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Abstract

Attention deficit/hyperactivity disorder is a common neuropsychiatric disorder

that affects around 5%–7% of children worldwide. Artificial intelligence provides

advanced models and algorithms for better diagnosis, prediction and

classification of attention deficit/hyperactivity disorder. This study aims to

explore artificial intelligence models used for the prediction, early diagnosis

and classification of attention deficit/hyperactivity disorder as reported in the

literature. A scoping review was conducted and reported in line with the

PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-

Analyses Extension for Scoping Reviews) guidelines. Out of the

1994 publications, 52 studies were included in the scoping review. The

included articles reported the use of artificial intelligence for 3 different

purposes. Of these included articles, artificial intelligence techniques were

mostly used for the diagnosis of attention deficit/hyperactivity disorder (38/

52, 79%). Magnetic resonance imaging (20/52, 38%) were the most frequently

used data in the included articles. Most of the included articles used data sets

with a size of <1,000 samples (28/52, 54%). Machine learning models were the

most prominent branch of artificial intelligence used for attention deficit/

hyperactivity disorder in the studies, and the support vector machine was

the most used algorithm (34/52, 65%). The most commonly used validation

in the studies was k-fold cross-validation (34/52, 65%). A higher level of

accuracy (98.23%) was found in studies that used Convolutional Neural

Networks algorithm. This review provides an overview of research on

artificial intelligence models and algorithms for attention deficit/hyperactivity

disorder, providing data for further research to support clinical decision-making

in healthcare.

KEYWORDS

artificial intelligence, attention deficit/hyperactivity disorder, machine learning, deep
learning, review method

OPEN ACCESS

*CORRESPONDENCE

Bing Wei,
weibing7112@163.com

†These authors have contributed equally
to this work

RECEIVED 12 May 2024
ACCEPTED 28 March 2025
PUBLISHED 24 April 2025

CITATION

Sun B, Cai F, Huang H, Li B and Wei B
(2025) Artificial intelligence for children
with attention deficit/hyperactivity
disorder: a scoping review.
Exp. Biol. Med. 250:10238.
doi: 10.3389/ebm.2025.10238

COPYRIGHT

© 2025 Sun, Cai, Huang, Li andWei. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Experimental Biology and Medicine
Published by Frontiers

Society for Experimental Biology and Medicine01

TYPE Review
PUBLISHED 24 April 2025
DOI 10.3389/ebm.2025.10238

https://crossmark.crossref.org/dialog/?doi=10.3389/ebm.2025.10238&domain=pdf&date_stamp=2025-04-24
mailto:weibing7112@163.com
mailto:weibing7112@163.com
https://doi.org/10.3389/ebm.2025.10238
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/ebm.2025.10238


Impact statement

At present, artificial intelligence is a hot topic, but it still

needs to be developed in the medical field, especially in pediatric

clinical research. We believe that the researchability of artificial

intelligence is sufficient. As we know, in the medical field, early

diagnosis and identification of a certain clinical disease is crucial

for clinical doctors, and the emergence of artificial intelligence is

likely to bring tremendous assistance to clinical diagnosis and

treatment work. In this study, we conducted scope evaluation

according to the PRISMA-ScR guidelines, and mainly

summarized AI models and algorithms for diagnosis,

prediction, and classification of attention deficit/hyperactivity

disorder. The hope is to provide clinical decisions that support

future research in healthcare.

Introduction

Attention-deficit/hyperactivity disorder (ADHD) is a

neurodevelopmental disorder caused by the interaction of genetic

and environmental factors that has a worldwide prevalence of 7.2%

in children [1, 2]. ADHD is characterized by a persistent and

impairing pattern of inattention and/or hyperactivity/impulsivity,

about 60% of children with ADHD have symptoms that persist into

adulthood [3], and 89% of ADHD patients are accompanied by

mental illness, representing a significant public health problem [4].

Therefore, early diagnosis of ADHD is critical to enable early

intervention and treatment.

