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Abstract

Mass cytometry enables high-throughput characterization of heterogeneous cell

populations at single-cell resolution, usingmetal isotopes to capture cellular signals

and avoiding the spectral overlap common in flow cytometry. Despite

advancements, conventional data analysis often focuses on manual gating or

clustering within specific samples, overlooking disparities across subjects or

biological samples. To address this gap, we propose a novel framework that

treats the cell-by-protein matrix as a high-dimensional distribution, using

Quantized Optimal Transport (QOT) to quantify distances between samples

based on their cellular protein expression profiles. This approach allows for a

direct comparison of distributions without relying on predefined gating strategies,

capturing subtle variations in the data. We validated our method through two

experiments using real-world time-series Coronavirus Disease 2019 (COVID-19)

cytometry data. First, we conducted a leave-one-out analysis to identify

immunologically unstable proteins over time, revealing CD3 and CD45 as the

proteins changing the most during the vaccine response. Second, we aimed to

capture individual immune fingerprints over time by calculating pairwise

Wasserstein distances between samples and applying hierarchical clustering.

Using silhouette scores to evaluate clustering effectiveness, we identified

optimal combinations of immunological markers that effectively grouped

samples from the same participant across different time points. Our findings

demonstrate that the QOT framework provides a robust and flexible tool for

cohort-level analysis ofmass cytometry data, enabling the identificationof unstable

immunological markers and capturing immune response heterogeneity among

vaccinated cohorts.
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Impact statement

Mass cytometry enables high-throughput characterization of

cellular heterogeneity, but conventional analysis often focuses on

manual gating or clustering within specific samples. We propose

a novel quantitative framework that directly compares the high-

dimensional protein expression distributions between samples

using Quantized Optimal Transport. This approach captures

subtle differences without relying on predefined gating

strategies. Experiments on real-world COVID-19 cytometry

data identified CD3 and CD45 as the most unstable proteins

during the vaccine response. Furthermore, by calculating

pairwise distances and applying hierarchical clustering, we

determined optimal protein combinations that effectively

grouped samples from the same individual over time,

reflecting unique immune fingerprints. Our findings showcase

the power of this framework for cohort-level mass cytometry

analysis, enabling the discovery of key immunological changes

and individual response patterns.

Introduction

Mass Cytometry (Cytometry by Time-Of-Flight) is a high-

throughput technology to characterize heterogeneous cell

populations in a single cell resolution [1]. As an advancement

over traditional flow cytometry, mass cytometry utilizes isotopes

instead of fluorophores to capture cellular signals, making a

broader range of features available and avoiding the experimental

difficulties related to spectral overlap [2]. In comparison with

conventional single-cell RNA-seq experiments, mass cytometry

also provides a higher throughput, which is capable of handling

millions of cells along with a lower dimension of the cellular

features derived from surface antigens, thus allowing more

accurate capture of precise cell subpopulations [3]. Moreover,

mass cytometry uses antibodies labeled with elemental heavy

metal ions via chelating polymers to measure target proteins on

single cells directly. In this method, stained cells are nebulized,

vaporized, and ionized; the resulting ion cloud is mass-filtered to

remove low-mass ions and then analyzed by time-of-flight mass

spectrometry, precisely quantifying bound antibodies and

revealing the expression of markers of interest, making it an

ideal technique for monitoring the human immune system [4, 5].

The primary data analysis of mass cytometry experiments usually

involves either manually separating cell subpopulations on a

bivariate setting where the process is referred to as “manual

gating” [6], supervised cell annotation trained by manual label

[7–9], or via unsupervised clustering algorithms to group cells

together [10–12]. However, these approaches often do not learn

the disparities across subjects or biological samples, but they try

to interpret the relationships of cells within a specific sample.

Comparing the mass cytometry profile in a systematic resolution

will also provide benefits in investigating global variation and

differences [13, 14]. Characterizing and tracing the entire cell

population would not only enable a more comprehensive

understanding of how immune response varies systematically

but also differentiate between samples and various cell subtypes

in different diseases [15–18].

