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Abstract

Opioids exert their analgesic effect by binding to the µ opioid receptor (MOR),

which initiates a downstream signaling pathway, eventually inhibiting pain

transmission in the spinal cord. However, current opioids are addictive, often

leading to overdose contributing to the opioid crisis in the United States.

Therefore, understanding the structure-activity relationship between MOR

and its ligands is essential for predicting MOR binding of chemicals, which

could assist in the development of non-addictive or less-addictive opioid

analgesics. This study aimed to develop machine learning and deep learning

models for predicting MOR binding activity of chemicals. Chemicals with MOR

binding activity data were first curated from public databases and the literature.

Molecular descriptors of the curated chemicals were calculated using software

Mold2. The chemicals were then split into training and external validation

datasets. Random forest, k-nearest neighbors, support vector machine,

multi-layer perceptron, and long short-term memory models were

developed and evaluated using 5-fold cross-validations and external

validations, resulting in Matthews correlation coefficients of

0.528–0.654 and 0.408, respectively. Furthermore, prediction confidence

and applicability domain analyses highlighted their importance to the

models’ applicability. Our results suggest that the developed models could

be useful for identifying MOR binders, potentially aiding in the development of

non-addictive or less-addictive drugs targeting MOR.
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Impact statement

This work is crucial in addressing the opioid crisis by

focusing on the development of non-addictive or less-

addictive opioid analgesics. Current opioids, while effective for

pain relief, pose significant risks of addiction and accidental

overdose. By elucidating the structure-activity relationship

between the µ opioid receptor (MOR) and its ligands, this

study advances the field through the development of machine

learning and deep learning models to predict MOR binding

activity. Evaluated via rigorous cross-validation, the models

showed robust predictive capabilities. This research imparts

new insights into the prediction of MOR binding,

emphasizing the importance of prediction confidence and

applicability domain analyses. The developed models have the

potential to identify new MOR binders, significantly impacting

the field by guiding the design of analgesics that mitigate the risk

of addiction and overdose, ultimately improving patient safety

and public health outcomes.

Introduction

The opioid epidemic refers to the widespread misuse,

addiction, and overdose deaths associated with prescription

opioids and illicit drugs like heroin and synthetic opioids such

as fentanyl. For many years this crisis has been a significant

public health issue in the United States [1–3]. As reported by the

CDC, over 105,000 drug overdose deaths were recorded in the US

in 2022 [4]. Notably, between 2020 and 2021, the mortality rate

from drug overdoses involving synthetic opioids excluding

methadone rose by 22%, whereas deaths involving heroin

decreased by 32% [5]. Until recently, the predominant cause

of synthetic opioid-related deaths was attributed to fentanyl and

its analogs [5, 6]. Therefore, opioid use disorder (OUD) poses a

significant public health challenge, contributing to illness and

mortality through addiction, overdose, and associated medical

complications [7, 8]. Besides the public health issue, the opioid

crisis has also caused a severe economic burden. For example,

Florence et al. [9] projected the economic toll of the opioid crisis

at $1.02 trillion in 2017. This encompasses the staggering costs

attributed to lives lost from opioid overdose ($480.8 billion) and

the diminished quality of life resulting from OUD

($390.0 billion), collectively representing more than 85% of

the overall economic impact.

Numerous efforts have been dedicated to addressing the

opioid crisis, encompassing enhanced regulation of opioid

prescription practices [10–12], broadened accessibility to

addiction treatment and harm reduction services [13–15],

public awareness campaigns to highlight opioid risks [16, 17],

and steps aimed at decreasing the availability of illicit opioids [9,

18]. The profound addictiveness of opioids is closely linked to the

overdose fatalities caused by prescription opioids, heroin, and

illicit fentanyl. However, given the important role of prescription

opioids as powerful analgesics, outright prohibition of these

medications is not feasible [19, 20].

Opioid drugs achieve their analgesic effects by binding to

opioid receptors, including the μ opioid receptor (MOR) [21].

MOR is a primary target for analgesics. Since the discovery of

MOR in the 1970s, significant efforts have beenmade to elucidate

the relationship between the receptor and its ligands in the hopes

of guiding the development of new drugs with high analgesic

efficacy, fewer side effects, and a lower risk of tolerance,

dependence, and addiction [22, 23]. Numerous morphine-

based semi-synthetic opioids (such as oxycodone, heroin) and

fully synthesized opioids (such as fentanyl) have been developed;