At present, the diagnosis of ADHD mainly relies on the

judgment of psychiatrists, based primarily on reports from

parents and teachers, behavioral observations, and clinical

interviews, which are sensitive to subjective biases [5, 6]. Existing

studies have shown that ADHD is a highly heterogeneous disease

involving multiple etiological and risk factors, with different clinical

characteristics, development process and outcome, which brings

diagnostic challenges to clinicians, and false positive diagnosis or

misdiagnosis may occur in clinical practice [7, 8]. It has been shown

that a significant association between disease and trait does not

necessarily imply that it can be used for disease prediction.

Neuroimaging plays a vital role in the study of brain function by

visualizing the structure and activity of the brain, allowing

researchers to understand how different brain regions are

involved in various cognitive and behavioral processes [9]. The

brains of childrenwithADHDare different in terms of structure and

function, and these differences are also associated with

neurocognitive performance. Structural magnetic resonance

imaging (sMRI), functional MRI (fMRI), resting-state fMRI (rs-

fMRI) and diffusion tensor imaging (DTI) were used to characterize

the etiology and phenotype of ADHD from different dimensions

[10]. Genome-wide association studies have also revealed several

variants in ADHD [11, 12]. In addition, other studies have

attempted to use electrocardiogram (ECG) signals [13], eye

tracking [14], physiological signals, wearable device data [15],

and exercise data to help diagnose ADHD.

Artificial intelligence (AI) is a technology with great potential in

medicine, machine learning (ML) is a powerful tool for making

critical decisions by analyzing large data sets such as social behavior

patterns and various health conditions, deep learning (DL) is a

branch of ML [16]. Many neurological diseases are identified based

on subjective diagnostic criteria. Neuroimaging is a promising

objective diagnostic tool. The task of ML is to model the

relationship between features extracted from imaging data and

individual labels in the data set, which can be used for new or

invisible data sets. It creates broad prospects for disease diagnosis,

prognosis andmanagement in health care and enriches personalized

medicine [17]. With the increasing popularity of AI models, AI

technology has achieved satisfactory results in the diagnosis of brain-

related diseases such as Alzheimer’s disease, Parkinson’s disease,

autism spectrum disorder (ASD) [18], and ADHD is no exception.

AI can assist in ADHDdiagnosis, classification, prognosis, treatment

prediction, and the development of new therapeutic drugs.

A large number of articles have been published on AI

technologies for ADHD. Several reviews were conducted to

summarize previous studies; however, they had the following

limitations: First, they focused on studies of ADHD diagnosis

with machine learning methods using MRI data [19]; Second,

they focused on describing the efficacy ofML or DLmodels in the

diagnosis, classification, or prediction of ADHD, without

describing in detail the characteristics of the AI algorithms

used [20]. The available literature lacks a review that provides

an overview of the features of the AI algorithms used in ADHD.

Thus, this review aims to explore the characteristics of AI models

used for the diagnosis, prediction and classification to aid

scientists advance research on this field.

Materials and methods

Overview

In this scoping review, we conducted a systematic literature

search that reviewed research involving the use of AI for ADHD

prediction, classification, and diagnosis. To ensure the

transparency and reliability of this study, the literature search

was conducted according to the Preferred Reporting Items for

Systematic Review and Meta-Analysis Protocols Extension for

Scoping Reviews (PRISMA-ScR) guidelines [21]. The protocols

used in the scoping review are detailed in the following sections.

Search strategy

Search sources
Two authors (Bo Sun and Fei Cai) conducted an independent

search in February 2025 and screened abstracts and full texts,
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which were finally checked by the corresponding author (Bing

Wei). During this period, we searched four online databases,

including MedRXiv, BioRXiv, PubMed, and Science Direct. The

search focused on both medical and computer science databases.

Search terms
We used the following items as keywords: (“artificial

intelligence” OR “machine learning” OR “deep learning” OR

“supervised learning” OR “unsupervised learning” OR

“reinforcement learning”) AND (“attention-deficit/

hyperactivity disorder”) AND (diagnosis* OR detect* OR

predict* OR screen*). For more information on the exact

search terms used to search each database, see Multimedia

Supplementary Appendix S1.

Eligibility criteria

The studies included in this review mainly concerned AI

technologies for ADHD diagnosis and risk prediction. In other

words, we focus on AI models related to ADHD diagnosis. The

searchwas limited to original journal research articles in English.We

excluded articles (i.e., literature reviews, dissertations) outlining AI

approaches to ADHDas well as studies based purely on clinical trials

and experimental studies. Inclusion criteria include: (1) AI

technology; (2) the goal to diagnose or screen for ADHD; (3)

participants are children only; (4) the data is publicly available.

