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Abstract

Adverse drug events are harms associated with drug use, whether the drug is

used correctly or incorrectly. Identifying adverse drug events is vital in

pharmacovigilance to safeguard public health. Drug safety surveillance can

be performed using unstructured data. A comprehensive and accurate list of

drug names is essential for effective identification of adverse drug events. While

there are numerous sources for drug names, RxNorm is widely recognized as a

leading resource. However, its effectiveness for unstructured data analysis in

drug safety surveillance has not been thoroughly assessed. To address this, we

evaluated the drug names in RxNorm for their suitability in unstructured data

analysis and developed a refined set of drug names. Initially, we removed

duplicates, the names exceeding 199 characters, and those that only

describe administrative details. Drug names with four or fewer characters

were analyzed using 18,000 drug-related PubMed abstracts to remove

names which rarely appear in unstructured data. The remaining names,

which ranged from five to 199 characters, were further refined to exclude

those that could lead to inaccurate drug counts in unstructured data analysis.

We compared the efficiency and accuracy of the refined set with the original

RxNorm set by testing both on the 18,000 drug-related PubMed abstracts. The

results showed a decrease in both computational cost and the number of false

drug names identified. Further analysis of the removed names revealed that

most originated from only one of the 14 sources. Our findings suggest that the

refined set can enhance drug identification in unstructured data analysis,

thereby improving pharmacovigilance.
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Impact statement

Adverse drug events are a significant concern for public

health, necessitating accurate detection in drug safety

surveillance. While unstructured data is a valuable source for

identifying adverse drug events, effective analysis depends on a

comprehensive and accurate list of drug names. Although

RxNorm is recognized for providing standardized drug names,

its effectiveness in unstructured data analysis remains

unassessed. Our research refined the list of RxNorm drug

names to improve its suitability for unstructured data analysis.

By removing duplicates, excessively long names, false names, and

replaceable names, we created a more accurate and efficient list of

drug names. Testing this refined set on drug-related PubMed

abstracts revealed improved accuracy and reduced

computational costs compared to the original RxNorm list.

This refined list of drug names enables more accurate

monitoring of adverse drug events, providing a valuable tool

for improving drug safety surveillance and protecting

public health.

Introduction

Adverse drug events (ADEs) are harmful responses to

medications that pose significant risks to patients with

millions of deaths and hospitalization annually [1]. Effective

monitoring of ADEs through drug safety surveillance is crucial

for protecting public health. Drug safety surveillance begins in

clinical trials, where new drugs are rigorously tested for safety

and efficacy. However, clinical trials are limited by short exposure

periods and the size and diversity of the tested population [2].

Therefore, post-market drug safety surveillance is crucial to

identify potential ADEs in a large population, particularly for

drugs repurposed to treat COVID-19. For example, originally

developed for the treatment of hepatitis C, Remdesivir was later

evaluated for antiviral activity against other viruses and, in 2020,

received FDA approval for the treatment of COVID-19.

Traditionally, post-market surveillance relies on spontaneous

adverse event reporting systems [3, 4]. In the United States,

the Food and Drug Administration’s Adverse Event Reporting

System (FAERS) [5] collects adverse event reports, medication

error reports, and product quality complaints from various

sources, including the MedWatch program. FAERS has been

widely used to investigate drug safety issues [6–9]. However,

FAERS relies on voluntary reporting, which can result in

underreporting and delays in identifying ADEs. In recent

years, unstructured text data has become valuable sources for

investigating ADEs.

To effectively analyze unstructured data for drug safety

surveillance, it is important to identify drugs and associated

ADEs. One challenge for identifying drugs in unstructured data is

different names used for the same drugs. The active ingredient,

generic names, trade names, brand names, and even street names

can be used to indicate the same drug in unstructured text. Using

acetaminophen, a commonly used analgesic, as an example,

Tylenol, Paracetamol, Panadol, Anacin, Feverall, Mapap,

Ofirmev, Tempra, and APAP (the abbreviation for its

chemical name, N-acetyl-para-aminophenol) are names used

for the same drug in unstructured documents. The use of

various names for the same drugs in unstructured data

complicates accurate identification of drugs, making the

standardization and normalization of drug names essential.