nevertheless, none of these opioids have demonstrated both

safety and efficacy as analgesics [24]. Moreover, bringing a

new drug to market typically requires an investment of nearly

$2.6 billion and over a decade of time [25–27]. With the

increasing computational power and data sources,

computational modeling using machine learning and deep

learning has become a promising approach to reduce the time

and cost of new drug development [21, 28–36]. Multiple

computational models have been constructed for the binding

activity prediction of compounds to diverse opioid receptors

[37–42]. Floresta et al. [37] established three quantitative

structure-activity relationship models (one field-based 3D

model and two molecular fingerprint based 2D k-nearest

neighbors (kNN) models) based on a dataset of 115 fentanyl-

like compounds. Sakamuru et al. [38] generated models to

predict both agonistic and antagonistic activity of multiple

opioid receptors, including MOR, based on quantitative high-

throughput screening (qHTS) assay data. Pan et al. [39]

established a 3D-QSAR model to predict δ opioid receptors

binding activity. The training set included 46 compounds

collected from five publications. Feng et al. [40] developed

machine learning and deep learning models for predicting the

inhibitory activity of 75 proteins involved in opioid receptor

networks, including models for MOR trained on

4,667 compounds collected from the ChEMBL database, to

assess the screening and repurposing potential of more than

120,000 drug candidates targeting four opioid receptors.

Leveraging transfer learning, Provasi and Filizola [41]

constructed deep learning models for predicting the

bioactivity of opioid receptors using ligand-based and

structure-based molecular descriptors. Their MOR binding

activity predictive model was trained on 87 active compounds

from the IUPHAR/BPS Guide to Pharmacology database and

1,058 inactive chemicals from ChEMBL database, with inactivity

determined by a -log10 of Ki, IC50, or EC50 less than 5. However,

this approach raises concerns about model reliability, as many

compounds defined as inactive exhibited some agonistic or

antagonistic activity, increasing the potential for false

negatives. Instead of predicting MOR binding activity, Oh

et al. [42] developed machine learning and deep learning
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models for differentiating MOR agonists from antagonists. These

models were trained on a small dataset (755 agonists and

228 antagonists) and evaluated with an even smaller dataset

(15 agonists and 11 antagonists). The small size of the datasets

and the narrow chemical space of the compounds in training

these models limit the applicability of the developed models.

To enhance performance, robustness, and generalization

capability of MOR binding activity prediction models, large

sizes of diverse chemicals are needed in training the models.

Therefore, this study collected a large size of diverse chemicals

to construct machine learning and deep learning models for

MOR binding activity prediction. Moreover, multiple

machine learning and deep learning algorithms were

adopted. We first curated MOR binding activity data of

chemicals from public databases and publications. Machine

learning and deep learning models were then built using

multiple algorithms and validated by cross-validation and

external validation. Moreover, prediction confidence and

applicability domain (AD) derived from our models offer

additional metrics for more appropriate applications of our

models. Validation results demonstrate that the developed

models could help in identifying compounds that bind to

MOR, potentially facilitating the development of opioid drugs

with reduced addictive properties.

Materials and methods

Study design

Study design is illustrated in Figure 1. First, chemicals with

MOR binding activity data were curated from public databases as

the training dataset. Chemicals with qHTS assay data reported in

the literature were also curated. After removing chemicals that

are contained in the training dataset, some of the inactive

chemicals in qHTS assays were added to the training dataset

and the rest, including active and inactive chemicals, were used as

an external validation set. Molecular descriptors for the

chemicals in both training and external validation datasets

were then calculated using Mold2 [43, 44]. Five machine

learning and deep learning algorithms, including random

forest (RF) [45], kNN [46], support vector machine (SVM)

[47], multi-layer perceptron (MLP) [48], and long short-term

memory (LSTM) network [49], were applied in construct models.

FIGURE 1
Study overview. The data on chemicals and their MOR binding activity were curated from public databases and the literature. The dataset from
these databases was augmented with 1,727 non-binding chemicals sourced from the literature, forming the training dataset. The remaining
chemicals from the literature constituted the external validation dataset. Molecular descriptors were calculated using Mold2 and subsequently
filtered. Five algorithms—random forest, k-nearest neighbors, support vector machine, multi-layer perceptron, and long short-term
memory—were used to build predictive models. The training dataset underwent 50 iterations of 5-fold cross-validation. Models constructed using
the entire training dataset were then used to predict MOR binding on the external validation dataset. The performance of the models was evaluated
based on their cross-validation and external validation predictions, with an additional focus on analyzing prediction confidence and
applicability domain.
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In addition, a consensus model was generated by combining the

models built with each of these algorithms. Fifty iterations of 5-

fold cross-validations were conducted on the training dataset for

estimating the performance of the developed models. Models

were constructed on the entire training dataset using these

algorithms, and their generalizing capability in predicting

MOR binding activity of unseen chemicals was evaluated

using the external dataset. Multiple metrics were calculated for

measuring model performance. At last, prediction confidence

and AD were analyzed based on the predictions from both cross-

validations and external validations.