Exclusion criteria include: (1) inadequate details in terms of AI

models; (2) same raw data; (3) inappropriate article types (e.g., case

reports, reviews, papers, proposals, conference abstracts, editorials,

generic manuscripts, and reviews).

Study selection

Articles selected from each database were charted on

Microsoft Excel. At the same time, we imported all the

retrieved articles into the EndNote software, and the duplicate

check function was used to remove duplicate studies. Titles and

abstracts were carefully selected and screened, and articles were

searched for full text reading if they met the inclusion criteria.

Any disagreements were resolved through discussion among the

investigators. To measure agreement between investigators, we

calculated the Cohen kappa [22], where the screening result for

title and abstract was 0.976, while the screening result for full text

was 0.82. We documented the inter-investigator agreement

matrix in Multimedia Supplementary Appendix S2.

Data extraction

The investigators performed the data extraction process

using a pre-designed standardized form (Multimedia

Supplementary Appendix S3). The extracted data included: (1)

author, country, and year; (2) the age, number and health status

of the participants; (3) the source, setting, and availability of the

data used by AI; (4) algorithms, types, and features of AI models;

(5) outcomes of AI diagnosis of ADHD.

Results

Search results

We preliminarily identified 1994 articles using four open

online databases: PubMed (n = 613), Science Direct (n = 666),

BioRXiv (n = 542), and MedRxiv (n = 173). After that, we

excluded 557 duplicate articles. Of the remaining studies,

1,195 articles were removed after title and abstract screening.

In addition, 13 articles were not searchable, so 229 articles were

included in the full-text screening. As shown in Figure 1, after

reviewing the full text, we excluded 177 articles for a variety of

reasons. A total of 52 articles met our inclusion criteria and were

included in this scoping review.

Main characteristics of the
included articles

Characteristics of the included studies were shown in

Table 1. All of the studies we included were published in

peer-reviewed journals (52/52, 100%). Eligible studies were

published between 2012 and 2025, mainly in China (16/52,

31%), followed by Korea (9/52, 17%). The number of

participants mentioned in the included studies ranged from

10 to 238,696. Of these, 33 studies reported the proportion of

female participants, ranging from 2% to 50%. Furthermore,

88% (46/52) of the included studies only recruited participants

with ADHD, and 12% (6/52) of the studies included

participants with other medical conditions. Multimedia

Supplementary Appendix S4 showed the detailed

characteristics of the included studies.

Characteristics of AI techniques for ADHD

Of the included studies, 76.9% used only ML algorithms, 9.6%

used only DL algorithms, and 13.5% applied ML including DL

algorithms. In addition, we collated the AI models, algorithms, and

methods used in the included ADHD studies. The most commonly

used model was support vector machine (SVM, 34/52, 65%),

followed by random forest (RF, 17/52,33%). In the 52 studies, AI

algorithms were used for 3 different purposes. The most common

purposes were early diagnosis (38/52,79%) and risk predictions (10/

52, 14%; Table 2). Only 11 studies stated the programming

languages used to develop the models, and they were R (5/52,
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10%) and Python (6/52,12%).Multimedia Supplementary Appendix

S5 showed the characteristics of the AI techniques used in

each study.

Table 3 showed the different data categories used in the

included studies: 38% of the studies (20/52) involved brain

imaging, 25% (13/52) included demographic information, 19%

(10/52) used electroencephalogram (EEG), and so on. 60% of the

included studies used datasets from closed-source (i.e., data

collected directly from databases of study participants or

clinical settings) and 40% from open-source (i.e., publicly

available databases). The numbers of features used to develop

the models in the included studies ranged from 3 to 13,585,634.

And 25 studies (48%) did not exceed 100 features in developing

their model. We provided a detailed description of the number of

features and data categories of the included studies inMultimedia

Supplementary Appendix S6.