Optimal Transport (OT) is a mathematical framework

originally proposed by Monge [19] and later reformulated by

Kantorovich into a computationally tractable form [20]. OT

addresses the challenge of comparing empirical distributions by

finding the most efficient way to transform one distribution into

another, ensuringmass preservation while minimizing an associated

cost function. Recently, OT has been applied tomass cytometry data

for automatic gating [21, 22].

Despite numerous algorithms developed for manual gating,

practical methods for downstream analysis are still lacking.

Traditional studies often compare disease states by focusing on

the proportions of gated cell populations among cohorts to

infer protein importance and disease-related protein expression

[5, 23]. This approach may overlook differences in protein

expression levels within cell populations. This work proposes a

novel framework that treats the cell-by-protein matrix as a

high-dimensional distribution, with each protein representing a

dimension. By representing each sample as a distribution of

cells across these protein dimensions, we can directly compare

the distributions between cohorts using Optimal Transport.

This allows us to quantify differences in protein expression

profiles without relying on predefined gating strategies,

capturing more nuanced variations in the data. Our main

contributions are:

1. Quantifying Subject Differences via Quantized Optimal

Transport: We introduce a method that utilizes Quantized

Optimal Transport (QOT) to quantify the distance between

subjects, viewing each cohort as a distribution of cells in high-

dimensional protein expression space. This strategy can be

applied with or without prior gating, providing flexibility

in analysis.

2. Demonstrating Effectiveness on Coronavirus Disease 2019

(COVID-19) Cytometry Data: We validate our method

through two experiments using real-world time-series

COVID-19 cytometry data (Figure 1A). Specifically, we

focus on (i) identifying immunologically unstable proteins

over time (Figure 1B) and (ii) identifying informative proteins

that contribute to fingerprint differentiation (Figure 1C).

These case studies highlight the utility of our approach in

revealing immune stability and heterogeneity of immune

responses among vaccinated cohort.

Materials and methods

We evaluated our approach on a synthetic dataset—with

three cohorts, each sampled at three-time points—and a real-
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world mass cytometry dataset of single-cell protein expression in

immune cells [24]. Additionally, in this paper, the term “cohort”

refers to the entire dataset under study. To avoid confusion, we

use the term “subject” to denote all time points belonging to the

same individual. The term “sample” is used to refer to an

individual file within the dataset, representing a specific time

point for a individual.

In our synthetic dataset, we introduced distinct

evolutionary patterns to capture heterogeneity within each

subject. Specifically, Subject 1 follows a branched trajectory,

FIGURE 1
(A) UMAP visualization of a representative sample. (B) Experiment 1: For subjects measured at multiple time points, proteins are ranked by their
level of perturbation within each subject. These rankings are then aggregated to identify proteins showing the greatest instability across the cohort.
(C) Experiment 2: Each subject measurement at a specific time point is treated as an individual sample. Pairwise distance matrices are computed
using various protein combinations to identify the optimal combination that effectively clusters samples. This optimal protein combination
reflects the cohort-level fingerprint. (A) is based on real data, while (B,C) are derived from a synthetic design.

FIGURE 2
UMAP projections of three simulated cohorts at three different time points (blue, orange, and green). Each sample’s distribution reveals distinct
cell patterns that change over time, showing the dynamic shifts in the data across the simulated time course.
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with separate cell populations diverging from Time 1 to Time

2, and again from Time 2 to Time 3. Subject 2 evolves along a

smooth, curved progression, while Subject 3 exhibits a

Y-shaped branching pattern, where all cells transition to

new states from a common lineage. Each subject is

characterized by 2, 3, and 2 cell types at Time 1, Time 2,

and Time 3, respectively. Subject 1 has disproportionately

sized cell types but a total of 7,000 cells across all time points.

By contrast, Subjects 2 and 3 each maintain 1,000 cells per cell

type, also yielding 7,000 cells in total. Further details on the

cell-type proportions for Subject 1 can be found in

Supplementary Appendix Table S1. The UMAP projection

of the cohorts is shown in Figure 2.