Data sources

Compounds with experimental MOR binding activity data

were curated from PubChem1, BindingDB2, and ChEMBL3

databases. Compounds having quantitative MOR binding

activity data such as IC50, Ki, and Kd values were designated

as binders. For compounds without quantitative binding activity

data, the qualitative binding activity description field was used to

determine if a compound is MOR binder or non-binder.

Compounds marked as “not determined” or “inconclusive”

were excluded. Compounds marked as “active” or “positive”

were assigned as binders, while chemicals marked as

“inactive” or “negative” were treated as non-binders.

Compounds with qHTS assay data on MOR used in

Sakamuru et al. [38] were downloaded from4. The data from

columns “OPRM agonist outcome” and “OPRM antagonist

outcome” in both the training and validation datasets were

used. A compound is inactive in both agonist and antagonist

assays was termed as a non-binder, while a compound is active in

one of both assays was designated as a binder. The simplified

molecular input line entry system (SMILES) strings of

compounds in both the public databases and the datasets

from the publication were collected for representing their

chemical structures.

Data processing

The SMILES strings of the compounds obtained from the

public databases (PubChem, BindingDB, and ChEMBL) and the

publication (Sakamuru et al. [38]) were first converted to unique

SMILES strings using the Online SMILES Translator and

Structure File Generator [50]. For compounds with the same

unique SMILES strings and the same activity class (binder or

non-binder), only one compound was kept. Compounds with the

same unique SMILES strings and different activity classes were

excluded. Consequently, 10,149 compounds (9,958 binders and

191 non-binders) from the public databases and

2,527 compounds (509 binders and 2,018 non-binders) from

Sakamuru et al. [38] remained. Of the 2,527 compounds,

192 non-binders are contained in the 10,149 compounds from

the public databases (Supplementary Table S1) and were further

removed. Finally, 509 binders and 1,826 non-binders from

Sakamuru et al. were used. The binder/non-binder ratios of

these two datasets (52.14 and 0.28) are dramatically different.

Therefore, we randomly took 1,727 non-binders from the qHTS

dataset and added them to the dataset from the public databases,

resulting in a dataset of 9,958 binders and 1,918 non-binders as

the training dataset (Supplementary Table S2). The remaining

509 binders and 99 non-binders from the qHTS assays were used

as the external validation dataset (Supplementary Table S3). The

used training and external validation datasets have similar

binder/non-binder ratios. The SMILES strings of both training

and external validation datasets were used to generate two-

dimensional (2D) structures of the compounds using the

Online SMILES Translator and Structure File Generator [50].

The SDF files obtained were used for subsequent molecular

descriptors calculation.

Descriptors calculation and filtering

Converting chemical structures into machine-readable

formats is essential for developing machine learning and deep

learning models [51]. In this study we utilized software tool

Mold2 for calculating molecular descriptors for the compounds

in the training and external validation datasets. Mold2 only

accepts SDF (structure data file) representation of chemical

structures [43, 44]. Therefore, the unique SMILES strings of

compounds were first converted to SDF files for the training and

external validation datasets using the Online SMILES Translator

and Structure File Generator [50]. The generated SDF files were

then input into Mold2 software for calculating molecular

descriptors. Mold2 calculated 777 molecular descriptors for

each compound.

Molecular descriptors with no or very low information for a

dataset can significantly influence the performance of models

developed using the dataset. To identify and remove such low

informative descriptors, we first excluded 263 descriptors with a

constant value for more than 90% of the compounds in the

training dataset. Subsequently, we performed Shannon entropy

analysis [43, 52–54] on the remaining 514 descriptors of the

training dataset. In brief, for each molecular descriptor, the range

of descriptor values of the compounds in the training dataset

were first divided into 20 groups with equal value intervals. The

compounds in the training dataset were then put into these

1 https://pubchem.ncbi.nlm.nih.gov/

2 https://www.bindingdb.org/rwd/bind/index.jsp

3 https://www.ebi.ac.uk/chembl/

4 https://tripod.nih.gov/tox/oprpred/codes.zip
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20 groups based their descriptor values. The distribution in the

20 groups, probabilities of compounds in the 20 groups, were

calculated by dividing compound counts by the total compounds

of the training dataset. At last, Shannon entropy values were

computed for each descriptor using Equation 1.

Hn p1, p2, · · ·, pn( ) � −∑n
i�1
pi log2pi (1)

Where pi is the probability of group i. 226 descriptors with

Shannon entropy less than 2.0 were considered as low

informative and removed. The remaining 288 molecular

descriptors have Shannon entropy values greater than or equal

to 2.0 and were used in subsequent model development. The

288 molecular descriptors are listed in Supplementary Table S4.

For the external validation dataset, the same 288 molecular

descriptors were kept, and other descriptors were removed.

Scaling descriptor values

The values of different molecular descriptors usually are in

quite different scales in a dataset. Using unscaled molecular

descriptor values to construct machine learning and deep

learning models often result in low performance for most

algorithms, depending on their mathematical principles.