Various methods have been used in the standardization and

normalization of drug names, including dictionary-based

methods [10], rule-based systems [11–16], advanced machine

learning models [17–20], and hybrid approaches [19].

Dictionary-based methods use comprehensive drug

dictionaries built from various sources to identify drug names

[10]. In these methods, a comprehensive dictionary like RxNorm

is essential to ensure accurate recognition of complex or less

common drug names [21].

Rule-based systems, on the other hand, rely on predefined

patterns or contextual rules to identify drug names. These rules

can be either composition-based, focusing on systematic naming

conventions, or context-based, extracting names based on

surrounding text features [22, 23]. Despite the rigidity and

extensive manual effort required to develop and maintain

these rules and dictionaries—especially given the evolving

nature of language and the introduction of new

terminology—both dictionary and rule-based methods remain

crucial for establishing a baseline of accurate drug identification.

To enhance the matching and normalization processes,

similarity algorithms such as Levenshtein distance [24], cosine

similarity [25], and Jaccard index [25] can be used. These

techniques measure the similarity between drug names and

help link various names of the same drug to a standard drug

name [26, 27], further improving the accuracy of drug name

standardization.

With the increasing availability of annotated datasets,

machine learning-based models have gained significant

popularity in this field [10, 17–20, 28]. Notable techniques

such as Conditional Random Forest (CRF) [29], Hidden

Markov Models (HMM), Recurrent Neural Networks (RNN)

[30], and Bi-directional Long Short-Term Memory CRF (BI-

LSTM-CRF) [31–33], and Bidirectional Encoder Representations

from Transformers (BERT) [15] have been employed for drug

name identification and normalization. These models leverage

various features, including domain-specific attributes and word

representation features, to improve accuracy.

Hybrid approaches have also emerged, integrating multiple

methods to capitalize on the strengths of different models while

mitigating their weaknesses [19]. For example, a semi-supervised

machine learning technique known as feature coupling

generalization was applied to refine a drug name dictionary,

which was constructed from sources such as DrugBank and
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PubMed, to enhance drug name recognition in unstructured

textual data [19].

To create a drug name dictionary, different names for the

same drug are linked to a standardized name. A comprehensive

dictionary is essential for accurate drug identification and

normalization. RxNorm [34], a standardized vocabulary

developed by the National Library of Medicine (NLM), plays

a key role in these processes. RxNorm compiles drug names from

13 different sources and further standardizes them under its own

unique terminology, RxNorm, bringing the total to 14 distinct

sources, enabling consistent linkage of various drug names across

different databases. The integration of RxNorm with both rule-

based and machine learning approaches enhances the

identification and normalization of drug names.

Although RxNorm is widely used in clinical settings, such as

electronic health records and clinical decision support systems

[35], it faces several limitations when analyzing unstructured

data. One significant issue is the extensive variability in the length

of drug names within RxNorm, which can range from one to over

2000 characters. These extremely short or long names are seldom

found in unstructured text. Moreover, RxNorm includes distinct

entries, various drug formats, and dosages, which are typically

omitted when discussing experience with drugs in unstructured

text. Even when such details are mentioned, they are often

inconsistent and incomplete.

Additionally, RxNorm’s approach of combining drug names

with specific dosages as separate entries can lead to multiple hits

for the same drug in a single text. For example, “Acetaminophen”

and “Acetaminophen 325 mg” are distinct entries in RxNorm. If

both terms are included in a drug name dictionary, a sentence

like “Acetaminophen 325 mg caused my mom’s liver injury”

could lead to two matches—one for “Acetaminophen” and

another for “Acetaminophen 325 mg”— resulting in

redundant counts of the adverse event. These complexities

stress the need for a refined set of drug names to improve the

accuracy and efficiency of drug identification in

unstructured data.