As shown in Table 4, the included studies used different

validation techniques in the development of AI models, mainly of

two. Among them, k-fold CV (34/52, 65%) is the more

commonly used method. Only 13% of studies (7/52)

mentioned confusion matrices, but all 52 studies mentioned

performance metrics for AI models. According to statistics,

the most commonly used performance measure was accuracy

(ACC, 45/52, 87%). In Table 5, 8 studies reported the precision of

AI algorithms, ranging from 80% to 95%, with an average of

92.53%; The area under the curve (AUC) in 26 studies ranged

from 57.6% to 99.64%, with a mean of 83.77%; The mean ACC of

the 45 studies was 83.06%, ranging from 53.2% to 98.23%;

35 studies reported specificities varying between 58.8% and

99.11%, with a mean of 84.08%; The F1-score valued in

11 studies ranged from 48.89% to 95%, with a mean of

85.21%. In addition, the sensitivity of the AI algorithms

reported in 35 studies ranged from 33% to 98.24%, with an

average of 74.67%.

Discussion

Principal findings

In this study, we explored the application of AI techniques in

the early diagnosis, prediction, and classification of ADHD. We

FIGURE 1
PRISMA-ScR flowchart of the study selection.

Experimental Biology and Medicine
Published by Frontiers

Society for Experimental Biology and Medicine04

Sun et al. 10.3389/ebm.2025.10238

https://doi.org/10.3389/ebm.2025.10238


TABLE 1 Characteristics of the included studies (n = 52).

Characteristics Studies n (%) References

Publication type

Journal articles 52 (100) [12, 13, 15, 23–28], [29–71]

Year of publication, n (%)

2025 1 (1.9) [26]

2024 9 (17.3) [26, 63, 64, 66–71]

2023 8 (15.4) [35, 42, 47, 50]

2022 7 (13.5) [23, 27, 33, 39, 45, 60, 61]

2021 4 (7.7) [12, 13, 24, 38]

2020 4 (7.7) [25, 37, 44, 52]

2012–2019 19 (36.5) [28–32, 34, 36, 40–44, 48, 54–56, 58, 59, 62]

Country of publication

China 16 (31) [12, 24, 28, 29, 39, 46, 54, 59, 61, 64, 66, 68–71]

Korea 9 (17) [15, 25, 30, 47, 49, 50, 55, 58]

United States 7 (13) [23, 32, 38, 40, 41, 52, 57]

Canada 2 (4) [31, 43]

Germany 2 (4) [34, 60]

Spain 3 (6) [48, 56, 63]

Australia 1 (2) [53]

Denmark 1 (2) [67]

Iran 1 (2) [33]

Israel 1 (2) [37]

India 1 (2) [42]

Italy 1 (2) [62]

Japan 1 (2) [44]

Minnesota 1 (2) [36]

Singapore 1 (2) [13]

Sweden 1 (2) [27]

Turken 1 (2) [35]

Türkiye 1 (2) [51]

United Kingdom 1 (2) [45]

Number of participants, n (%)

<99 17 (33) [25, 30, 34–36, 38, 47–49, 52, 56, 58, 62, 66, 69–71]

100–999 28 (54) [13, 15, 23, 26, 28, 29, 31, 33, 37, 39–44, 46, 50, 51, 54, 55, 59–61, 63–65, 67, 68]

>1,000 7 (13) [12, 24, 27, 32, 45, 53, 57]

Gender, range (%)

Female 2–50 [12, 13, 15, 24, 28, 30, 31, 33, 35–40, 42, 44–47, 52, 55–60, 62–65, 67, 69, 70]

(Continued on following page)
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searched articles published from January 2012 to February 2025,

and of the 1994 articles retrieved, 52 were eventually included in

our scoping review. Over the past 4 years, an increasing number

of studies have been published: 9 in 2024, 8 in 2023, 7 in 2022,

and 4 in 2021. Tracing its causes, the digital innovation process

has stimulated the increasing demand for telemedicine programs,

and healthcare systems have increasingly relied on AI technology

[72]. In the field of child and adolescent neuropsychiatry, the

development and use of online platforms for collecting case

histories, demographic, and behavioral information have been

steadily increasing [73]. The increase in available data has

provided new opportunities for cutting-edge methods such as

ML and DL, which used high-dimensional data to build

predictive models to capture non-linear relationships across

multiple data sources, traditional statistical methods could not

achieve [74]. The articles we included focused on AI being used

for three purposes in ADHD: early diagnosis, classification, and

prediction. None of the included articles were used for other

purposes, such as treatment response prediction, prognosis, drug

efficacy evaluation, and patient outcomes. Similar to the

application of AI in other mental disease, China, the

United States and South Korea (32/52, 61.54%) were the

countries with largest number of studies related to the use of

AI in ADHD.