Therefore, scaling is generally needed before model

development. We scaled the values of each molecular

descriptor in training and external validation datasets using

Equation 2.

V � Vo −Mintrain
Max train −Mintrain

(2)

Where V is scaled value, Vo is original value, Mintrain is the

minimum value of the descriptor in the training set, andMaxtrain
is the maximum value in the training set.

Model development

MOR binding activity prediction models were built using

three machine learning algorithms (RF, kNN, and SVM) and two

deep learning algorithms (MLP and LSTM). Numerous machine

learning and deep learning algorithms have been developed, each

grounded in distinct mathematical principles. kNN is a widely

used, simple, and interpretable algorithm. In contrast, RF and

SVM are more complex but have demonstrated good

performance in various applications. However, the complexity

of RF and SVM makes them challenging to interpret. We chose

these three to explore the performance difference between simple

and complicate machine learning models. Furthermore, MLP

and LSTM represent two fundamentally different deep learning

architectures: MLP is a feedforward neural network, whereas

LSTM is a recurrent neural network. These two were selected to

evaluate the performance of deep learning models constructed

using algorithms with distinct structural designs.

When building a model using an algorithm, related

algorithmic parameters were tuned through inner 5-fold cross

validations. Briefly, to optimize algorithmic parameters the

training set was randomly split into five folds. Four folds were

used to build a model to predict the remaining fold. This process

was repeated five times so that each of the five folds was used once

and only once as a testing set. The prediction results on all five

folds were then used to calculate a Matthews correlation

coefficient (MCC) value. This inner 5-fold cross-validation

was repeated five times with different random divisions of the

training set into five folds. At last, the five MCC values from five

iterations of inner 5-fold cross-validations were averaged to

estimate performance of models built with a set of

parameters. The set of hyperparameters resulting in the

highest average MCC value was determined as the optimized

parameters for the algorithm and were used to construct a model

on the training set.

The hyperparameters tuned in our study are given below.

For RF, n_estimators (100 and 200 trees), min_samples_leaf

(10 and 20), and max_chemical (1,000 and 2,000) were tuned.

For kNN, the parameters n_neighbors (k = 3, 5, and 7) and

weights (“uniform,” “distance”) were optimized. For SVM, a

linear kernel was employed and the regularization parameter

C (0.1, 1, and 10) was optimized. For MLP, alpha (0.0001, 0.1)

and hidden_layer_sizes (100, 300) were optimized. For LSTM,

the number of epochs was tuned to 500 with running

5,000 epochs based on the training loss value and accuracy.

Other parameters used for LSTM include recurrent layers = 4,

features = 200, batch size = 32, and learning rate = 0.0001. For

these five algorithms, except the parameters aforementioned,

default values were adopted for other algorithmic parameters.

The RF, kNN, SVM, andMLPmodels were constructed using

the packages in Scikit-learn (0.23.2) [55] in Python (3.8.5) [56],

while the LSTMmodels were developed using a PyTorch package

(2.0.1) [57] in Python (3.8.5).

In addition to models developed using the five algorithms,

a consensus model was constructed for a training set using the

five individual models. Each of these models was built using

distinct algorithms, potentially utilizing different features

from the same training dataset. Consensus modeling

capitalizes on the strengths of each model, aggregating

their predictions to deliver more reliable, robust, and

accurate results. This approach enhances the overall

performance by minimizing the weaknesses inherent in any

single model. The consensus model combines outcomes from

its five individual models using a majority voting strategy: if

three or more individual models predict a compound as MOR

binder, the compound is determined as a binder, otherwise, it

is predicted as non-binder.
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Model evaluation

Model performance was evaluated using two strategies: 5-

fold cross-validation and external validation. In a 5-fold

cross-validation, the entire training set was first randomly

divided into five equal or close to equal folds. Four of the five

folds were then used to tune algorithmic parameters using the

inner 5-fold cross-validations for each of the machine

learning and deep learning algorithms. The tuned

parameters were then used to train models on the four

folds, and the trained models were used to predict the

remaining fold. This process was repeated five times so

that each of the five folds was used as a testing set only

once. At last, performance metrics values were calculated

using prediction results from all five testing sets to estimate

model performance. The 5-fold cross-validation was repeated

50 times to reach statistically robust estimations on model

performance.

The training dataset was randomly split into five subsets, four

subsets for training and one subset for testing. This random

splitting was repeated five times to ensure all compounds were

used for both training and testing.

External validation was employed to evaluate

the generalization of the constructed models using the

entire training set. The same parameter tuning process

was applied to the whole training set. The optimized

parameters were then used to develop models using the

entire training set. Finally, the developed models were

used to predict MOR binding activity for compounds in

the testing set.