The purpose of this study is to develop an enhanced set of

drug names from RxNorm, specifically tailored for

identifying drug names in unstructured data for drug

safety surveillance. By refining the existing drug names in

RxNorm, this study aims to address current limitations and

FIGURE 1
Study overview. The flowchart illustrates the procedures used to generate and evaluate a refined set of drug names from RxNorm, including
extraction of drug names from the RxNorm website, removal of duplicates, filtering false names, discarding names that likely lead to redundant
occurrence counts in unstructured data analysis, and evaluating accuracy and efficiency of the refined set.
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improve the accuracy and efficiency of drug identification in

unstructured data.

Materials and methods

Study design

The workflow for generating this refined set and assessing its

accuracy and efficiency is depicted in Figure 1. Initially, a

comprehensive list of drug names was downloaded from the

RxNorm database. This was followed by a systematic process of

removing duplicates, incorrect names, and names that could

potentially cause inaccurate counts in unstructured data analysis.

Drug names were classified into three categories and filtered out

by those with fewer than 4 characters, those with between 5 and

199 characters, and those with 200 or more characters.

Data sources

RxNorm file released on July 3, 2023 (RxNorm_full_

07032023.zip) was downloaded from RxNorm repository [36].

The “RXNCONSO.RRF” file within this package was used to

extract drug names. Specifically, drug names were obtained from

the “STR” (string) column, while their corresponding types were

identified from the “TTY” (type of terms) column, which

includes categories such as brand name, synonyms, and others.

To ensure relevance, name types not associated with specific

drugs were excluded based on the guidelines provided in the

RxNorm technical documentation [37]. For instance, terms like

dose form, dose form group, and special category—which

describe routes of administration rather than specific

drugs—were removed. The source of each drug name is

indicated in the “SAB” (source abbreviation) column: ATC

(Anatomical Therapeutic Chemical Classification System),

CVX (Vaccines Administered), DB (DrugBank), GS (Gold

Standard Drug Database), MMSL (Micromedex RED BOOK),

MMX (Micromedex), MSH (Medical Subject Headings),

MTHCMS (CMS Formulary Reference File), MTHSPL (FDA

Structured Product Labeling), NDDF (First Databank),

RXNORM (RxNorm itself), SNOMED (SNOMED Clinical

Terms), USP (United States Pharmacopeia), and VANDF

(Veterans Health Administration National Drug File).

To evaluate the extracted drug names, a dataset of

18,000 drug-related PubMed abstracts was prepared. These

abstracts were retrieved by searching PubMed using the

keyword “drug” via the Entrez Programming Utilities [38]

(E-Utlilities) developed by the National Center for

Biotechnology Information (NCBI). To comply with NCBI

guidelines, we designated an email address for Entrez queries.

On 22 May 2024, we generated a search query using the keyword

“drug” without imposing any timeframe restrictions, ensuring

the retrieval of all available abstracts up to that date. Entrez was

used to retrieve 20,000 PubMed abstract IDsmatching this query.

Due to the limitation on the number of abstracts that can be

fetched in a single request, we retrieved the IDs in two batches,

with each batch containing 10,000 IDs. Abstracts were fetched

and output for each batch. Although 20,000 IDs were obtained,

18,520 abstracts were successfully retrieved due to some missing

entries. Ultimately, we used the first 18,000 abstracts, choosing

this round number to simplify subsequent calculations.

Refinement of RxNorm drug names

The first step is to remove duplicates and exclude drug names

that are not associated with specific drugs. This includes

eliminating terms that describe dose form, dose form group,

and special category—such as “oral tablet,” “chewable product,”

and “medical supplies”—since these are not linked to particular

drugs and should, therefore, be excluded. Brand and generic drug

names were retained to ensure comprehensive drug

identification. For example, both Daytrana (patch) and Ritalin

(oral tablet) were included as brand names for methylphenidate.

