
Esotropia and

Vertical deviation

Images 6,194 images VIT_16_224 AUC = 0.994,
Accuracy = 0.967, Precision =
0.980, Specificity = 0.970,

Sensitivity = 0.960,
F1 = 0.975

Kim 2021 [31] Diagnosis — Exotropia and
Esotropia

Images 2023 subjects CNN Accuracy = 0.667

Strabismus Surgical Planning and Prognostication

De Almeida
2015 [32]

Surgical planning — Exotropia and
Esotropia

Clinical
data

88 patients SVR Average error: medial rectus
muscles:

0.500 mm for recoil, 0.700 for
resection lateral rectus

muscles:
0.600 for recoil, 0.800 for

resection

Fernando
2021 [33]

Surgical planning 0.5–65 Exotropia and
Esotropia

Clinical
data

153 patients DTR, RFR, ETR MAE:0.448 – 1.038 mm
RMSE = 1.496–2.447 mm

Tang 2022 [34] Surgical planning — Strabismus Clinical
data

1,076 patients WGAN-GP +
lightGBM

AUC = 0.845

Mao 2021 [29] Surgical planning 1–65 Exotropia Images 1,070 images InceptionResNetV2 accuracy of ±5.5° (11.5 PD)
with a bias of −0.6°

Lou 2023 [35] Surgical Planning 17.6 ±
12.7

Inferior oblique
overaction

Images 106 eyes GAR2U-Net ICC = 0.975

Liu 2019 [36] Surgical
Prognostication

6–12.25 Intermittent
exotropia

Clinical
data

132 patients SVM Accuracy = 0.821

AI, artificial intelligence; AUC, area under curve; DSC, dice similarity coefficient; SVM, support vector machine; ET, esotropia; XT, exotropia; HT, hypertropia; HoT, hypotropia; CNN,

convolutional neural network; SVR, support vector regression; DTR, decision tree regressor; RFR, random forest regressor; ETR, extra trees regressor; MAE, mean absolute error; RMSE,

root mean squared error; LightGBM, light gradient-boosting machine; PD, prism diopter; ICC, intraclass correlation coefficient. This table summarizes various studies on AI applications

in strabismus management, detailing the author and year, task, data type, sample size, AI algorithm, and key performance metrics.
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prevail: algorithms for key eye region segmentation based on

traditional stepwise learning, and classification algorithms based

on end-to-end learning.

Traditional machine learning algorithms
Ma et al. [21] developed a smartphone app for the rapid

screening of pediatric eye diseases, including strabismus.

Utilizing image processing and AI, the app analyzes photos

taken in dark rooms to evaluate facial landmarks, head tilt,

and eye positions. It employs shape fitting techniques to

estimate corneal light reflex and red reflex contours, quickly

assessing risks of strabismus, myopia, and refractive errors in just

10 s. The app’s sensitivity and specificity for detecting strabismus

are 0.80 and 0.98, respectively, proving effective for early

diagnosis [21]. Kang et al. [22] developed a deep learning

model using U-Net architecture to detect strabismus by

segmenting the cornea and scleral limbus from 828 gaze

photographs across nine different gaze positions. The model

demonstrated high segmentation accuracy: 0.9984 for the cornea

and 0.9992 for the limbus, with Dice Similarity Coefficients of

0.9688 and 0.9571, respectively [22]. Almeida et al. [23]

employed support vector machines (SVMs) for a machine

learning-based diagnostic approach to strabismus. Analyzing

200 images from 40 patients with conditions like esotropias,

exotropias, hypertropias, and hypotropias, their methodology

involved face segmentation and eye region detection to precisely

identify eye deviations. It achieved accuracy rates of 88% for

esotropias, 100% for exotropias, and over 80% for vertical

deviations, with errors closely matching specialist assessments

[23]. de Oliveira Simoes et al. [24] adopted a similar experimental

approach. Employing a private dataset of 225 images from

45 patients, the research aimed at evaluating ocular alignment

by analyzing the distance between the limb centroid and a point

between the eye corners, achieving an impressive accuracy of

96.6%, with a sensitivity of 95.8% and specificity of 100% [24].

