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Abstract

Cognitive deficit is a debilitating complication of sickle cell disease (SCD), with a

multifactorial etiopathogenesis. Here we show that neuroinflammation and

dysregulation in lipidomics and transcriptomics profiles are major underlying

mechanisms of social stress-induced cognitive deficit in SCD. Male Townes

sickle cell (SS) mice and controls (AA) were exposed to social stress using the

repeat social defeat (RSD) paradigm concurrently with or without treatment

with minocycline. Mice were tested for cognitive deficit using novel object

recognition and fear conditioning tests. SS mice exposed to RSD without

treatment had worse performance on cognitive tests compared to SS mice

exposed to RSD with treatment or to AA controls, irrespective of their RSD or

treatment disposition. Additionally, compared to SS mice exposed to RSD with

treatment, SS mice exposed to RSD without treatment had significantly more

cellular evidence of neuroinflammation coupled with a significant shift in the

differentiation of neural progenitor cells towards astrogliogenesis. Additionally,

brain tissue from SS mice exposed to RSD was significantly enriched for genes

associated with blood-brain barrier dysfunction, neuron excitotoxicity,

inflammation, and significant dysregulation in sphingolipids important to

neuronal cell processes. We demonstrate in this study that social stress

induces cognitive deficit in SS mice, concurrently with neuroinflammation

and lipid dysregulation.
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Impact statement

We show for the first time that neuroinflammation along

with changes in the brain lipidome and transcriptome, are

underlying biological mechanisms contributing to the

development and potentially progression of cognitive

impairment in SCD mice. These findings also provide for the

first time, a potential mechanistic basis for an earlier reported

observation of a higher likelihood of having lower intelligence

quotient scores among children with sickle cell disease exposed to

social stress in the form of low parental socioeconomic status.

Introduction

Sickle cell disease (SCD) is a common inherited blood

disorder that affects approximately 100,000 Americans and

millions more worldwide [1, 2]. SCD is caused by a point

mutation in the gene for the β-globin subunit of hemoglobin.

This mutation causes the hemoglobin to polymerize in

conditions of low oxygen tension, causing the red blood cells

(RBCs) to assume a sickle morphology [2, 3]. Sickle RBCs are

more fragile and prone to hemolysis, leading to anemia; the

resulting free heme also initiates and propagates an inflammatory

cascade that leads to vaso-occlusion [2, 3], and end

organ damage [4].

The cerebrovascular effects of SCD include silent cerebral

infarctions (SCIs) found in ~39% of children by 18 years of age

and >50% of adults by 30 years of age, stroke, cerebral macro-

and microvascular abnormalities [5]. Strokes and SCIs have been

linked to cognitive impairment in SCD. However, recent studies

have found cognitive dysfunction in children [6–8] and adults [9,

10] even in the absence of MRI-detectable cerebral injury.

Children with SCD typically have lower full-scale IQ scores,

poorer academic achievement, and impaired processing speed [6,

7]. Similarly, adults with SCD exhibit impairments in processing

speed, working memory, global cognitive function, and

executive function.

The mechanism underlying cognitive impairment in SCD

is not well understood, and one possibility is that individuals

with SCD are hypersensitive to social stressors (to which

individuals with SCD are exposed), which interact with

biological factors leading to the development of cognitive

deficit. Individuals with SCD often belong to lower

socioeconomic classes with associated lower family

educational attainment and income. The impact of social

stress on cognitive function in SCD was recently

demonstrated by several studies [5, 11–13]. In a study by

King et al., they reported that social stressors in the form of

lower parental education levels and lower family income – had

a similar albeit slightly more severe impact on cognitive

function compared to biological factors – such as the

presence of SCI, anemia, and age [14, 15]. Studies in the

general human population and in non-sickle cell mouse

models have shown a link between social stress and

neuroinflammation. The functional effects of

neuroinflammation on the brain include the development

of cognitive impairment as well as neuropsychological

abnormalities, such as anxiety and depression [16]. As well

as learning and memory impairments [17–19]. Hence,

neuroinflammation may be a possible mechanism for

stress-induced cognitive abnormalities in SCD.

Neuroinflammation is also mediated by multiple factors,

including sphingolipids and genetics. Sphingolipids are a class

of bioactive lipids that participate in cell signaling. In the brain,

sphingolipids modulate cytokine release and astroglia activation

[20]. Studies have shown that imbalances in the sphingolipid

metabolism and distribution of lipids in the brain are associated

with impaired memory and learning in both humans and animal

models [21–26]. Furthermore, enzymes in the sphingolipid

pathway – such as sphingosine kinases, sphingosine-1-

phosphate lyase, and sphingomyelinases – are involved in

synaptic communication, learning, and memory, as well as in

the regulation of other enzymes (e.g., COX2) that synthesize both

pro-inflammatory and anti-inflammatory lipid mediators.

Changes in the enzymatic activity have been implicated in the

development of neuroinflammation and neurodegenerative

diseases, such as Alzheimer’s and amyotrophic lateral

sclerosis [27, 28].

We have previously shown that aging and

neuroinflammation contribute to cognitive impairment in the

SCDmouse model [29]. In the present study, we demonstrate the

role of sociological stress in cognitive and neurobehavioral

deficits in SCD and show that neuroinflammation is a likely

underlying mechanism. We used the repeat social defeat (RSD)

paradigm as a social stress model, as previously described [17].