The data available in the application of AI in ADHD could be

roughly divided into the following seven categories: demographic

characteristics (gender, age, race, ethnicity, parental education,

etc.); parent/teacher report questionnaire; neurocognitive

characteristics; brain imaging (fMRI, sMRI, DTI) [20]; genetic

data; EEG; eye tracking. Among them, 20 studies included MRI.

MRI has demonstrated the possible physiological basis of the

disease and is a potential predictor. ML or DL techniques may

help identify reliable features and use this as a classification or

diagnostic predictor [23]. Zhou, Lin [24] constructed a

multimodal ML framework combining Boruta-based feature

selection and multi-core learning, integrating sMRI, fMRI and

DTI data for early diagnosis of ADHD. Then they used SVM to

distinguish ADHD from healthy children. AUC of the model for

diagnosing ADHD was 69.8%, and the classification ACC was

64.3%. The reported ACC of existing ADHD classification

models varied, with most ranging between 60 and 90% [75].

Despite the success of MRI-based ML models, it has been found

that models that incorporated demographic characteristics and/

or parent/teacher questionnaires reported higher ACC in

classification or diagnosis. One study evaluated parent/teacher

ratings of executive function (from BRIEF’s Emergent

Metacognition Composite score), behavioral/cognitive

measures of executive function, measurements of cortical

thickness in frontal subregions, and thickness and volume in

the parietal cortex, two demographic characteristics (age and

child sex), as well as a complete model with four categories. The

results showed that the complete model with all the target

features achieved a performance ACC of 0.994 in predicting

ADHD diagnosis, with 0.926 derived from parent/teacher

reports, which was considered critical in classifying ADHD

[76]. ADHD was highly heritable (76% heritability) [77].

There was a study that combined multimodal MRI with

candidate genetic data [25], including cortical morphology,

diffusivity scalars, resting-state functional connectivity and

polygenic risk score from norepinephrine, dopamine and

glutamate genes. The integration of candidate single

nucleotide polymorphism (SNP) data into the best model did

not show a meaningful improvement in ACC. Existing studies of

modeling using AI technique have all incorporated MRI

diagnostic tools, in fact, it is important to acknowledge that

neuroimaging data yields very little power [78]. There is still a

need to focus on readily available behavioral/clinical data,

including demographic information, subjective symptom

ratings, and objective neuropsychological data. Integrated

modeling approaches could facilitate the development of new

approaches to ADHD classification and treatment. New types of

data, such as eye tracking, could also be considered in the future

in combination with clinical features.

Traditional ML and DL are two branches of AI. In this

review, we investigated the characteristics of AI techniques

present in the research. Most studies used ML, and the most

commonly used algorithm was SVM (34, 65%), followed by RF

(17, 33%). SVM by identifying the optimal hyperplane or by

mapping nonlinear data into high-dimensional space using

kernel functions to realize classification [79]. Its strength

resides in its proficiency in managing small sample sizes,

high-dimensional data, and nonlinear datasets efficiently, as

exemplified when utilizing EEG to analyze ADHD [26].

Nevertheless, it is hindered by significant computational

complexity and a heightened sensitivity to parameter

adjustments. Conversely, Based on the voting mechanism

of the integrated decision tree (DT), RF is good at

processing large-scale multimodal data (such as when

TABLE 1 (Continued) Characteristics of the included studies (n = 52).

Characteristics Studies n (%) References

Participants’ health conditions, n (%)

Only ADHD 46 (88) [12, 13, 15, 23–31, 34–39], [41–52, 54–60, 62–66, 68–71]

ADHD and OTHERS 6 (12) [32, 33, 40, 53, 61, 67]
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applying multi-center imaging and clinical data fusion to

characterize ADHD) [80], does not require feature selection

and is robust, and RF is known for its ability to perform well in

classification and regression tasks [81]. However, the high

complexity of the model leads to weak interpretability, and

overfitting may occur in extreme cases [82]. The application

TABLE 2 Types of AI techniques used for ADHD (n = 52 studies).