Mesquita et al. [25] explored the concordance between expert

ophthalmologist diagnoses and those made by an mHealth

application for strabismus in 224 children aged 5–15. The app

analyzed smartphone photos, incorporating steps like face

segmentation, eye region detection, and alignment comparison

of the Limbus center with brightness location. The app

demonstrated a sensitivity of 89.47% and specificity of 84.39%

at 6 PD, affirming its utility as a screening tool despite some

misclassifications [25]. De Figueiredo et al. [26] developed an app

based on the ResNet50 neural network to diagnose strabismus by

identifying patients’ different gaze positions in photographs from

110 patients. The model, trained to recognize combinations of

left and right eyes in gaze positions ranging from 1 to 9 and

version classifications from −4 to +4, achieved an overall

accuracy between 0.42 and 0.92 and precision between

0.28 and 0.84 [26]. Huang et al. [27] developed a strabismus

screening model with frontal facial images for face and eye region

identification, and refining the detection with Otsu’s binarization

and the HSV color model. The model uses the least squares

method to locate the pupil’s center and assesses strabismus

through eye positional similarity. Additionally, utilizing the

ResNet-12 network for screening on images from 60 subjects,

the team achieved diagnostic accuracy, sensitivity, and specificity

of 0.805, 0.768, and 0.842, respectively [27].

End-to-end deep learning algorithms
Zheng et al. [28] leveraged the Inception-v3 architecture to

train a model for identifying referable horizontal strabismus in

children’s primary gaze photos, excluding conditions like vertical

and paralytic strabismus. It achieved an average AUC of about

0.99, with sensitivity at 94.0%, specificity at 99.3%, and accuracy

at 96.8% in the external validation set, outperforming resident

ophthalmologists [28]. Lin et al. [29] utilized the

InceptionResNetV2 architecture for training a model aimed at

diagnosing horizontal strabismus, deliberately excluding vertical

strabismus and intermittent exotropia during the data collection

phase. The training involved 1,561 photographs of horizontal

strabismus (both esotropia and exotropia) and 2,496 of normal

eyes. Tested on 356 horizontal strabismus and 514 normal eyes,

the model achieved a sensitivity of 0.991, a specificity of 0.983,

and an accuracy of 0.990 [29]. Wu et al. [30] constructed the

largest corneal light-reflection photo dataset in the field to date

and trained a model based on the Transformer architecture

(VIT_16_224). Unlike previous studies that focused solely on

pediatric patients and a limited number of strabismus subtypes,

this study encompassed all age groups and a comprehensive

range of strabismus subtypes, resulting in the development of the

best-performing model. The VIT_16_224 architecture

outperformed the models from the aforementioned studies on

a shared dataset. On an independent test set, the model achieved

an accuracy of 0.967, precision of 0.980, specificity of 0.960,

sensitivity of 0.970, and an F1 score of 0.975, significantly

improving the generalizability and practicality of the

diagnostic model. Donghwan Kim et al. [31] introduced a

Convolutional Neural Network (CNN)-based model for

classifying strabismus into three categories: esotropia,

exotropia, and normal eye alignment, leveraging a “9-photo”

front view. The training set consisted of “9-photo” sets from

73 esotropia patients, 75 exotropia patients, and 72 individuals

with normal alignment. Testing was conducted with “9-photo”

sets from 10 patients in each group. The model achieved a final

test accuracy of 66.7% [31]. These studies highlight the model’s

potential to streamline early strabismus diagnosis in

young children.

Comparison of traditional machine learning and
end-to-end deep learning algorithms

In comparing traditional machine learning algorithms and

end-to-end deep learning algorithms for strabismus diagnosis,

several key differences and similarities emerge. Traditional

machine learning algorithms typically involve a series of pre-
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processing steps, feature extraction, and model training phases.