Our overall hypothesis is that stress-related cognitive impairment

in sickle cell disease is mediated by neuroinflammation and

inimical changes in the brain lipidomic and transcriptomic

profiles compared to controls. Furthermore, treatment with

minocycline, an “anti-neuroinflammatory” drug, during RSD

exposure in mice will reduce neuroinflammation and improve

cognitive and behavioral function.

Materials and Methods

Animals

We used humanized Townes sickle cell mouse model (SS

or HbSS) and humanized control mice (AA or HbAA) [30].

Mice were provided food and water ad libitum, housed in a 12-

h light and dark cycle, and their health statuses were

monitored closely throughout the study. All experiments

were approved by the Institutional Animal Use Committee

at Emory University.
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Study design and overall methods

This study aims to examine the mechanism underlying the

development of cognitive deficit in SCD with exposure to social

stress, by using the repeat social defeat (RSD) paradigm in male

SS mice. RSD was carried out by introducing a male intruder

mouse (an aggressor) into an established cage containing three 6-

month-old male SS mice (N = 10) or AAmice (N = 10) every day

for 2 hours (5–7 p.m.) for six consecutive days. Age- and sex-

matched control [SS (N = 10) and AA (N = 10) mice] cages were

set up but without aggressor mice. On the seventh day, mice were

tested for cognitive/behavioral deficit using novel object

recognition (NOR) and fear conditioning (FC) test paradigms.

Except for the aggressors, all mice used were Townes humanized

SS and AA mice.

To test the hypothesis that neuroinflammation is an

underlying mechanism, a second cohort of SS (N = 35) and

AA (N = 32) mice were randomly assigned to receive oral

(administered in drinking water) minocycline treatment

(90 mg/kg) or placebo (plain drinking water). We assigned

2 mice to the minocycline plus stress arm (due to the

potential for injury and mortality from the RSD paradigm) for

every 1 mouse assigned to the other arms, from each genotype

group. Mice within each treatment arm were randomly assigned

to RSD exposure or no RSD exposure. Minocycline treatment

was started 1 day prior to the day of commencing RSD and co-

terminated on the same day as the final RSD session. The

minocycline dose was kept constant by adjusting the amount

administered daily, using the water/drug consumption from the

previous day. Cognitive/behavioral testing was performed as

before, starting the next day after day 6 of RSD and day

7 of treatment.

In both experiments, the mice were randomized to

histological analysis or molecular (bulk RNA sequencing and

lipidomics) studies and sacrificed 1-2 days after the completion of

behavioral testing. Their brains were extracted for the assigned

analysis. Cellular evidence of neuroinflammation in the

hippocampus/dentate gyrus was determined using

immunohistochemistry to quantify peripheral immune cell

infiltrates:CD45+ (bone marrow-derived microglia), CD3+

(T-cell density), B220+ (B-cell density), and Iba1+

(activated microglia).

A more detailed description of the study methods is in the

methods section of the Online Supplementary Material. Data

reporting is in accordance with the ARRIVE guidelines.

Results

All studies were conducted using male mice. Experimental

groups in this study are defined as follows: humanized control

mice (AA) and Townes sickle (SS) mice, and also denote animals

not exposed to stress or treated with minocycline; AA + RSD and

SS + RSD denote mice exposed to stress (RSD); AA +

minocycline and SS + minocycline denote mice not exposed

to RSD but treated with minocycline; AA + RSD + minocycline

and SS + RSD + minocycline denote mice treated with

minocycline 1 day prior to and during exposure to stress.

Figure 1 shows comparison of the groups on measures of

anxiety (open-field test) and cognitive function (percent

preference or freezing). In Figures 1A, B, overall, we see that

SS mice that were not exposed to RSD or drug treatment showed

more evidence of anxiety compared to AA mice that were not

exposed to RSD, indicated by the shorter distance traveled

(Figure 1A, day 1: 19,116 mm in AA vs. 12,593 mm in SS,

n.s.) and relatively shorter time spent in the middle of the open

field (Figure 1B, day 1: 33.94 s in AA vs. 24.06 s in SS, n.s.).

Furthermore, SS mice exposed to RSD showed more evidence of

anxiety compared to AAmice exposed to RSD (distance traveled:

day 1: 12,593 mm in SS vs. 9,274 cm in SS + RSD; time in the

middle of the open field: day 1: 24.1 s in SS vs. 32.3 s in SS + RSD)

or to SS or AA mice. Treatment with minocycline abrogated the

development of anxiety in SS mice exposed to RSD (distance

traveled: day 1: 13,276 mm in SS + RSD + Minocycline vs.

9,274 mm in SS + RSD; time in open field: day 1: 39.6 s in SS +

RSD + Minocycline vs. 32.28 s in SS + RSD: Figures 1A, B).

Furthermore, evaluation of hippocampus-dependent

non-associative as well as associative learning and

memory, was carried out using NOR and fear

conditioning, respectively. In the NOR test, (Figure 1C), SS

and AA mice had similar percent preference (56.1 ± 14% vs.

53.1 ± 13%), indicating comparable non-associative memory.

However, SS + RSD mice showed some evidence of cognitive

impairment as demonstrated by lower percent preference

(36.1 ± 18% SS + RSD vs. 56.1 ± 14% SS, p = 0.06)

compared to SS mice, indicating impaired non-associative

memory function. Additionally, we also noted that SS + RSD

+ minocycline mice had significantly higher percent

preference (67.1 ± 18% vs. 36.1 ± 18%, p = 0.0007)

compared to SS + RSD mice, suggesting that minocycline

treatment led to a sparing of non-associative memory in the

treated mice despite exposure to RSD. On the other hand, in

the AA group, neither stress nor minocycline treatment were

associated with significant changes in cognitive function.