Performance metrics

Five metrics were used to measure model performance,

including accuracy, sensitivity, specificity, balanced accuracy,

and MCC. These metrics were derived by comparing model

predictions with actual binding activity data. They were

calculated using Equations 3–7.

Accuracy � TP + TN

TP + TN + FP + FN
(3)

Sensitivity � TP

TP + FN
(4)

Specificity � TN

TN + FP
(5)

BalancedAccuracy � Sensitivity + Specificity
2

(6)

MCC � TP*TN − FP*FN���������������������������������������
TP + FP( )* TP + FN( )* TN + FP( )* TN + FN( )√

(7)
Where TP, TN, FP, and FN represent true positives, true

negatives, false positives, and false negatives, respectively.

Prediction confidence analysis

Predictions produced by our machine learning or deep

learning models provide not only class assignments but also

probabilities that quantify the likelihoods of these class

assignments. The prediction probability of a prediction not

only classifies the compounds as MOR binder or non-binder,

but also measures the confidence of the prediction. Prediction

confidence analysis is conducted to evaluate if prediction

confidence can be used as an additional valuable parameter to

inform better utilization of a model in applications, such as

decision-making and safety assessment. The prediction

confidence of a prediction is derived from the prediction

probability using Equation 8 [43, 53, 54, 58].

Prediction confidence � prob − 0.5
∣∣∣∣ ∣∣∣∣

0.5
(8)

where prob is the probability of a compound predicted as a MOR

binder from a machine learning and deep learning model.

Prediction confidence values are between 0 and 1. The larger

the value the more confidence in the prediction.

To examine the relationship between prediction confidence

and prediction performance for predictions of a model in 5-fold

cross-validations or external validation, the prediction

confidence value range (between 0 and 1) was divided into

10 even bins with the interval of 0.1. Next, the predictions

were allocated to the 10 bins according to their prediction

confidence values. Lastly, performance metrics were separately

calculated for predictions in each the 10 bins.

Applicability domain (AD) analysis

AD of a model represents the structural space of chemicals

utilized to train the model. Chemicals falling within the AD of a

model exhibit structural similarities to the training chemicals,

thus yielding more accurate predictions. Therefore, AD analysis

plays a crucial role in evaluating the predictions made by

computational models [59–61]. In this study, the AD of a

model was defined by the boundaries of all descriptors

ranging from the minimum to the maximum values of

chemicals used in training the model. More specifically, we

first computed the AD of a model using the training

chemicals. Next, the distance of a chemical to the AD was

calculated using Equation 9.

Distance �
�����������������
d1

2 + d2
2 + . . . + dn

2

√
(9)

Where di (i = 1, 2, . . ., n) is the distance of the chemical to the

AD for molecular descriptor i. If the value of molecular

descriptor i falling in the value range of the same molecular

descriptors of the training chemicals, di was set to zero.

Therefore, when all molecular descriptor values of a chemical
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fall within the molecular descriptor value ranges of training

chemicals, the Distance value is calculated to be zero

according to Equation 9 and the chemical is considered inside

the model’s AD. If the value of any molecular descriptor is

outside the descriptor value boundary of the training set, the

Distance value is greater than zero and the chemical is considered

outside the model’s AD. At last, performance of predictions

inside and outside AD was compared for the models constructed

in the 5-fold cross-validations and the model built in the external

validation.

FIGURE 2
Performance of cross-validations. Performance of 50 iterations of 5-fold cross-validations was measured using sensitivity (A), specificity (B),
balanced accuracy (C), accuracy (D), and MCC (E). The average values of these metrics across the 50 iterations are represented by color bars,
corresponding to different algorithms indicated by the x-axis labels (RF, random forest; kNN, k-nearest neighbors; SVM, support vector machine;
MLP, multi-layer perceptron; LSTM, long short-term memory; and CONS, consensus model). The standard deviations are displayed as error
bars on top of the color bars.
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Results

Model performance

The prediction performances of the machine learning (RF,

kNN, and SVM), deep learning (MLP and LSTM), and

consensus models from the 50 iterations of 5-fold cross-

validations were summarized in Figure 2 in sensitivity

(Figure 2A), specificity (Figure 2B), balanced accuracy

(Figure 2C), accuracy (Figure 2D), and MCC (Figure 2E).

Overall, all models performed well, as indicated by the

averaged performance metrics values (the bars in Figure 2).

FIGURE 3
Performance of external validations. The performancewas assessed using sensitivity (A), specificity (B), balanced accuracy (C), accuracy (D), and
MCC (E). The values of these metrics are represented by color bars for models developed using different algorithms, as indicated by the x-axis labels
(RF, random forest; kNN, k-nearest neighbors; SVM, support vector machine; MLP, multi-layer perceptron; LSTM, long short-term memory, and
CONS, consensus model).