Types Studies n (%) References

AI type

ML 40 (76.9) [13, 15, 23–26, 28–34, 36, 38, 39, 41–49, 52–56, 58, 60, 62–65, 67–70]

DL 5 (9.6) [35, 50, 51, 61, 66]

ML and DL 7 (13.5) [12, 27, 37, 40, 57, 61, 71]

AI algorithms/models/methods a

SVM 34 (65) [12, 13, 23, 24, 28–34, 39–46, 48, 49, 52, 54–60, 62, 63, 67, 68, 70]

RF 17 (33) [12, 15, 24, 27, 32, 33, 36–38, 40, 42, 45, 53, 63, 69–71]

DT 10 (19) [13, 31, 32, 38, 52, 53, 63, 68, 69, 71]

Gradient boosting 7 (13) [15, 26, 27, 33, 63, 69, 70]

K-nearest neighbors (KNN) 7 (13) [27, 31, 38, 42, 43, 45, 68–70]

AdaBoost 6 (12) [13, 27, 36, 63, 69, 70]

LR 6 (12) [27, 32, 38, 42, 43, 45]

Convolutional neural network (CNN) 5 (10) [12, 35, 51, 56, 59, 61]

Naive bayes (NB) 5 (10) [12, 35, 51, 59, 61, 63]

Extreme learning machine (ELM) 3 (6) [30, 54, 55]

Multi-layer perceptron (MLP) 3 (6) [45, 59, 63]

Neural network (NN) 3 (6) [37, 40, 63]

Deep-learning neural network (DNN) 2 (4) [27, 66]

Linear discriminant (LDA) 2 (4) [32, 47]

Multinomial regression (MR) 2 (4) [40]

Recurrent neural network (RNN) 2 (4) [50, 71]

Categorical lasso 1 (2) [32]

Classification and regression tree (CART) 1 (2) [70]

Elastic net regularization (EN) 1 (2) [58]

Partial least squares (PLS) 1 (2) [40]

Purpose of AI algorithms

Early diagnosis 38 (79) [15, 24, 25, 28–43, 47, 49–57, 59–62, 65–67, 70, 71]

Predicting 10 (14) [12, 23, 26, 27, 44, 45, 58, 63, 64, 68]

Classification 4 (7) [13, 46, 48, 69]

Programming languages b

Python 6 (12) [23, 26, 27, 32, 53, 64]

R 5 (10) [25, 39, 41, 44, 47]

aSome studies used more than one model.
bOnly 9 studies reported the programming languages used to develop the model.
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scenarios of the two in the field of ADHD are significantly

different: SVM is suitable for accurate classification tasks with

limited data but complex features, while RF is more suitable

for mining potential patterns in large-scale data. The sample

size of ADHD research data is limited, so SVM is more

suitable. DT and logistic regression (LR) are rarely used

because they are difficult to cope with the high

dimensional, non-linear and heterogeneous characteristics

of ADHD data [27].

In contrast, DL was used 12 times (23.1%). K-fold CV was

used in 34 (34/52, 65%) studies for AI model testing. In the early

days, ML was widely used for its simplicity and high efficiency,

owing to its advantages over traditional analytical methods based

on mass-univariate statistics, especially considering the inter-

correction among regions [16]. DL is a particular subtype of ML

which is based on deep neural networks (DNNs). In contrast to

ML technology, which requires manual extraction of features

during image segmentation, DL employs artificial neural

networks (ANNS) that allow direct processing of raw data

and are particularly useful in identifying complex patterns in

high-dimensional fMRI data tomaximize model performance for

related tasks [83]. Although there are few DL studies, their results

are better than those of ML. There are several issues to be noted,

one is the limitation of data volume, due to cross-sample

reliability/validity and sensitivity and specificity limitations,

ADHD diagnosis is primarily based on parent/teacher reports,

neuroimaging is not yet part of the routine diagnosis process of

ADHD [84]. Most of the MRI data in the published studies come

from public databases, such as ADHD-200, the Study of

Cognitive Development in the Adolescent Brain (ABCD), and

Autism Brain Imaging Data Exchange (ABIDE), which have

limited sample size and limited reproducibility [6, 85], the

amount of data that is available is still not enough to meet

the needs of DL. Secondly, it is the lack of transparency in the

learning and testing process of DL that has led them to be called

black boxes, and the interpretability of medical algorithms may

have become a prerequisite for clinical adoption [86].