For the real-word datasets, Whole blood was profiled

from a cohort of 37 healthy subjects at multiple time points

during two-dose mRNA vaccination against SARS-CoV-2.

Each sample contains approximately 321 k cells. Most blood

draws occurred at four standardized time points: a baseline

draw before the first dose (T1), 2 weeks after the first dose

(T2), before the second dose (T3), and a week after the

second dose (T4). A few subjects had extra blood draws

between T1 and T4 at intermediate time points. This

yielded a total of 150 blood samples since not all subjects

were available for each time point. The whole blood samples

were stained with the Maxpar Direct Immunophenotyping

Assay, a standardized panel for broad immunophenotyping of

immune cell types. Finally, data was collected on a

CyTOF2 instrument. Demographic and vaccination details

is shown in Table S.2, S.3, S.4, S.5.

Quantized optimal transport

In this section, we briefly explain the Quantized Optimal

Transport (QOT) method [25] for calculating distances at the

sample level based on high-dimensional mass cytometry data.

Given a collection of P samples, denoted as

G � G1, G2, . . . , GP{ }, each sample Gk is represented by an

nk × m matrix, where nk is the number of cells in sample k,

andm is the number of features (proteins). Our framework aims

to compute the distance between two samples based on their

cellular protein expression profiles.

We first model each sample as a distribution defined by its

protein expression levels to compute the distance between two

samples. This involves two main steps: (1) fitting a Gaussian

mixture model (GMM) to each sample’s data (Equations 1, 2)

and (2) calculating the distance between the samples using their

corresponding GMMs (Equations 3-9). For simplicity, we will

use GMM as a short abbreviation for the Gaussianmixture model

throughout the rest of this manuscript.

Each sample Gk is modeled as a GMM:

ωk � ∑
Hk

h�1
αk,hN μk,h,Σk,h( ), (1)

where Hk is the number of Gaussian components in the GMM

for sample k, αk,h are the mixture weights satisfying

FIGURE 3
Heatmaps of pairwise distance matrices for three cohorts, computed by three methods (QOT, PhEMD, and PILOT). The label “1-1” indicates
cohort 1 at time point 1. Each heatmap is hierarchically clustered, with darker shades signifying higher distances. In the PILOT panel, red boxes
highlight entries where the distance is zero (excluding the diagonal).

TABLE 1 Performance comparison of QOT, PhEMD, and PULOT based
on the Silhouette Score, Adjusted Rand Index (ARI), and Runtime.

Method Silhouette score ARI Runtime (s)

QOT 0.529 1.00 5.26

PhEMD 0.429 1.00 1,440

PILOT −0.340 −0.333 1.20
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∑
Hk

h�1
αk,h � 1 and αk,h ≥ 0, (2)

μk,h ∈ Rm are the mean vectors, and Σk,h ∈ Rm×m are the

covariance matrices of the Gaussian components. This

approach allows the GMM to effectively encapsulate the

distribution of the high-dimensional cytometry data for

each sample.

Distances between cohorts are computed using the

Wasserstein distance, quantifying the minimal cost of

transporting one probability distribution into another.

Specifically, we compute the Wasserstein distance between the

GMMs representing the samples.

The distance between two samples, represented by their

respective GMMs ωi and ωj, is computed by solving the

following optimal transport problem:

min
T∈ R

Hi × Hj

∑
Hi

p�1
∑
Hj

q�1
TpqCpq, (3)

subject to the constraints:

∑
Hj

q�1
Tpq � αi,p, ∀p � 1, . . . , Hi, (4)

∑
Hi

p�1
Tpq � αj,q, ∀q � 1, . . . , Hj, (5)

Tpq ≥ 0, ∀p � 1, . . . , Hi; ∀q � 1, . . . , Hj, (6)

where Tpq represents the amount of mass transported from the

p-th Gaussian component of ωi to the q-th Gaussian component

of ωj, and Cpq is the cost of transporting unit mass between these

components.