Likewise, the fear conditioning tests (Figures 1D–F)

showed that overall, sickle and non-sickle mice, irrespective

of treatment or exposure disposition, trained similarly during

the acquisition phase (Figure 1D). As shown in Figure 1E, RSD

exposure resulted in significant impairment in contextual

(associative) fear memory (evidenced by significantly lower

percent freezing) in SS + RSD mice, compared to SS mice. As

in Figures 1C, E shows that SS + RSD + minocycline mice had

significantly better contextual fear memory, compared to SS +

RSD mice, p = 0.025 to p < 0.0001 across all time points except

at 240 s. The abnormal contextual fear memory indicates

possible molecular disturbance and/or “overt or covert”
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lesion of the amygdala resulting from exposure to RSD and its

abrogation by minocycline treatment.

Similarly, on cued fear testing (Figure 1F), there was no

significant difference in response from the unperturbed AA or SS

mice. However, SS + RSDmice showed significant impairment in

hippocampus-mediated cued (associative) fear memory

compared to SS + RSD + minocycline mice (p =

0.016 to <0.0001) across different time points. In contrast,

neither RSD nor minocycline had significant effects on

cognitive function among the AA genotypes.

Next, we evaluated the density of peripheral immune cell

infiltrates (known from here on as CD45+ “bone-marrow

derived” microglia [BMDM]), Iba1+ activated microglia

(activation state determined based on morphological features),

CD3+ T cells, and B220+ B cells in the hippocampus/dentate

gyrus (DG). We focused on the hippocampus/DG because of its

critical role in cognitive function as well as adult neurogenesis

[31]. In Figure 2A, we show that overall, SS mice had a higher

density of activated microglia (233.6 ± 44.6 cells/mm2 vs. 179.3 ±

47.0 cells/mm2, p ≤ 0.0001) compared to AA mice. Furthermore,

SS + minocycline mice had a significantly lower density of

activated microglia (164.4 ± 56.6 cells/mm2 vs. 233.6 ±

44.6 cells/mm2, p ≤ 0.0001) compared to SS mice. Similarly,

SS + RSD mice had a significantly higher density of activated

microglia (260.2 ± 44.3 cells/mm2 vs. 233 ± 44.6 cells/mm2, p ≤
0.0001) compared to SS mice. Finally, we observed that SS + RSD

+ minocycline mice showed a 35% decrease (p ≤ 0.0001) in

activated microglia density compared to SS + RSD mice. As

shown in Figure 2A, the results for the comparison within the AA

groups were similar to those described for the SS mice.

Figures 2B, C are representative images. Additionally, except

for the control (non-perturbed group), there were no significant

differences between the AA and SS mice based on RSD exposure

or minocycline treatment.

Results of the examination of the contribution of peripheral

immune cell (CD45+) infiltrate to the observed cognitive deficit

FIGURE 1
Sickle mice display significant cognitive and neurobehavioral deficits under stress compared to control mice. (A, B) illustrate the results for the
open field test, depicting distance traveled through the open field arena and time spent in the middle of the arena. Statistical comparisons were
conducted using a two-way ANOVA (using amixed effect model) with Tukey’s multiple comparisons test. (C) depicts preference for the novel object
in the NOR test; analysis was with a one-way ANOVA with multiple comparisons (using Fisher’s LSD) conducted to compare object preference
between groups. (D, F) illustrate results for the fear conditioning studies (a measure of associative memory). (Di,ii) represents the training phase,
wheremice acquired a fear response to an 85 dB tone that was paired with a shock through classical conditioning. (Ei,ii) and (Fi,ii) test the strength of
the animals’ conditioned fear response by observing freezing behavior (indicative of fear) after being placed in the same environment where the
shock had been administered during the learning phase or after hearing the 85 db tone that was associated with the shock, respectively. Freezing
behavior was compared between groups using a two-way ANOVA (using a mixed effect model) with Holm-Sidak’s adjustment for multiple
comparisons for the contextual and cued fear assessments. All groups (AA and SS) were analyzed together. The figures (E, F) were split based on
genotype to enhance the clarity of the presentation of the result. AA mice (n = 7–9), AA + RSD mice (n = 6–9), AA + minocylcine mice (n = 6), AA +
RSD+minocycline (n = 13–21), SSmice (n = 6–7), SS + RSDmice (n = 6–10), SS +minocyclinemice (n = 7), SS + RSD+minocyclinemice (n = 15–22).
*p < 0.05, **p < 0.01, ***p < 0.001. Data are presented as mean ± SEM.