Experimental Biology and Medicine
Published by Frontiers

Society for Experimental Biology and Medicine08

Liu et al. 10.3389/ebm.2025.10359

https://doi.org/10.3389/ebm.2025.10359


More specifically, performance metrics accuracy (0.89 – 0.91),

balanced accuracy (0.71 – 0.82), and MCC (0.53 – 0.65) are high

for all models, indicating good overall performance. Not

surprisingly, all models performed much better on MOR

binders than non-binders, with much higher averaged

sensitivity (0.95 – 0.98) than specificity (0.44 – 0.69) because

the training dataset has a greater number of MOR binders

(9,958) than non-binders (1,918). Notably, all performance

metrics exhibit small standard deviations among the

50 iterations of cross-validations (the sticks atop the bars in

Figure 2), suggesting that the machine learning, deep learning,

and consensus models were relatively unaffected by the random

partitioning of the whole training dataset into five folds.

Interestingly, the two deep learning models (the cyan and

blue bars in Figure 2) outperformed the three machine

learning models (the green, light brown, and magenta bars in

Figure 2), especially in specificity (Figure 2B). These results

demonstrate that a large dataset, such as the one training

dataset in this study with 11,876 chemicals, is needed for

deep learning algorithms to show superiority over

conventional machine learning algorithms, especially for the

minority class of an imbalanced dataset. Surprisingly, the

consensus models did not surpass all member models. They

performed better than the three machine learning models but

worse than the two deep learning models. Our results indicate

that though consensus modeling remains as an effective

approach to combine models constructed using conventional

machine learning algorithms, it deserves further investigation on

if and how a consensus approach can be applied to models built

with deep learning algorithms as we only used one consensus

strategy, majority voting.

The external validation performances on the models trained

with the whole training set are summarized in Figure 3. The

external validation results indicate that the models performed

well, with good performance metrics values; sensitivity of

0.71–0.79, specificity of 0.70–0.76, balanced accuracy of

0.70–0.74, accuracy of 0.71–0.78, and MCC of 0.32–0.40. As

expected, they slightly underperformed the models in the cross-

validations. Strikingly, specificity and sensitivity are very close in

the external validations, in contrast to the cross-validation results

where sensitivity is expectedly higher than specificity. This

difference may attribute to the nature of data in the training

and external validation datasets. The MOR binders in the

training dataset are determined by conventional low-put

assays, resulting in models that perform well in predicting

chemicals tested with the same assays. In contrast, most of the

MOR non-binders in the training dataset are results from qHTS

assays, and thus the trained models performed better on the

external MOR non-binders determined by the same qHTS

assays. Our results suggest that caution should be exercised in

the validation and application of machine learning and deep

learning models.

Surprisingly, not like in the cross-validations, the two deep

learning models did not consistently outperform all three

machine learning models in the external validations.

Prediction confidence analysis

The prediction confidence analysis was performed on the

results of cross-validations and external validation. The accuracy

values of the predictions at 10 confidence levels from the cross-

validations are shown in Figure 4A for all models. The accuracy

of predictions is improved when their prediction confidence level

is increased, for all models. Similar trends were observed for

sensitivity, specificity, balanced accuracy, and MCC as depicted

in Supplementary Figures S1–S4, respectively. Moreover, more

predictions fall in higher confidence levels for all models except

SVM as shown in Figure 4B.

The prediction confidence analysis was also conducted on the

results of external validation. The accuracy values of the

predictions at 10 confidence levels from the external

validations are shown in Figure 4C for all models. The trends

are similar to those observed in the cross-validations: higher

prediction confidence levels correspond to greater prediction

accuracy. However, the trend lines are less smooth than those in

the cross-validations, due to the significantly fewer predictions at

each confidence level. The sensitivity, specificity, balanced

accuracy, and MCC values of the predictions at 10 confidence

levels from the external validations exhibit similar trends as

shown in Supplementary Figures S5–S8, respectively. Notably,

the SVM model had very few predictions at high confidence

levels, 3, 1, and 3 at confidence levels 0.7–0.8, 0.8–0.9, and

0.9–1.0, respectively. Therefore, performance metrics at these

confidence levels were not calculated because they would not be

statistically meaningful. The number of predictions is plotted

against prediction confidence level in Figure 4D. In general, the

number of predictions does not differ much in confidence levels

except the SVM model which had fewer predictions at higher

confidence levels.

Applicability domain analysis

The distances to the AD of the compounds predicted in the

cross-validations and external validations were computed.

Prediction accuracy values inside and outside the AD were

calculated separately and are illustrated in Figure 5A for the

cross-validations and Figure 5B for the external validation. It was

clear that the compounds inside the AD were predicted more

accurately than those outside the AD by all models, in both cross-

validations and external validations. The sensitivity, specificity,

balanced accuracy, and MCC values of predictions inside and

outside AD for all models are presented in Supplementary
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Figures S9–S12, respectively, for the cross-validations, and in

Supplementary Figures S13–S16 for the external validations.