FIGURE 4
Leave-One-Out analysis at subject-level. Each line represents the perturbation in distance relative to the baseline at Day 0 over various time
points. Different colored lines indicate the results using all proteins versus excluding a specific protein.

FIGURE 5
Leave-One-Out analysis at cohort-level. We assessed the
impact of the subject when excluding each immunological protein
and then summarized it at the cohort level. For instance, a 30%
frequency at Rank 1 for CD 3 indicates that when measuring
perturbation, perturbation caused by removing CD 3 ranks first in
30% of the subjects.
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The cost matrix C ∈ RHi×Hj has entries defined as:

Cpq � W2
2 N μi,p,Σi,p( ),N μj,q,Σj,q( )( ), (7)

whereW2
2 denotes the squaredWasserstein distance between two

Gaussian distributions. The squared Wasserstein distance

between the Gaussian components is given by:

W2
2 N μi,p,Σi,p( ),N μj,q,Σj,q( )( )
� ‖μi,p − μj,q‖2 + Tr Σi,p + Σj,q − 2 Σ1/2

i,pΣj,qΣ1/2
i,p( )1/2( ),

(8)

where ‖ · ‖ denotes the Euclidean norm, Tr(·) is the trace operator,
and Σ1/2 denotes thematrix square root of Σ. An alternative approach
is to consider GMMs as point clouds instead of distribution, which

provides scalability for larger-scale datasets. This approach involves

calculating the cost matrix using the cosine distance between the

centroids of Gaussian Mixture Models (GMMs):

C p, q( ) � 1 − μi,p · μj,q
|μi,p|2|μj, q|2

(9)

Experimental designs

Stability of cohorts across time
To identify immunologically unstable proteins across the

subjects, we conducted a leave-one-out analysis to determine

which proteins, when excluded, would result in the most

perturbation in the immune profiles over time. This approach

allowed us to assess the stability of each protein by measuring its

impact on the temporal distributional similarity of immune profiles.

For each time point measurement within each subject, we first

calculated the Wasserstein distance between the baseline time point

(T1) and each subsequent time point (T2, T3, T4) using the full set of

immunological proteins. This provided a reference measure of

distributional change with all proteins included over time.

Mathematically, the Wasserstein distance Dfull
t between T1 and

time point t (where t ∈ {T2, T3, T4}) was calculated as:

Dfull
t � Dist GT1, Gt( )

where Dist denotes the QOT distance calculated in previous

section, and GT1 and Gt represent the protein distribution

profiles at T1 and time point t, respectively.

We then systematically excluded one protein at a time from

the dataset. After excluding a protein, we recalculated the

FIGURE 6
Distribution of silhouette scores across different feature counts for CD protein combina-tions. Each violin’s width represents the density of
silhouette scores for that feature count.

FIGURE 7
Heatmap of the sample-level distancematrix. Distance values
are color-coded, with lighter shades of blue indicating closer
proximity and darker shades representing greater distances. The
color bar on the right provides the distance scale, while a
second color bar on the left annotates subject IDs.
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FIGURE 8
Box-and-whisker plots show the distribution of silhouette scores for each subject. Each box represents the interquartile range for that subject,
with the black horizontal line indicating the median silhouette score. Higher (positive) values suggest more cohesive clustering, whereas lower (or
negative) scores indicate overlap or unclear structure among clusters.

FIGURE 9
Cluster Analysis of the sample-level distance matrix. The UMAP representation of the sample level distance matrix. Points are connected based
on whether belong to same sample and whether it is closed enough.
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Wasserstein distances between T1 and each subsequent time

point for each participant, obtaining Dexcl
t . This process was

repeated for every protein in the dataset, resulting in a set of

perturbed Wasserstein distances corresponding to each

excluded protein.