Common techniques include Support Vector Machines (SVM),

decision trees, and regression models. For eye region

segmentation, researchers often use pre-trained facial

detection models to extract key regions and calculate

coordinates for critical areas like the pupil center and corneal

light reflex points. By comparing these results to predetermined

thresholds, the presence and subtype of strabismus can be

determined. These methods are easier to interpret and require

less computational power, allowing for fine-tuning at each stage.

However, their performance heavily depends on the quality and

relevance of manually extracted features and may struggle with

high-dimensional data and complex patterns inherent in ocular

position photos. Additionally, the selection of thresholds based

on limited statistical data within smaller datasets may introduce

bias, reducing the model’s generalizability.

In contrast, end-to-end deep learning algorithms, such as

convolutional neural networks (CNNs) and recurrent neural

networks (RNNs), learn features and patterns directly from

raw data, automating the feature extraction process. These

models use extensive image datasets to enhance the model’s

generalization capability, handling large, high-dimensional

datasets and capturing complex, non-linear relationships

within the data. This leads to higher accuracy and robustness

in predictions. However, they require significant computational

resources and large amounts of labeled data for training, and

their “black-box” nature can make interpretation and

troubleshooting more challenging.

In conclusion, end-to-end deep learning models generally

outperform traditional machine learning algorithms in accuracy

and generalizability due to their ability to learn directly from data

without manual feature extraction. Deep learning models scale

better with increased data, improving performance as more data

becomes available, whereas traditional methods may not show

the same level of improvement due to the limitations of manual

feature extraction. While traditional machine learning models

are more interpretable, providing clearer insights into the

decision-making process, deep learning models offer superior

performance and scalability for strabismus diagnosis using ocular

position photos. The choice between the two depends on the

specific requirements and constraints of the clinical application,

including the availability of computational resources and the

need for model interpretability. This comparative understanding

highlights the potential of integrating both approaches to

optimize diagnostic accuracy and clinical applicability.

AI in strabismus surgical planning and
prognostication

The application of AI in strabismus surgical planning and

prognostication represents a transformative shift towards

precision medicine in pediatric ophthalmology. Recent studies

exemplify the integration of advanced machine learning models,

such as Support Vector Regression (SVR) [37], multi-output

regression trees [38], Light Gradient Boosting Machines

(LightGBM) [34], convolutional neural networks (CNN) [39],

and recurrent residual CNNs [40] with global attention gates, to

refine surgical strategies for complex ocular deviations. These AI-

driven tools process extensive clinical data, including visual

acuity, type of deviation, binocular fixation, and ocular

position, to predict the precise amounts of muscle resection

and recoil needed in surgeries.

De Almeida et al. [32] conducted a regression study on

88 patients with horizontal strabismus using Support Vector

Regression (SVR). The model aimed to accurately estimate the

adjustments needed for medial and lateral rectus muscles. The

SVR model achieved mean absolute errors of 0.5 mm for medial

rectus recoil and 0.7 mm for resection, with 0.6 mm for lateral

rectus recoil and 0.8 mm for resection [32]. Leite et al. [33]

analyzed surgical planning for strabismus in 153 patients with

horizontal deviations, primarily esotropia and exotropia.

Utilizing comprehensive patient data including age, binocular

fixation, and deviation from five ductions positions, the study

applied a multi-output regression tree approach to predict

necessary surgical adjustments for various muscles. The model

accurately forecasted recoil and resection requirements for both

medial and lateral rectus muscles, achieving a Mean Absolute

Error (MAE) range of 0.448 mm–1.038 mm and a Root Mean

Square Error (RMSE) of up to 1.496 mm [33]. Tang et al. [34]

conducted a study involving 1,076 surgical cases of patients with

various types of strabismus, including esotropia and exotropia,

using patient data like age, dominant eye, and exodeviation

angles. They developed a model using the Light Gradient

Boosting Machine (LightGBM) architecture, which initially

achieved a 69.32% accuracy in predicting surgical adjustments

such as muscle movement amount and direction. To address data

scarcity and improve model performance, the Wasserstein

Generative Adversarial Network with Gradient Penalty

(WGAN-GP) was applied, enhancing accuracy to 84.52% [34].