In terms of overall performance metrics (accuracy, balanced

accuracy, and MCC), all models performed better inside the AD

than outside it. However, examining performance on binders and

non-binders, it was found that the compounds outside the AD

had higher specificity than those inside the AD for all models in

both cross-validations and external validations. This indicates

that all models performed better on MOR binders than on non-

binders. Moreover, the deep learning models achieved higher

MCC and balanced accuracy than the machine learning models,

both inside and outside the AD, in both cross-validations and

external validation.

The results demonstrated that AD analysis is beneficial for

evaluating the reliability of predictions from both machine

learning and deep learning models. It is worth noting that the

MCC values for predictions outside the AD in the external

validations are zeros for SVM, MLP, and LSTM models

FIGURE 4
Prediction confidence analysis results. The analysis of prediction confidence is depicted by plotting prediction accuracy values and the number
of predictions at various confidence levels. (A, B) show the results for cross-validations, while (C, D) display the results for external validations. The
x-axis tick labels represent the different confidence levels. The models developed using different algorithms are distinguished by various colors, as
indicated in the color legend (RF, random forest; kNN, k-nearest neighbors; SVM, support vector machine; MLP, multi-layer perceptron; LSTM,
long short-term memory, and CONS, consensus model).

Experimental Biology and Medicine
Published by Frontiers

Society for Experimental Biology and Medicine10

Liu et al. 10.3389/ebm.2025.10359

https://doi.org/10.3389/ebm.2025.10359


(Supplementary Figure S16). This might not be statistically

robust due to the small number (8) of compounds.

Discussion

The opioid epidemic is a severe public health crisis in the

United States, leading to an increasing number of deaths and

imposing a substantial economic burden. Opioids are potent

analgesics, but many are addictive and prone to cause an

overdose. Hence, the non- or less-addictive drugs that target

MOR are needed. Developing new drugs is a lengthy and

costly process, often taking about a decade and billions of

dollars. Therefore, computational approaches provide a

promising and efficient way to aid drug development. In

this study, we collected chemicals with MOR binding

activity data from multiple databases and the literature. We

then constructed and evaluated machine learning and deep

learning models using the curated data for MOR binding

activity prediction.

The curated data are imbalanced, which is common in the

real world. The data collected from databases have a greater

number of MOR binders than non-binders. Conversely, the

qHTS data acquired from the literature have more MOR non-

binders than binders. Hence, to maintain a consistent ratio of

binders to non-binders in both the training and testing datasets,

1,727 non-binders were randomly taken from the qHTS data and

added to the data collected from databases to form the training

dataset. The remaining qHTS data were used as the external

validation dataset. The same prevalence of MOR binders in both

the training and external validation datasets can reduce the

impact of difference in prevalence on external validation

results, enhancing the reliability of extrapolation assessment

for the developed models.

Both the training and external validation datasets are biased

toward MOR binders. In two-class classification models,

accuracy tends to favor the majority class, which, in this

study, is the MOR binders. This bias affects the evaluation of

prediction performance, especially in imbalanced datasets.

Therefore, we also employed balance accuracy and MCC to

measure overall performance.

Interestingly, all models had higher sensitivity than

specificity, especially in the cross-validations (Figures 2A, B).

This discrepancy arises because the training dataset contains a

greater number of MOR binders than non-binders, enabling the

models to learn the structures of MOR binders better than those

of non-binders. Consequently, this results in more accurate

predictions for binders (higher sensitivity) compared to non-

binders (lower specificity). These findings suggest that

incorporating more non-binders into the training dataset

would likely improve the prediction performance of machine

learning and deep learning models. To address this issue, future

efforts should focus on incorporating a more balanced

representation of non-binders in the training dataset. This

would help reduce the imbalance and, in turn, enhance the

robustness and reliability of the models. Additionally, we

recommend that the scientific community place equal value

on the publication of inactive results, alongside active

findings. Acknowledging and appreciating inactive data will

not only contribute to a more balanced dataset but also foster

greater transparency and scientific rigor in the field.

It is worth noting that the prediction performance of all

models in the external validations is worse than in the cross-

validations. This discrepancy is not surprising because the MOR

binding activity data in the training and external validation

datasets are obtained from different types of assays. The

training dataset, except for 1,727 non-binders, consists of

results from traditional assays, whereas the external validation

dataset is generated using the qHTS assay. Hence, the poorer

performance of the machine learning and deep learning models

in the external validations compared to the cross-validations

FIGURE 5
Applicability domain (AD) analysis results. The AD analysis is
presented for cross-validations (A) and external validations (B).
Accuracy for predictions within the AD is shown in cyan bars, while
accuracy for predictions outside the AD is displayed in orange
bars. The models developed using different algorithms are
represented by the x-axis labels (RF, random forest; kNN,
k-nearest neighbors; SVM, support vector machine; MLP, multi-
layer perceptron; LSTM, long short-term memory, and CONS,
consensus model).
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cannot be fully attribute to the models extrapolating to different

chemicals. The difference in experimental methods that

produced the MOR binding activity data in the two datasets

likely contribute to this performance discrepancy.