To quantify the perturbation caused by the exclusion of each

protein, we calculated the absolute difference between the

Wasserstein distances with all proteins included and with one

protein excluded for each time point:

ΔDt � Dfull
t −Dexcl

t

∣∣∣∣ ∣∣∣∣
We then summed these absolute differences across all time

points to obtain a total perturbation score for each protein:

ΔDtotal � ∑
t

ΔDt � ∑
t

Dfull
t −Dexcl

t

∣∣∣∣ ∣∣∣∣

a larger ΔDtotal indicated that the excluded protein had a

significant impact on the temporal stability of the immune

profile, suggesting it is unstable protein over time.

We ranked the proteins for each subject based on the

magnitude of ΔDtotal their exclusion caused, from the least to

the most perturbing. By aggregating these rankings across all

subjects, we identified proteins that consistently resulted in

the most perturbation when excluded. Proteins frequently

ranked as causing the maximum perturbation across

subjects were considered the most immunologically

unstable over time.

Finger print of cohorts
In addition to identifying stable immunological features, we

conducted a second experiment to capture subject immune

fingerprints over time. The goal was to determine the optimal

combination of immunological markers to effectively cluster

samples from the same participant across different time points

despite natural variations due to vaccination or immune

fluctuations.

To achieve this, we calculated pairwise Wasserstein

distances between all samples based on their

immunological marker distributions, providing a

quantitative measure of dissimilarity between samples. We

then evaluate the effectiveness of different combinations of

immunological protein expression with the silhouette score.

The silhouette score assesses how well each sample fits within

its assigned cluster compared to other clusters, offering a

metric for the quality of the clustering solution. By testing

various combinations of immunological protein expression

and calculating the corresponding silhouette scores,

we identified the feature sets that most effectively

clustered samples from the same subject. In addition, we

employed a UMAP visualization in which samples are

connected if they meet two criteria: (1) they belong to the

same group, and (2) their Euclidean distance is below a

specified threshold (0.8).

Results

Cohort-level analysis of simulation dataset

In the cohort analysis of our simulation dataset, we compared

QOT with two state-of-the-art approaches, PhEMD and PILOT,

and examined their respective cohort-level distance matrices

(Figure 3). Ideally, a well-structured distance matrix should

exhibit a block diagonal pattern, where each block represents

the same subject measured at different time points. Both QOT

and PhEMD reveal these per-subject relationships clearly. In

contrast, PILOT produces a mixed pattern: its hierarchical

clustering intermingles different subjects, indicating it does

not preserve the per-cohort structure. Moreover, PILOT

assigns zero distances (highlighted by red boxes) for certain

entries, suggesting identical samples. This misleading result

arises from the methodology of PILOT. Specifically, PILOT

first creates a uniform mask across all subjects and then

considers only the proportions of cell types when computing

pairwise distances. As a result, if two samples (e.g., Cohort2,

Time1 and Cohort3, Time1) both contain the same set of cell

types in identical proportions, PILOT assigns a zero distance,

even if their expression levels differ substantially. Consequently,

the uniform mask obscures critical differences in the data, failing

to capture the true biological variability.

We quantitatively evaluated each distance matrix using the

Silhouette score, Adjusted Rand Index (ARI), and runtime, as

shown in Table 1. The Silhouette score assesses how well each

sample is grouped within its own cluster and separated from

others, while the ARI quantifies the agreement between true and

predicted cluster assignments (with 1.0 indicating perfect

alignment). Both QOT and PhEMD correctly distinguish

different cohorts, achieving an ARI of 1.0. However, QOT

produces a more pronounced cluster structure, reflected in a

higher Silhouette score. In terms of computational efficiency,

QOT completes in 5.26 s, compared to PhEMD’s 1,440 s,

demonstrating superior scalability for large-scale analyses. By

contrast, PILOT fails to cluster cohorts correctly, often yielding

misleading zero distances and not preserving the expected block-

diagonal structure.