This approach ensures that drug identification focuses on the

medication itself while preventing redundant counts based on

formulation differences. However, we recognize that ADEs can

sometimes be associated with the delivery method rather than the

active ingredient. For instance, systemic methylphenidate may be

linked to behavioral effects like aggression, while transdermal

formulations such as Daytrana may cause localized

reactions like rash.

For drug names with four or fewer characters such as APAP

(Acetaminophen), ASA (Aspirin), and HCTZ

(Hydrochlorothiazide), their use frequency in unstructured

data were tested in 18,000 drug-related PubMed abstracts to

remove those that would rarely appear in drug-related

documents. Drug names that were not found in these

abstracts were considered rare and removed. We used the

“en_core_web_sm” model from the spaCy [39] natural

language processing (NLP) library to identify and count

occurrences of these drug names within the abstracts. Each

abstract was tokenized, and both tokens and drug names were

converted to lowercase for consistency. We then compared each

token against the list of drug names, recording an occurrence

whenever a match was found. Drug names with zero occurrences

were excluded from the final list.

For drug names with five to 199 characters, we examined

their potential redundant occurrences in unstructured data

analysis. If a drug name contains another drug name, leading

to redundant counts, it was discarded. To identify distinct drug

names that overlap with discarded names but not with other

distinct names, we split each drug name into words using the

Python’s “re.split” function (version 3.11.7 in Anaconda). The

names were then sorted by word count. We checked if the words
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in a drug name contained all words of another name. If a drug

name that does contain all the words of any other names, it was

removed. Drug names with 199 ormore characters were removed

entirely, as they are unlikely to appear in real-world

unstructured texts.

Assessment of the refined set

To evaluate the efficiency and accuracy of the refined set of

drug names in unstructured data analysis, we conducted drug

identification on the 18,000 drug-related PubMed abstracts. The

refined and original drug names were converted to lowercase and

tokenized using the “en_core_web_sm” in spaCy. These

tokenized drug names were used to create matching patterns,

which were added to spaCy’s PhraseMatcher. Each abstract was

tokenized, and the PhraseMatcher compared each sequence of

tokens against the created matching patterns. When a match was

found, the drug name was recorded.

Efficiency was measured by comparing the computational

time required for both the refined and original RxNorm drug

name sets. Accuracy was calculated as the ratio of drug names

identified within the abstracts to the total number of drug names,

for both the refined and original sets.

Results

Refinement of drug names

Table 1 provides a summary of the percentages of words

removed at each stage of the refinement process, offering a

clearer overview of the impact of our filtering criteria.

Download and processing of drug names

To refine the drug names in RxNorm, we downloaded the

RxNorm file released on July 3, 2023, from the RxNorm website

[40]. The “RXNCONSO” file in the downloaded zipped files was

used to obtain drug names and other related information, with

drug names stored in the “STR” column. A total of

1,143,201 drug names were retrieved from which

269,931 duplicates were identified and removed. Then, we

examined the types of the retained drug names to remove

those not containing specific drug information. According to

the RxNorm technical documentation [41], three term types (DF,

DFG, SC) pertain to administrative details rather than specific

drugs. We removed 1,009 drug names belonging to these

categories.

Drug names with four or fewer characters

We used 18,000 drug-related PubMed abstracts to evaluate

the occurrence of drug names with four or fewer characters. Out

of 1260 drug names, 687 had zero occurrences and were

discarded. The occurrences of the remaining drug names with

the abstracts are provided in Supplementary Table S1.

We further analyzed the sources of the 687 discarded names.

Our analysis showed that the majority originated from a single

source among the 14 in RxNorm, indicating that drug names

from a single source are unlikely to appear in unstructured drug-

related texts. This result is not surprising, as these names lack

corroboration from other sources. We also examined the source

distribution of these 557 names. As shown in Figure 2A,

DrugBank had the highest number (289), followed by

SNOMEDCT_US (84) and MSH (84). In total, DrugBank,

SNOMEDCT_US, and MSH, contained 628, 250, and

233 drug names with four or fewer characters, respectively.