Mao et al. [29] developed an Operation Advice System using

corneal light-reflection photos from 56 exotropia patients who

had successfully undergone initial surgeries. The retrospective

test set included 160 subjects, predominantly with intermittent

exotropia, and demonstrated a high positive correlation (r = 0.86,

P < 0.001) between the predicted and actual surgical angles, with

an accuracy of ±5.5° (11.5 PD) and a slight bias of −0.6° [29]. Lou

et al. [35] developed a recurrent residual CNN based on GAR2U-

Net to evaluate Inferior Oblique Overaction (IOOA) in a study

involving 106 eyes of 72 patients. The technique focused on

measuring the height difference between the inferior corneal

limbus of both eyes, a key indicator of IOOA, which was clinically

graded from +1 to +4. The study found significant correlations

between automated photographic measurements and clinical

gradings, and excellent agreement with manual measurements,

indicated by intraclass correlation coefficients (ICCs) of 0.975.
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This study demonstrates advanced neural networks’ ability to

offer cost-effective, accurate, and scalable IOOA assessments

using simple photographs [35]. Liu et al. [36] conducted a

prospective cross-sectional study on 132 patients with

intermittent exotropia, using a support vector machine (SVM)

to determine the optimal timing for surgical interventions. The

study utilized preoperative factors like deviation angle, binocular

vision, and stereoacuity to predict the best moment for surgery.

Post a 6-month follow-up, the SVM achieved an 82.1% accuracy

rate, with an overall success rate of 63.6%, identifying the initial

postoperative deviation angle as a crucial predictor of successful

alignment. This research highlights the effectiveness of SVM in

enhancing surgical outcomes for exotropia through precise

timing based on detailed clinical data [36].

The aforementioned study illustrate that AI integration

refines surgical planning and prognostication. By leveraging

these technologies, ophthalmologists can achieve significantly

improved accuracy in surgical outcomes, enhancing patient-

specific treatment plans. Notably, these models facilitate the

analysis of deviations, muscle actions, and postoperative

alignments, allowing for highly individualized surgical

interventions. This marks a significant shift in enhancing

surgical precision and redefining strabismus

management standards.

Discussion

The integration of artificial intelligence (AI) in strabismus

management represents a significant advancement in

ophthalmology, enhancing diagnostic precision and

therapeutic efficacy. As AI technologies have begun to

permeate every aspect of healthcare, from data collection and

integration [41–45] to analysis and treatment [46], they

demonstrate a potent synergy with medical professionals,

showcasing their immense potential to enhance human health

[47]. The advent of large models like ChatGPT has marked a

pivotal shift, increasingly evident in the fourth industrial

revolution, driving transformative changes in how healthcare

is delivered.

While AI’s application in healthcare, particularly in

ophthalmology, is promising, it faces challenges such as the

need for improved data-sharing mechanisms, validation,

evaluation, and regulatory frameworks. Despite the impressive

achievements of AI in enhancing strabismus screening,

diagnosis, and treatment, there are significant limitations

regarding the representativeness and generalizability of these

advancements in real-world clinical settings. Current research

often excludes numerous strabismus types, such as vertical,

restrictive, sensory, paralytic strabismus, myasthenia gravis,

nystagmus, and Duane syndrome, focusing primarily on

pediatric populations and concomitant strabismus patients.