A large amount of the studies reported in this paper

employed CV methods (44,84.6%), especially k-fold CV.

CV, which is one input dataset split into parts, some of

which are used as training classifiers (training data), and

the remainder is used for validation (test data), this

method is relatively economical, and could deal with

overfitting and generalization problems to a certain extent

TABLE 3 Features and categories of data used in the included articles (n = 52 studies).

Features Studies n (%) References

Data category a

Brain imaging 20 (38) [23–25, 29–31, 33, 35, 37, 41–43, 46, 54–58, 65, 67]

Demographic information 13 (25) [28, 29, 37, 38, 41–45, 58, 60, 67]

EEG measurements 10 (19) [13, 26, 34, 39, 49, 51, 59, 61, 66, 71]

Parent/Teacher report questionnaire 9 (17) [32, 36, 45, 52, 53, 60, 63, 68, 71]

Neurocognitive features 7 (13) [36, 37, 44, 50, 52, 60, 62]

Eye tracking 3 (6) [48, 64, 66]

Genetic characteristics 3 (6) [12, 25, 58]

Behavioral data 2 (4) [69, 70]

Wearable data 2 (4) [15, 40]

Others 3 (6) [28, 47, 62]

Number of features

<99 25 (48) [13, 15, 26, 27, 32–34, 36, 40, 43, 45, 46, 52, 58–60, 62–65, 67–71]

100–999 10 (19) [23, 29, 30, 38, 42, 47, 54, 56, 57, 66]

>1,000 9 (15) [12, 24, 25, 31, 41, 49, 51, 53, 55]

Not reported 8 (15) [28, 35, 37, 39, 44, 48, 50]

Type of data set source

Closed 31 (60) [12, 13, 15, 23, 26, 34–40, 44, 49, 50, 52, 56–60, 62–71]

Open 21 (40) [24, 25, 27–33, 40–42, 44, 46–48, 51, 53–55, 61]

aMany studies used more than one data category.
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[87]. However, due to the unbalanced nature of the number of

features and the number of subjects in each study, as well as

the high heterogeneity of the study sample, the generalization

is still limited. Moreover, internal verification cannot

guarantee the quality of ML model, it has no extrapolation

[87]. Leave-one-out CV (LOOCV) is a special form of k-fold

CV, which divides the data set into N subsets (N is the total

number of samples). Only 1 sample is retained as the test set

each time, and the remaining N-1 samples are repeated for N

times. Finally, the average value of all test results is taken as

the model evaluation index [28, 88]. This verification method

can maximize the data utilization rate and is suitable for

capturing the heterogeneity among ADHD individuals (such

as the differences in neural markers of different subtypes).

However, due to the high computational cost, it is not

friendly to multi-modal high-dimensional data (such as

fMRI), and can only be used for small data sets [28, 89].

AI requires large datasets to train models in order to avoid

over-fitting and improve generalization. Only seven studies

used datasets with more than 1,000 data points, and

21 studies used open datasets. In order to reflect the actual

performance of the AI model in neuropsychiatric diseases,

the model needed to be tested on multiple data sets to ensure

its extrapolation [6]. AI models in future should be trained

and validated in larger datasets [90]. DL has no advantage

over ML in terms of classification and consumes more

resources. However, the emergence of DL will further

continue in the era of pediatric clinical studies because

TABLE 4 Validation approaches and performance measures (n = 52 studies).