This indicates that approximately 46%, 34%, and 36% of such

names from DrugBank, SNOMEDCT_US, and MSH were

excluded. In contrast, sources like NDDF and MTHSPL had

fewer names of this length and a lower removal rate, with only

1 out of 60 from NDDF and 6 out of 62 from MTHSPL

being removed.

Drug names with five to 199 characters

For drug names with five to 199 characters, we excluded

those that could lead to redundant occurrence counts in

unstructured data analysis. For example, using both original

drug names “Acetaminophen” and “Acetaminophen 325 MG

Oral Tablet” to identify adverse events for drugs in the text “my

brother had headache after take acetaminophen 325 MG tablet”,

might lead to two counts for the adverse event “headache” when

only one should be recorded. Therefore, drug names that contain

other names were removed, while distinct names without

overlaps were retained. Out of 853,472 names with five to

199 characters, 101,491 are distinct names and were retained,

whereas 751,981 names, which contain other names,

were removed.

TABLE 1 Summary of removed words for each drug name type.

Name type Percentage of removed
words

Duplicates 23.61

Non-drug Names 0.09

Drug Names with less than 5 characters 0.06

Drug Names with 5-199 characters 65.78

Drug Names with >200 characters 1.53
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FIGURE 2
Source distribution of the removed drug names that only originate from a single source for names with four or fewer characters (A), names with
five to 199 characters (B), and names with 200 or more characters (C). The y-axes give number of names and x-axes depict name sources.
Abbreviations: ATC (Anatomical Therapeutic Chemical Classification System), CVX (Vaccines Administered), DB (DrugBank), GS (Gold Standard Drug
Database), MMSL (Micromedex RED BOOK), MMX (Micromedex), MSH (Medical Subject Headings), MTHCMS (CMS Formulary Reference File),
MTHSPL (FDA Structured Product Labeling), NDDF (First Databank), RXNORM (RxNorm itself), SNOMED (SNOMEDClinical Terms), USP (United States
Pharmacopeia), and VANDF (Veterans Health Administration National Drug File).

Experimental Biology and Medicine
Published by Frontiers

Society for Experimental Biology and Medicine06

Guo et al. 10.3389/ebm.2025.10374

https://doi.org/10.3389/ebm.2025.10374


A significant portion of the removed names (730,113 out

of 751,981) originate from only one of the 14 sources in

RxNorm. The source distribution of these removed single-

sourced names is shown in Figure 2B. Most of these drug

names came from RxNorm, followed by MTHSPL,

SNOMEDCT_US, NDDF, and MSSL. Specifically, RxNorm,

MTHSPL, SNOMEDCT_US, NDDF, and MMSL provided

279,465, 121,035, 108,421, 99,054, and 91,270 drug names

with five to 199 characters, respectively. The removal rates for

these names are notably high: 87.8% for RxNorm, 85.7% for

MTHSPL, 80.4% for SNOMEDCT_US, 71.9% for MMSL, and

69.7% for NDDF. In contrast, only 16.4% (5,098 out of 31,041)

of the names with five to 199 characters from DrugBank

were removed.

Drug names with 200 or more characters

Drug names with 200 or more characters are rarely used in

unstructured data and, therefore, were excluded. A total of

17,529 such drug names were found in RxNorm and

excluded. All these names originated from a single source,

with the source distribution depicted in Figure 2C.

Evaluation of the refined drug names set

The refined set of drug names include 573 names with four or

fewer characters and 101,491 names with five to 199 characters.

We analyzed the distribution of drug name lengths between the

refined set and the original RxNorm set. As shown in Figure 3,

longer drug names were less likely to be retained in the refined

set. This suggests that longer drug names are more prone to

generating redundant occurrence counts in unstructured data

analysis compared to shorter drug names and were

thus discarded.