This oversight highlights a critical gap, as there is a pressing

need for comprehensive screening and precise diagnostic

processes that encompass all age groups and subtypes of

strabismus. Thus, the utility of these AI models in diverse

clinical environments remains questionable. Meanwhile,

despite early advantages in AI research facilitated by the

digitization in ophthalmology, which amassed extensive

imaging and pathological data, the comprehensive integration

of multimodal patient data remains scarce, and the reliance on

single data sources for AI diagnostics and prognostic assessments

presents substantial challenges. Typical methodologies primarily

use ocular position photos or eye movement videos for

diagnosing strabismus, or electronic health records for

predicting surgical outcomes, without considering additional

data inputs, such as the sensory exam results, the refractive

status, the CT or MRI images, forced duction test, etc.

Conversely, clinicians often employ a multimodal data

approach, integrating those concurrent data streams to

enhance the accuracy of disease diagnosis, prognostic

evaluations, and therapeutic strategies. Current AI systems

process static, singular time-point data, which fails to capture

the dynamic, evolving nature of diseases and overlooks the rich

historical context of patient data that could significantly refine

predictive accuracies. Theoretically, as AI technologies advance,

models should be capable of harnessing all available data sources,

including those traditionally inaccessible to clinicians, such as

genomics [48]. Moreover, in regions such as China, many

hospitals still rely on non-digital, unstructured data collection

methods due to a lack of digital resources and personnel, leading

to incomplete or inaccurate medical data and hindering

widespread AI research. Additionally, the field suffers from a

scarcity of AI-driven strabismus management products that

extend beyond diagnosis to include essential services such as

patient referral and long-term follow-up, which are vital for

ensuring sustained care and systematic data collection across

various modalities and time points.

Moving forward, research utilizing deep learning in

strabismus should embrace a more inclusive approach,

incorporating patients of all ages, ethnicities, and all types of

the condition. However, the diversity in irrelevant features such

as eyelid size, eye color, and skin tone across different age groups

and ethnic backgrounds poses additional challenges for model

training. Complications such as eyelid ptosis, which require

physical assistance during photo acquisition, can disrupt the

accurate extraction of features by AI models. Additionally,

ensuring privacy protection is critical as AI technologies

handle sensitive medical data. Addressing these challenges is

essential for maximizing the clinical utility of AI technologies.

Future initiatives should focus on easily collectible multimodal

data for strabismus research, integrating biosensors, electronic

medical records, eye movement videos, ocular photos, and socio-

environmental factors throughout the patient care timeline.

Large AI models, such as Transformer-based architectures,

have the potential to handle the complexity and scale of
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multimodal data, offering enhanced generalization and

predictive power. This integration not only facilitates extensive

research but also enables the construction of ophthalmological

knowledge graphs and the provision of personalized treatment

recommendations, which are becoming increasingly feasible.

Meanwhile, the development of an integrated AI-based

strabismus management platform that facilitates paperless,

comprehensive management of strabismus patients from

screening through treatment, and enables the integration and

collection of cross-modal patient information, will lay a solid

foundation for a specialized, large-scale AI model in strabismus

care. The platform should support AI applications in the

screening, diagnosis, surgical parameter estimation, and

prognosis prediction of strabismus, as well as intelligent

follow-up. By leveraging a full-process, multimodal, and

multi-timepoint intelligent platform, ophthalmologists can

achieve more accurate, personalized, and effective strabismus

management, ultimately improving patient outcomes and

advancing the field of ophthalmology.

Conclusion

In conclusion, this review has highlighted significant

advancements and emerging challenges in integrating AI into

strabismus management. AI is revolutionizing screening,

diagnosis, and surgical planning through cutting-edge

technologies such as deep learning, enhancing accuracy and

optimizing outcomes. However, critical gaps are evident,

particularly the underrepresentation of diverse strabismus types

and age groups in AI studies. These limitations underscore the

necessity for AI systems that accommodate broader demographics

and clinical scenarios. Additionally, the reliance on single-source

data in AI models, compared to the multimodal approach used in

clinical settings, reveals an urgent need for integrating more

comprehensive data sources, including longitudinal patient data.

Addressing these challenges will be pivotal in advancing AI

technology in ophthalmology, enhancing patient outcomes, and

setting new standards in healthcare delivery.
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