Experimental Biology and Medicine
Published by Frontiers

Society for Experimental Biology and Medicine04

DeVeaux et al. 10.3389/ebm.2024.10361

https://doi.org/10.3389/ebm.2024.10361


FIGURE 2
Sickle cell mice exposed to RSD have a higher density of activated microglia and B and T cell infiltrates in the hippocampus while minocycline
reduces the density of immune cell infiltrates. (A) IBA-1+ activated microglia cell density. (B) Immunohistochemistry images showing IBA-1+
activatedmicroglia in AA control mice (n = 10 sections), AAmice treated withminocycline (n = 8 sections), AAmice exposed to RSD (n = 27 sections),
and AA mice exposed to RSD and treated with minocycline (n = 40 sections). (C) Immunohistochemistry images showing IBA-1+ activated
microglia in SS control mice (n = 22 sections), SS mice treated with minocycline (n = 18 sections), SS mice exposed to RSD (n = 41 sections), and SS
mice exposed to RSD and treated with minocycline (n = 49 sections). (D) CD45+ “bone-marrow-derived” microglia cell density. (E)
Immunohistochemistry images showing CD45+ bone-marrowmicroglia in AA control mice (n = 10 sections), AA mice treated with minocycline (n =
8 sections), AA mice exposed to RSD (n = 27 sections), and AA mice exposed to RSD and treated with minocycline (n = 40 sections). (F)
Immunohistochemistry images showing CD45+ bone-marrow microglia in SS control mice (n = 22 sections), SS mice treated with minocycline (n =
18 sections), SSmice exposed to RSD (n = 41 sections), and SSmice exposed to RSD and treated withminocycline (n = 49 sections). (G) B220 + B cell
density. (H) Immunohistochemistry images showing B220 + B cells in AA control mice (n = 16 sections), AA mice treated with minocycline (n =
10 sections), AA mice exposed to RSD (n = 8 sections), and AA mice exposed to RSD and treated with minocycline (n = 36 sections). (I)
Immunohistochemistry showing B220+ B cells in SS control mice (n = 32 sections), SS mice treated with minocycline (n = 10 sections), SS mice
exposed to RSD (n = 32 sections), and SS mice exposed to RSD and treated with minocycline (n = 40 sections). (J) CD3+ T cell density. (K)
Immunohistochemistry images showing CD3+ T cells in AA control mice (n = 16 sections), AA mice treated with minocycline (n = 10 sections), AA
mice exposed to RSD (n = 8 sections), and AAmice exposed to RSD and treatedwithminocycline (n = 36 sections). (L) Immunohistochemistry images
showing CD3+ T cells in SS control mice (n = 32 sections), SS mice treated with minocycline (n = 10 sections), SS mice exposed to RSD (n =
32 sections), and SS mice exposed to RSD and treated with minocycline (n = 40 sections). Cell density was compared between groups with a one-
way ANOVA and Fisher’s LSD multiple comparisons test. *p < 0.05, **p < 0.01, ***p < 0.001. Data are presented as mean ± SEM. The “n” in brackets
after each group represents the total number of hippocampal brain tissue sections evaluated.
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and impact of minocycline treatment are shown in Figure 2D.

There was no significant difference between SS and AAmice with

respect to the density of CD45+ BMDM cells in the

hippocampus/DG. However, both AA + RSD and SS + RSD

mice had a significantly higher density of CD45+ BMDM

compared to their non-perturbed controls, with SS + RSD

mice having about 1.5-fold (p < 0.0001) more CD45+ BMDM

than AA + RSD mice. Additionally, we found a 75% (p = 0.013)

and 77% (p < 0.0001) decrease in CD45+ BMDM density in AA

mice and AA + RSD treated with minocycline, respectively,

compared to their non-treated controls. Similarly, stress

exposure significantly increased the density of CD45+ BMDM

in SS mice (from 93.7 ± 45.8 cells/mm2 to 125.4 ± 70.3 cells/mm2,

p = 0.0004), while minocycline treatment reduced the density in

unperturbed SS mice by 3.1-fold (p = 0.0002) and in SS + RSD

mice by 3.9-fold (p < 0.0001). Figures 2E, F are representative

images. Furthermore, we quantified the density of B cells (B220+)

and T cells (CD3+) as shown in Figures G. Notably, AA + RSD

mice had a significantly higher density of B cells (11.0 ± 3.7 cells/

mm2 vs. 7.2 ± 3.0 cells/mm2, p = 0.037) compared to AA + RSD +

minocycline mice. There was also a slight decrease in B cell

density in AA +minocycline mice compared to AAmice, though

not significant. This suggests that minocycline may be

suppressing B-cell-mediated neuroinflammation by limiting

peripheral immune cell infiltration into the brain.

Furthermore, when compared to AA mice, SS mice had a

significantly higher density of B cells (12.1 ± 3.4 cells/mm2 vs.

8.1 ± 1.9 cells/mm2, p = 0.0009), and when SS mice were treated

with minocycline, the density of B cells decreased by 31% (p =

0.012). Figures 2H, I are representative images. Surprisingly,

exposure of SS mice to RSD with or without minocycline

treatment did not result in a significant change in B cell

density, contrary to our observation in AA mice. This result

suggests that B cell infiltration might play a smaller role in RSD-

induced neuroinflammation as an underlying mechanism for the

development of cognitive deficits in SCD.

Further analysis, as shown in Figure 2J, indicates that SS

mice had significantly higher T cell density (11.1 ± 3.8 cells/

mm2 vs. 8.1 ± 3.8 cells/mm2, p = 0.032) compared to AAmice.

Minocycline treatment decreased T cell density in AA mice by

26% (p = 0.032), while T cell density in AA + RSD and AA +

RSD + minocycline mice was similar. Among sickle cell

groups, minocycline treatment resulted in a 1.6-fold (p =

0.005) reduction in T cell density in unperturbed SS mice

and about a 30% reduction in SS + RSD mice compared to

their untreated controls. Figures 2K, L are representative

images of the plot. However, there was no significant

difference in T cell density between SS mice and SS + RSD

mice. This indicates a possible but slightly lesser role for

T cells in cognitive impairment in SCD in the setting of

exposure to social stress.

Given the reported role of neurogenesis in social stress-induced

cognitive deficits [18, 32] due to neuroinflammation, we quantified

and compared the densities of neural progenitor cells (NPCs;

DCX+), adult-born neurons (DCX+NeuN+), and “newly formed”

astrocytes (DCX+GFAP+) in the dentate gyrus and reported our

findings in Figure 3. As shown in Figure 3A, we observed a higher

density of NPCs in AA +minocycline mice (20.8 ± 4.8 cells/mm2 vs.