Validation and statistics Studies n (%) References

Validation approach a

K-fold
CV

34 (65) [13, 24, 27–35, 37–39, 41–43, 45, 46, 48, 51, 53, 57–64, 68–71]

LOOCV 10 (19) [25, 26, 28, 47, 50, 52, 54, 56, 61, 62]

Not reported 11 (21) [12, 15, 23, 36, 40, 44, 49, 55, 65–67]

Confusion matrix

Reported 7 (13) [35, 36, 50, 51, 53, 61, 63]

Not reported 45 (87) [12, 13, 15, 23–34], [37–49, 52, 54–60, 62, 64–71]

Performance measures b

ACC 45 (87) [12, 13, 23–31, 33–43], [46–50, 52–54, 56–64, 66–71]

Sensitivity 35 (67) [12, 13, 15, 24, 26–29, 31, 33, 36–42, 44, 46, 47, 50–53, 55–57, 60–64, 67, 69, 71]

Specificity 35 (67) [12, 13, 15, 24, 26–29, 31, 33, 36–42, 44, 46, 47, 50–53, 55–57, 60–64, 67, 69, 70]

AUC 26 (50) [12, 15, 24, 25, 27, 29, 32, 35, 38, 40, 45, 46, 48, 49, 53, 54, 58–65, 69, 70]

F1-score 11 (21) [23, 26, 35, 45, 46, 50, 55, 61, 64, 68, 71]

Precision 8 (15) [26, 35, 45, 53, 55, 64, 68, 71]

Recall 5 (10) [35, 45, 55, 69, 71]

False-negative 3 (6) [36, 48, 50]

False-positive 3 (6) [36, 48, 50]

Negative predictive value 3 (6) [15, 27, 33]

Positive predictive value 2 (4) [15, 33]

Kappa 1 (2) [40]

J-statistic 1 (2) [46]

Positive predicted power 1 (2) [27]

True-negative 1 (2.4) [36]

True-positive 1 (2.4) [36]

aTotal number does not add up, as many studies used more than one validation method.
bTotal number does not add up, as many studies used more than one performance measure.
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of its lesser reliance upon the existence of engineered

features [91].

Comparison with previous studies

So far, we had retrieved five reviews on the use of AI in

ADHD. A summative review explored the complex interaction of

multiple cognitive, genetic and biological factors related to

ADHD underling the ML-based algorithm [5]. The authors

reported the significance of ML models in ADHD research.

Loh, Ooi [92] conducted a systematic review by following

PRISMA guidelines and focused on the diagnostic value of

AI-based, they identified existing diagnostic tools for ADHD

that are commonly used: EEG, MRI, questionnaires, exercise

data, performance tests, etc. From the perspective of each

diagnostic tool, the most commonly used features were

discussed. Pereira-Sanchez and Castellanos [93] provided a

brief narrative review of recent AI studies using sMRI and fMRI

in ADHD patients, focusing on meta-analyses, large analyses, and

proposed novel multimodal approaches. Periyasamy, Vibashan [20]

provided a literature review on the application of AI in ADHD. In

studies focusing on the use of MRI data, the feature extraction,

dimensionality reduction/feature selection, and classification

techniques were compared. Taspinar and Ozkurt [19] reported a

review focusing on the inclusion of studies using sMRI data. Our

scoping review focused on the role of AI techniques in the diagnosis,

classification, and prediction of ADHD, following PRISMA

guidelines. Provide the purpose and characteristics of all AI

technologies listed in the study by reviewing the data sources and

platforms used by the AI model. Hopefully, our findings will

contribute to further ADHD research.

Limitations

This study had the following limitations. This review did not

include articles related to the prognosis, treatment, and drug

discovery of ADHD. The review was limited to journal articles

written in English, while papers, review articles, conference abstracts,

and review reports were excluded to reduce the complexity of the

results. In fact, many research articles in the field of computers are

published in full through conferences. In addition to popular public

databases, half of the studies used private datasets, there was

heterogeneity between studies in the methods and datasets used

to generate assessmentmeasures, such as the number of participants,

data collection methods, and validation methods used. Finally, we

only searched four commonly used databases, and there may have

been omissions in some unsearched databases.

Conclusion

This scoping review is undertaken to support the existing

evidence on the role of AI techniques in ADHD.We summarized

AI models and algorithms for prediction, early diagnosis, and

classification. Research into the application of AI to ADHD is still

in its infancy, but early attempts to study ADHD using AI have

shown promising results. Translating research into clinical

practice still has a long way to go, and more explainable AI

research and public education initiatives are needed. We believe

that this review will help the scientific community better

understand the application of AI techniques in ADHD.
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