To confirm this hypothesis, we examined the concordance

between the two types of data. There are 192 compounds in the

training dataset with qHTS assay data that were excluded from

the external validation dataset. Of these 192 compounds, 186 are

binders and only 6 are non-binders according to traditional

assays, while the qHTS assay results show 42 binders and

150 non-binders. Comparison revealed that 41 binders and

five non-binders are common in the two methods. Hence,

most binders from the qHTS assay (41 out of 42) can be

predicted using traditional assay results, whereas only a few

non-binders (5 out of 150) can be predicted. This low

concordance between the qHTS assay data and traditional

assay data confirms our hypothesis.

Various consensus strategies can be employed to combine

multiple individual models into a unified consensus model. In

this study, consensus models were generated using a majority

voting strategy based on the predictions of five individual models.

To further investigate the potential impact of different consensus

strategies, we also applied an average prediction probability

approach. In this method, the mean of the MOR binder

prediction probabilities from the five individual models was

calculated and used as the binder probability for the

consensus model. If the consensus probability of a compound

was greater than or equal to 0.5, it was predicted as a binder;

otherwise, it was classified as a non-binder. The consensus

models derived from both the majority voting and average

prediction probability strategies exhibited similar performance,

as shown in Supplementary Figure S17.

A machine learning and deep learning model not only

predicts the classes of a sample but also quantifies the

likelihood of the sample belonging to the predicted class. In

this study, the models output a probability indicating the

likelihood of a compound being a binder. This probability is

used not only to predict the compound as a MOR binder or non-

binder, but also to measure the confidence of the prediction. To

evaluate the usefulness of this probability, prediction confidence

analysis was conducted on predictions in both cross-validations

and external validations. The results (Figure 4) suggest that

prediction confidence derived from the developed models

offers an additional valuable metric for their applications.

The interpretability of deep learning models remains a key

challenge, particularly in complex domains such as predicting

binding activity for MOR. While the two deep learning models

achieved higher predictive performance than the three machine

learning models, the black-box nature makes deep learning

models difficult to directly understand how individual

molecular descriptors influence MOR binding. To enhance

interpretability, techniques such as feature importance

analysis, SHAP (Shapley Additive Explanations), and LIME

(Local Interpretable Model-agnostic Explanations) can be used

to identify the most influential molecular descriptors. However,

achieving a fully transparent understanding of deep learning

model behavior remains an ongoing research challenge. In the

context of this study, we focus on predictive accuracy but

acknowledge the need for further work on improving model

interpretability for better insight into the underlying mechanisms

of MOR binding.

AD serves as a critical metric for evaluating the uncertainty of

predictions from machine learning or deep learning models.

Compounds within the chemical space of the training

compounds, or within the AD of a model, are expected to be

predicted more accurately than those outside the AD [60, 61].

Our AD analysis of the predictions in the 5-fold cross-validations

(Figure 5A) and external validations (Figure 5B) revealed that

predictions within the AD are more accurate than those outside

the AD for all models. Therefore, developing a model based on a

training dataset with a broader chemical space can improve its

applicability to a wider range of chemicals.

The scope of application of a predictive model is determined

by its training dataset. The models developed in this study are

based on a large dataset derived from traditional low-throughput

experiments. In these models, any compound that exhibits

binding activity—regardless of how weak—is classified as a

MOR binder. As a result, the cross-validation results reflect

the accuracy of predictions for chemicals in these binding

assays, while the external validation results assess the models’

ability to generalize and predict the binding activity of

compounds in qHTS assays. To improve the reliability of

predictions for MOR binding activity in either traditional or

qHTS assays, stratified sampling should be employed to generate

training and testing datasets. To demonstrate this, we applied this

strategy. The details of the process are provided in the

Supplementary Material, and the results are summarized in

Supplementary Figures S18–S19.

In conclusion, machine learning (RF, kNN, and SVM) and

deep learning (MLP and LSTM) models were constructed for

MOR binding activity prediction. These models were evaluated

using 5-fold cross-validations and external validations. The

models achieved good performance in both evaluation

methods. Results from prediction confidence analysis and AD

analysis demonstrated the importance of prediction confidence

and AD in evaluating the reliability of the models’ predictions.

Our findings suggest that the developed models have the

potential to identify MOR binders, which could assist in the

development of non-addictive or less-addictive drugs

targeting MOR.
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