17.1 ± 5.7 cells/mm2) compared to AAmice, while the NPC density

was lower among AA + RSD mice (13.3 ± 3.6 cells/mm2, p = 0.06)

compared to AA mice. Additionally, AA + RSD mice had

significantly lower NPC density compared to AA + RSD +

minocycline mice (18.7 ± 5.3 cells/mm2, p < 0.0001). We also

observed that SS mice had slightly lower NPC density compared to

AAmice and that minocycline treatment significantly reduced NPC

density in SS mice compared to treated AA mice (p = 0.006).

Furthermore, as seen in the AA groups, SS + RSD mice had a

significantly lower NPC density (11.9 ± 3.9 cells/mm2 vs.15.8 ±

5.6 cells/mm2, p= 0.005) compared to SS +RSD+minocyclinemice.

Figures 3D–F are representative images. We also noted that SS +

RSD + minocycline mice have essentially the same NPC density as

SS mice, indicating that minocycline might be limiting the gliogenic

shift that seems to result from exposure to RSD (see Figure 3B;

Supplementary Figure S1), leading to the development of

cognitive deficit.

Furthermore, as shown in Figure 3B, SS mice hadmore newly

generated astrocytes (5.0 ± 1.9 cells/mm2 vs. 3.3 ± 1.9 cells/mm2)

than AAmice, and exposure to RSD increased the density of new

astrocytes in both AA and SS mice, though not significantly when

compared to their respective unperturbed controls. However,

there was a 35% increase (p = 0.0011) in the density of new

astrocytes in SS + RSD mice compared to AA + RSD.

Interestingly, minocycline treatment reduced the density of

new astrocytes in SS mice and AA + RSD mice, with the most

significant decrease of 55% observed in the treated SS + RSD

mice. Taken together, this indicates that the exposure to RSD

alone might be shifting the differentiation of NPCs towards

astrocytes. And that treatment with minocycline reduces that

shift as seen in the SS + RSD + minocycline and AA + RSD +

minocycline mice when compared to their untreated but stressed

counterparts.

Results of the quantification of the density of adult-born

neurons (DCX+NeuN+) are shown in Figure 3C; Supplementary

Figure S1. Overall, we show that AA mice, irrespective of

treatment or RSD status, had similar adult-born neuron

densities. Among the SS mice, SS + RSD mice had

significantly lower adult-born neuron density compared with

SS mice (1.8 ± 1.7 cells/mm2 vs. 4.8 ± 2.9 cells/mm2, p < 0.0001).

In contrast to similarly stressed AAmice, SS mice also displayed a

more pronounced effect of RSD exposure on adult-born neuron

density, with a 2.5-fold (p < 0.0001) decrease. However,

treatment of SS + RSD mice with minocycline resulted in a

50% (p = 0.0031) increase in adult-born neurons. Supplementary

Figure S1 provides the percentage distribution of these cells

(DCX+GFAP+ and DCX+NeuN+) as a percentage of the total

NPCs (DCX+) counted.
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We then performed bulk RNA sequencing and gene set

enrichment analysis (GSEA) to identify the pathways

underlying RSD-linked cognitive deficit and

neuroinflammation in SCD (Figure 4). Most of the

differentially expressed gene sets in the cortex were involved

in cognitive function, synaptic structures, neuronal signaling, and

inflammation (Figure 4A). Differences between SS and AA

healthy control mice were evident both at baseline and after

RSD exposure. We observed that genes connected with blood-

brain barrier dysfunction, depressive disorders, and

inflammation (CCR7, FOXF1) were enriched in SS relative to

AA mice. SS + RSD mice show enrichment for genes related to

neurodegenerative disease processes (CTNNB1, [33] CSF1R,VCP

[34–36]), while sirtuins, which prevent aging and neurocognitive

diseases [37, 38], were less enriched. In contrast, no significant

changes in gene expression were observed in the AA + RSD

group. Additionally, LDLR expression (associated with long-term

memory) was downregulated in the SS + RSD group compared to

the AA + RSD group. Together, these findings support our

hypothesis that SS mice might have greater susceptibility to

the effects of social stressors such as RSD. Furthermore, SS +

RSD + minocycline mice showed enrichment for genes related to

synaptic structure and plasticity processes (BDNF, ENTPD1),

while genes associated with cell signaling, immune infiltration,

and lipid membrane trafficking (Adora1, ABDH6, and Akt1/2)

were downregulated. Notably, excitatory signaling through

serotonin receptors (5-HTR 4, 6, and 7), glutamatergic, and

dopaminergic synapses was decreased, suggesting

FIGURE 3
Sickle cell mice exposed to RSD have a higher density of DCX+GFAP+ astrocytes while having decreased densities of DCX+ neural progenitor
cells and DCX+NeuN+ neurons in the hippocampus. (A) DCX+ neural progenitor cell density. (B) DCX+GFAP+ astrocyte cell density. (C) DCX+NeuN+