To evaluate the efficiency and accuracy of the refined set of

drug names, we used 18,000 drug-related PubMed abstracts. Our

results revealed that 3,065 names were identified in the abstracts,

with lengths ranging from 1 to 46 characters. When we evaluated

the original RxNorm set using the same abstracts, we found

4,471 names with lengths ranging from 1 to 66 characters. The

additional 1,046 names that RxNorm identified in the abstracts

were either false drug names or names likely leading to redundant

occurrence counts in unstructured data analysis. These names

were excluded from the refined set, with the majority originating

from DrugBank and SNOMEDCT_US, as shown in Figure 4.

Our results reveal that the refined set of drug names improved

FIGURE 3
Comparison of name length between the refined set and the original RxNorm set. The y-axis shows the number of drug names, and the x-axis
indicates name length. Name lengths were color coded in red for the refined sets and in blue for the original RxNorm set.
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drug identification accuracy in analyzing unstructured texts

compared to the original RxNorm set.

The efficiency of the refined set of drug names was measured

using the computational time required to analyze the abstracts.

The analysis using the refined set took 1,910 s, while using the

original RxNorm set took 6,301 seconds—over three times

longer. Our results demonstrate a significant improvement in

efficiency when analyzing unstructured data, making the refined

set more suitable for real-time drug safety surveillance.

Discussion

Artificial intelligence is increasingly playing a critical role in

evaluating drug safety and chemical toxicity. By harnessing

machine learning algorithms and computational models,

artificial intelligence can predict adverse effects, identify toxic

compounds, and improve pharmacovigilance efforts. There are

two main types of data involved: structured and unstructured.

Due to their distinct formats and organization, machine learning

techniques are applied differently to each. Structured data is well-

organized and easily interpretable by machines, making it a

natural fit for a wide range of safety assessments and toxicity

endpoints [40–53]. In contrast, unstructured data lacks a

predefined format, which makes it more challenging to

process and analyze. To effectively apply machine learning

techniques, such as natural language processing and recurrent

neural networks, to unstructured data in pharmacovigilance, a

reliable and comprehensive set of drug names is essential.

In this study, we generated a refined set of drug names from

RxNorm to improve the accuracy and efficiency of drug

identification in unstructured data. The original RxNorm set

contained duplicates, non-specific drug names, and names that

were either too long or too short, which hindered effective drug

identification in unstructured data. Our objective was to exclude

such names from analysis of unstructured texts. The refined set

was evaluated using 18,000 drug-related PubMed abstracts,

demonstrating enhanced accuracy and efficiency in drug

identification, thereby potentially improving drug safety

surveillance through unstructured data analysis.

Single-sourced drug names, originated from only one of the

14 sources in RxNorm, are generally less reliable than names

corroborated by multiple sources. These single-sourced names

tend to cause incorrect identification or generate redundant

FIGURE 4
Source of original RxNorm drug names that were excluded from the refined set but identified in the PubMed abstracts. The y-axis represents
number of drug names and the x-axis depicts sources. Abbreviations: ATC (Anatomical Therapeutic Chemical Classification System), CVX (Vaccines
Administered), DB (DrugBank), GS (Gold Standard Drug Database), MMSL (Micromedex RED BOOK), MMX (Micromedex), MSH (Medical Subject
Headings), MTHCMS (CMS Formulary Reference File), MTHSPL (FDA Structured Product Labeling), NDDF (First Databank), RXNORM (RxNorm
itself), SNOMED (SNOMED Clinical Terms), USP (United States Pharmacopeia), and VANDF (Veterans Health Administration National Drug File).
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occurrence counts when analyzing unstructured data, affecting

both the accuracy and efficiency of drug identification. Our

results revealed that the majority of the removed names were

single-sourced, highlighting the importance of utilizing drug

names validated by multiple sources.