neuron cell density (D) Immunohistochemistry images showing DCX+ neural progenitor cells in AA control mice (n = 21 sections), AA mice treated
with minocycline (n = 10 sections), AA mice exposed to RSD (n = 40 sections), and AA mice exposed to RSD and treated with minocycline (n =
41 sections). (E) Immunohistochemistry images showing DCX+GFAP+ astrocytes in AA control mice (n = 21 sections), AA mice treated with
minocycline (n = 10 sections), AAmice exposed to RSD (n = 40 sections), and AAmice exposed to RSD and treatedwithminocycline (n = 41 sections).
(F) Immunohistochemistry images showing DCX+NeuN+ neurons cells in AA control mice (n = 21 sections), AA mice treated with minocycline (n =
10 sections), AA mice exposed to RSD (n = 40 sections), and AA mice exposed to RSD and treated with minocycline (n = 41 sections). (G)
Immunohistochemistry images showing DCX+ neural progenitor cells in SS control mice (n = 23 sections), SS mice treated with minocycline (n =
20 sections), SS mice exposed to RSD (n = 40 sections), and SS mice exposed to RSD and treated with minocycline (n = 49 sections). (H)
Immunohistochemistry images showing DCX+GFAP+ astrocytes in SS control mice (n = 23 sections), SS mice treated with minocycline (n =
20 sections), SS mice exposed to RSD (n = 40 sections), and SS mice exposed to RSD and treated with minocycline (n = 49 sections). (I)
Immunohistochemistry images showing DCX+NeuN+ neurons cells in SS control mice (n = 23 sections), SS mice treated with minocycline (n =
20 sections), SS mice exposed to RSD (n = 40 sections), and SS mice exposed to RSD and treated with minocycline (n = 49 sections). Statistical
comparisons were performed with a one-way ANOVA with Fisher’s LSD multiple comparisons test. *p < 0.05, **p < 0.01, ****p < 0.0001. Data are
presented as mean ± SEM. ****p < 0.0001. The “n” in brackets after each group represents the total number of hippocampal brain tissue
sections evaluated.
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minocycline’s role in preventing stress-linked excitotoxicity and

neurodegeneration [39, 40]. Pathways linked to inflammation,

gliogenesis, and neuronal death were less enriched in SS + RSD +

minocycline animals, while sirtuin-related pathways and

processes were enriched. In the hippocampus, similar trends

were observed (Figure 4B), with genes related to abnormal

cerebral vasculature, blood-brain barrier dysfunction, and

inflammatory processes being more enriched in SS compared

to AA mice. In SS + RSD mice, genes related to brain

development (MAOB) and neurodegeneration were

significantly enriched compared to AA + RSD mice.

Furthermore, SS + RSD mice showed significant enrichment

of genes negatively associated with forebrain morphogenesis and

neurogenesis and positively associated with inflammation. Taken

together, our results suggest that minocycline may help prevent

imbalances in synaptic activity and functional decline in SS mice

exposed to stress.

Because sphingolipids play important roles in neurological

function and immune signaling, we investigated their potential

connection to neuroinflammation and cognitive deficits induced

by social stress in SCD. GSEA analysis was performed to evaluate

enrichment of sphingolipid-related pathways in the cortex

(Figure 5A) and hippocampus (Figure 5C), while liquid

chromatography-mass spectrometry (LC-MS) was used to

quantify the concentrations of sphingolipids found in these

two brain regions (Figures 5B, D).

In the cortex (Figure 5A), AA and SS mice have significantly

different gene expression profiles with and without stress

FIGURE 4
Gene set enrichment analysis showing how RSD and minocycline affect pathways, biological processes, and diseases related to cognitive
function, brain development, and inflammation. SS-vs-AA_UP: genes enriched in control SS mice compared to control AA mice. SS-vs-AA_DOWN:
genes downregulated in control SS mice compared to control AA mice. SS-vs-AA_Stress_UP: genes enriched in SS mice exposed to RSD compared
to AA mice exposed to RSD. SS-vs-AA_Stress_DOWN: genes downregulated in SS mice exposed to stress compared to AA mice exposed to
stress. SS_Drug_UP: genes enriched in SS mice treated with minocycline compared to control SS mice. SS_Drug_DOWN: genes downregulated in
SS mice treated with minocycline compared to control SS mice. SS_Stress_UP: genes enriched in SS mice exposed to RSD compared to control SS
mice. SS_Stress_DOWN: genes downregulated in SS mice exposed to RSD compared to control SS mice. SS_Stress_Drug_UP: genes enriched in SS
mice exposed to stress and treated withminocycline compared to SSmice exposed to stress only. SS_Stress_Drug_DOWN: genes downregulated in
SS mice exposed to stress and treated with minocycline compared to SS mice exposed to stress only. AA_Stress_UP: genes enriched in AA mice
exposed to RSD compared to control AA mice. AA_Stress_DOWN: genes downregulated in AA mice exposed to RSD compared to control AA mice.
AA_Stress_Drug_UP: genes enriched in AA mice exposed to stress and treated with minocycline compared to AA mice exposed to stress only. AA_
Stress_Drug_DOWN: genes downregulated in AAmice exposed to stress and treated withminocycline compared to AAmice exposed to stress only.
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exposure. SS mice exhibit enriched processes related to lipid

stimulus responses and lipid kinase activity regulation compared

to AA mice. Conversely, processes related to lipid synthesis,

metabolism, transport, and storage were downregulated in SS

mice. In SS + RSD + minocycline mice, we observed substantial

changes in sphingolipid-related pathways and processes.

Processes governing lipid metabolism, transport, and storage,

including sphingolipids, are downregulated in SS + RSD +

minocycline mice compared to SS + RSD mice. Overall, genes

associated with sphingolipid signaling and metabolism pathways

were also downregulated. In particular, SS + RSD + minocycline

mice showed lower expression of genes associated with ceramide

(Cer) metabolism, including de novo cer synthesis (Elovl4,

Slc1a4) [41], degradation of sphingomyelin (SM) into cer via

the salvage pathway (SMPD1), and synthesis of ceramide-derived

sphingolipids like sphingosine-1-photphate (S1P) (via Sphk1)

and complex gangliosides (via ST3GAL2) [42].

We analyzed LC-MS results to identify a link between

pathway enrichment/gene expression and lipidomics profile in

the cerebral cortex or hippocampus. In Figure 5B, we found that

AA mice had higher levels of Cer and SM and lower levels of

hexosylceramide (HexCer), sphingosine (Sph), and S1P

compared to AA + RSD mice. Interestingly, SS mice, with or

without exposure to RSD, had the highest level of Cer of the two

genotypes compared to their AA counterparts. Also, SS mice had

higher levels of HexCer, SM, Sph, and S1P compared to SS + RSD

mice. This later point may indicate that exposure to RSD/social

stress alters the sphingolipid profile by potentially decreasing

enzymatic activity in the sphingolipid and thus sphingomyelin

biosynthetic and degradation pathways. Minocycline treatment

FIGURE 5
Sphingolipids and lipid metabolism in RSD-mediated inflammation and cognitive impairment. (A) Cortex GSEA results of RSD exposure and
minocycline-treatedmice. (B)Mass spectrometry characterization of sphingolipid species found in the cortex. (C)Hippocampus GSEA results of RSD
exposure and minocycline-treated mice. (D) Mass spectrometry characterization of sphingolipid species in the hippocampus.
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had a significant impact on the sphingolipid profile. Minocycline

treatment significantly impacted the sphingolipid profile, with

AA + RSD + minocycline mice showing increased Cer, HexCer,

SM, and LSM levels and decreased Sph and S1P levels compared

to AA + RSD mice. Similarly, SS + RSD + minocycline mice had

higher SM, Sph, and S1P levels and lower LSM levels compared to

SS + RSD. Overall, these findings suggest that minocycline may

restore sphingolipid enzymatic activity perturbed by social stress,

which could be one mechanism of its benefit.

Likewise, GSEA and LC-MS analyses of hippocampal tissue

showed differential expression of genes involved in critical

biological processes between AA and SS mice, as well as

between SS + RSD and SS mice (Figure 5C). Specifically, SS +

RSD + minocycline mice exhibited downregulation of processes

related to lipid metabolism, synthesis, and transport of lipid

species (including sphingolipids) and responses to lipid stimuli

compared to SS + RSD mice. Notably, several genes responsible

for inhibiting (1) de novo ceramide synthesis (ORMDL2/

ORMDL3) [43], (2) breaking down lysosomal sphingomyelin

to ceramide (SMPD1), (3) synthesizing gangliosides from

ceramide (ST3GAL2/ST3GAL3) [42], and (4) converting S1P

to sphingosine (PLPP3) were significantly less enriched

compared to SS + RSD [44]. We noted that some genes

involved in the response to lipid stimuli process (CD38,

CX3CR1, and TLR2) and downregulated in SS + RSD +

minocycline mice encode surface receptors found on microglia

and lymphoid cells [45–48], potentially explaining the reduced

neuroinflammation, neurodegeneration, and improved cognitive

function observed in the treated mice in our study [48, 49].

As before, we examined the link between gene-set

enrichment and concentrations of sphingolipid, this time in

the hippocampus. Results from the LC-MS analyses of

hippocampal tissue showed contrasting levels compared to the

cortex, especially in AA mice, with higher sphingolipid levels

(Figure 5D). AA + RSD mice had elevated Cer and SM levels but

lower HexCer, Sph, and S1P levels. Also, SS mice had lower levels

of Cer, HexCer, SM, and S1P, except Sph, compared to AA mice.

SS + RSD mice had reduced levels of all sphingolipids,

particularly Sph. AA + RSD + minocycline mice showed

decreased levels of Cer, SM, Sph, and S1P. SS + RSD +

minocycline mice exhibited higher levels of all sphingolipids

compared to SS + RSD mice, except for LSM, which remained

consistent across all groups.

Discussion

In this study, we sought to understand how RSD affects

cognitive function (with or without treatment) in male

humanized Townes sickle mice compared to control (treated

and untreated) mice. Our findings presented above and the

online Supplementary Material support our stated hypothesis

and show that social stressors (RSD) impair cognitive functions

in sickle mice, similar to what was described among children with

SCD by King et al. [14, 15] It also provides some mechanistic

insight in showing that neuroinflammation and possibly

depression of neurogenesis (Figure 3), with a shift towards

astrogliogenesis (Supplementary Figure S2), may be among

the underlying mechanisms. In our prior work, we showed

that 13-month-old Townes sickle mice had more severe

cognitive and neurobehavioral deficits and abnormal

neuroplasticity [29]. The findings from that study motivated

this work in understanding why children with SCD living in a

socially stressful environment have more severe manifestations

of cognitive deficit. Thus, we additionally showed that

minocycline treatment alleviates neuroinflammation, improved

neurogenesis and thus, leads to better cognitive and

neurobehavioral functions as well as improvement in relevant

molecular and cellular phenotypes.

It is known that individuals with SCD experience cognitive

and neurobehavioral (anxiety and depression) deficits

observed in early childhood, adolescents, and adults [50,

51]. We saw sickle mice exhibit cognitive and

neurobehavioral deficits after being exposed to social stress,

recapitulating what was described in children with SCD. In

these children, it was shown that the presence of cognitive

deficit was associated with “biological factors” such as severity

of anemia and presence of silent cerebral infarct (SCI) or

stroke [52–54]. However, King et al [14, 15] demonstrated

more severe evidence of cognitive deficit in children without

SCI but who were exposed to social stress in the form of low

parental socioeconomic status. This and the report by

Andreotti et al. [55], were essentially recapitulated in our

study, which showed one or more mechanisms that may

underlie the development of cognitive deficit in

children with SCD.