Furthermore, most of the removed single-sourced names

originated from FDA Structured Label, RxNorm, and

SNOMEDCT_US. These sources serve distinct roles in drug

information management. The FDA Structured Product Label

provides comprehensive regulatory drug details, including

dosage, formulation, and safety information, to ensure clarity

and reduce medication errors. RxNorm standardizes drug names

by linking ingredients, strengths, and dosage forms, facilitating

interoperability across electronic health systems. SNOMED CT,

on the other hand, is primarily used for clinical documentation

and coding within electronic health records.

RxNorm integrates drug names from multiple external

sources; however, not all names from contributing databases

are necessarily included. Furthermore, many drug names appear

in multiple sources within RxNorm, potentially leading to

redundant listings. To mitigate this, our analysis systematically

identified and removed duplicate drug names contributed by

multiple sources, ensuring that each unique drug name was

counted only once. While these structured resources are

essential for clinical and regulatory use, their detailed naming

conventions can complicate drug identification in unstructured

data. Refining these names is crucial to enhance their

applicability in text-based analyses.

On the other hand, sources like DrugBank and MSH showed

varying levels of reliability across different lengths of drug names.

For drug names with four or fewer characters, DrugBank had a

relatively high removal rate of 46%, indicating that many of these

names are unlikely to appear in unstructured data. However, the

removal rate for DrugBank drug names with five to

199 characters significantly reduced to 16.4%, suggesting that

these names are more reliable in unstructured data analysis.

Similarly, MSH had a high removal rate of 36% for names with

four or fewer characters and a lower rate of 24% for names with

five to 199 characters. Our results suggest that more caution is

needed when using short names from DrugBank and MSH in

unstructured data analysis for drug safety surveillance compared

to their longer names.

Despite the improvements in accuracy and efficiency

demonstrated by the refined set, some limitations should be

noted. First, our refined set of drug names is not error-free for

unstructured data analysis, and some unsuitable names may

persist. For example, short drug names in the refined set

might include common words that, depending on the context,

do not refer to drugs. Second, as RxNorm is primarily composed

of professionally used names, it may not capture the variations

found in street names or slang used in non-professional

documents. Third, because RxNorm is updated monthly,

regular updates are necessary to maintain the accuracy and

relevance of the refined set. Finally, our evaluation was limited

to 18,000 drug-related PubMed abstracts. Although we focused

on abstracts containing the keyword “drug” to increase the

likelihood of identifying drug names, these abstracts may not

represent other unstructured real-world data. We selected the

keyword “drug” to maximize the inclusion of abstracts that

explicitly mention specific drug names. Alternative terms such

as “medications” or “pharmacologic” were not used, as they are

often associated with broader discussions on treatment strategies,

pharmacological mechanisms, or drug classes rather than

individual drug names. Additionally, a composite search

incorporating all relevant MeSH terms was not conducted to

ensure consistency with prior studies that employed keyword-

based retrieval for drug-related text analysis. This approach

maintains methodological alignment while optimizing the

extraction of relevant drug name mentions.

Further efforts are needed to enhance the refined set. One

such effort involves evaluating the set more comprehensively

using diverse unstructured data. Additionally, the refined set

could be improved by integrating advanced algorithms and

machine learning techniques. Machine learning algorithms,

particularly those involving similarity measurements, could be

trained to recognize and link synonymous drug names, thereby

improving accuracy. Natural language processing techniques like

BERT could also be employed to better understand the context in

which drug names appear, further enhancing accuracy. Finally,

developing automated processes for updating the drug names in

the dataset is crucial. As RxNorm updates its dataset monthly,

maintaining the refined set through an automated update process

will ensure its continued reliability for unstructured data mining

in drug safety surveillance.

Conclusion

The development of the refined set of drug names from

RxNorm has shown significant improvements in the accuracy

and efficiency of drug identification in unstructured data. This

refined dataset could be valuable for extracting drug-related

information from unstructured data, thereby supporting more

effective monitoring and management of drug safety through

unstructured data analysis. Our study also highlights the

importance of addressing the limitations of existing drug

names when used for unstructured data mining, particularly

in the context of drug safety surveillance.
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