In our study, evaluating the hippocampus and dentate gyrus

revealed the presence of evidence of neuroinflammation in sickle

mice at baseline, i.e., without exposure to RSD. We noted that

sickle cell mice exposed to stress had higher densities of

“activated microglia” and CD45+ “bone-marrow-derived”

microglia compared to control mice or sickle cell mice

exposed to stress and treated with minocycline. These findings

are of particular interest as increased microglia activation or

overactive microglia undergoes phenotypical and functional

changes, often resulting in increased pro-inflammatory

cytokine secretion and increased phagocytosis. These activities

have been shown to be involved in the mechanism of cognitive

impairment and cause neurobehavioral changes (anxiety and

anhedonia) [56–58]. Additionally, studies have shown that

peripheral mononuclear cells aka “bone-marrow-derived”

microglia, infiltrate the brain parenchyma after psychological

stress and further lead to neuroinflammation, anxiety, and

memory deficit [59]. Taken together, this suggests that social

stress promotes peripheral immune cell infiltration regardless of

genotype, but more so in sickle cell, which is already in a pro-
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inflammatory state. In our study, we did not see increased

lymphocyte densities in sickle mice exposed to stress;

however, we did note that sickle mice overall, without

exposure to RSD, had higher T and B cell densities as well as

a higher density of “bone-marrow-derived” microglia compared

to AA control mice. These observations support our assertion of

a background neuroinflammation in SCD, which was

accentuated by exposure to RSD, leading to cognitive deficit.

Additionally, recent studies have reported that B cells contribute

to neuroinflammation via peripheral immune mechanisms

through the production of pro-inflammatory cytokines and

antibodies, while effector T cells interaction with microglia

can further promote inflammation [60, 61]. This may explain

why we observed a higher density of T cells with RSD exposure

but did not observe a higher density of B cells. Furthermore, the

presence of a higher density of peripheral immune cells in the

brain in sickle cell mice indicates their possible role in SCD-

related neuroinflammation even in the absence of social stress.

We did not adequately examine the presence of T or B cells, for

instance, in our prior study; however, it is conceivable to assume

they were involved in our observation [29]. Overall, these

findings illustrate the potential cellular mechanisms that

contribute to cognitive deficits in sickle cell mice exposed to

stress and could underlie the observation among SCD patients

exposed to social stress, such as lower individual or parental

socioeconomic status.

Chronic social stress modulates neurogenesis by decreasing

neuron proliferation, resulting in modifications to hippocampal

synaptic signaling and plasticity [62]. However, the effect of

stress on neurogenesis in SCD is still unknown. In our study, we

noted that neural progenitor cells (NPCs) in the dentate gyrus

of sickle mice exposed to RSD shifted more (in their

differentiation) towards astrogliogenesis as opposed to

mature neurons. It has been documented that minocycline

improves neurogenesis and mitigates the gliogenic effect of

inflammatory cytokines on NPCs [63–66]. This was also

observed in our study, where we noted that SS + RSD +

minocycline mice had significantly higher densities of adult-

born neurons, lower densities of new astrocytes, and lower

densities of proinflammatory cells in the hippocampus/DG

compared to SS + RSD mice. Intriguingly, minocycline

treatment of AA mice led to increased NPC density as well,

but not on density of adult-born neurons. The analysis of bulk

RNA sequencing and lipidomics supported our other findings

that exposure to RSD/social stressors negatively affects the

brain, leading to structural remodeling, particularly in SS

mice. Treatment with minocycline led to a unique

enrichment signature in the cortex of SS mice exposed to

stress, where genes associated with cerebral structure

remodeling, blood-brain barrier integrity, brain development,

neurogenesis, and inflammation were down-regulated in SS +

RSD + minocycline mice.

Together, these results support minocycline’s function in

preventing neuroinflammation, evidence of neurodegeneration,

and cognitive deficit in SS mice exposed to stress and suggest that

these might underly the mechanism of social stress-related

cognitive deficit in SCD.

Conclusions and limitations

We have attempted to show some of the underlying

mechanisms of how RSD affects cognitive deficits in SCD

mice exposed to social stress. We showed that the

development of cognitive deficit is in part driven by

“activation” of resident immune cells and/or infiltration of

peripheral immune cells, astrogliogenesis, changes to lipid

metabolism, and the transcriptome. Finally, we demonstrated

that treatment with minocycline (which is anti-

neuroinflammatory and a sphingomyelinase inhibitor)

mitigated the presence of cognitive deficit, possibly by

blocking neuroinflammation and shifting NPCs towards

neurogenesis. It also supports a favorable lipidomics and

transcriptomic profile that promotes neurogenesis and

synaptogenesis as well as synaptic plasticity but is anti-

excitotoxic and anti-neuroinflammatory.

One limitation of our study is that we used the RSD

paradigm, which is likely not representative of the way

individuals with sickle cell disease are exposed to social

stress in everyday life. Related to this is the fact that this

form of stress is more easily carried out in male mice, limiting

the conclusions that could be drawn from our study. To the

later point, we are now working on a chronic stress model

using the social disruption paradigm, which allows us to use

both male and female mice. We hope to share the result of this

new approach in future publications. Another limitation is the

imbalance in the number of mice. There was sample attrition

due to mortality; however, this did not confound the direction

of the observation.
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