Cohort-level analysis of COVID-19 reveals
immunologically unstable protein

In our cohort-level analysis of COVID-19, we aimed to

identify immunologically unstable proteins across 37 healthy

subjects. We employed a leave-one-out (LOO) approach,

systematically excluding each protein to evaluate its

contribution to immune perturbations over time. Figure 4

illustrates the subject-level LOO results, where each line traces

the distance of a subject’s sample at Day 7, 14, or 21 from its

baseline (Day 0) under two conditions: using all available
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features versus excluding a specific protein. The horizontal gap

between these lines shows how strongly the excluded protein

influences the observed perturbation. For instance, if

removing CD16 produces a significant shift in distance

relative to baseline, it implies that CD16 is a key driver of

the subject’s immune response over time; conversely, a

negligible gap suggests that removing a protein has

minimal effect and is more stable. Complete subject-level

analyses are provided in the (Supplementary Appendix

Figure SA1–SA3). From these LOO assessments, we found

that subjects 1 through 4 showed CD3 and CD45 as their most

unstable proteins, whereas subject 5’s data highlighted

CD16 and CD66 as the most variable over time. We then

aggregated these subject-level findings to derive cohort-level

insights, presented in Figure 5. Consistently, CD3 emerged as

the most unstable protein across the overall cohort, followed

closely by CD45.

Furthermore, our analysis indicates that removing

CD45 leads to a higher distance from baseline. In other

words, when CD45 is present, it helps keep the measured

distance lower, suggesting a regulatory or stabilizing role. This

finding aligns with the work of Hermiston et al., who showed

that CD45 modulates signals from integrins and cytokine

receptors [26], as well as Priest et al., who reported that

CD45 expression on B cells shapes functional memory

subsets post-vaccination [27]. By contrast, removing

CD3 causes the distance from baseline to decrease,

implying that including CD3 consistently drives the

distance upward. This indicates that CD3 is a more

perturbed protein in our dataset. Supporting this

observation, Sattler et al. found that following SARS-CoV-

2 vaccination, high-avidity spike-specific CD4 T cells lost

surface CD3 expression after in vitro antigen restimulation,

reflecting dynamic changes in T cell activation [28]. Similarly,

Jaber et al. documented heightened CD3 T-helper cell

responses in COVID-19 vaccine recipients [29],

underscoring the pivotal role of CD3 in mediating immune

perturbations in this setting.

Immune biomarkers for temporal
fingerprint clustering

To identify Temporal Fingerprint Clusters across

subjects, we treated each visit (timepoint) as an individual

sample. Consequently, data from 37 healthy subjects resulted

in 147 total samples for this analysis. Our working hypothesis

is that, in an ideal scenario, samples originating from the

same subject would naturally cluster together, reflecting each

individual’s inherent characteristics. We then evaluated

combinations of proteins to determine which set yields the

most informative clustering, as shown in Figure 6. We find

combination of CD19, CD16, CD294, CD66b yiels highest

silhouette score. We calculated distance matrices using

subsets of these proteins—ranging from two to six proteins

per subset. The most effective protein combination results, as

indicated by the highest silhouette score, are illustrated in

Figure 7. For visualization, we employed UMAP to project the

distance matrix corresponding to the optimal

silhouette score.

We quantitatively assessed clustering quality using the

silhouette score, a well-established metric that compares each

data point’s average distance to others in the same cluster

against its average distance to points in different clusters.

Overall, we obtained a mean silhouette score of 0.156,

suggesting that, while some structure is present, the clusters

are not strongly separated on average. To explore subject-level

variations, we also plotted the distribution of silhouette scores

for each subject (Figure 8). Approximately one-third of

subjects exhibit well-separated clusters, another third show

moderately acceptable clustering, and the remaining subjects

have less well-defined structures. Notably, although the low-

dimensional representation in Figure 9 shows that different

time points from the same subject can appear spatially

grouped, the clusters themselves are not well separated

across subjects. This observation aligns with the slightly

lower silhouette score, which reflects both intra-cluster

cohesion and inter-cluster separation.

Discussion

This study applied Quantized Optimal Transport (QOT) to

analyze mass cytometry data from COVID-19 vaccinated cohort.

Our approach uniquely avoids the biases of traditional gating by

treating cell profiles as high-dimensional distributions. We

demonstrated this method’s utility in identifying unstable

proteins like CD3 and CD45, which varied significantly over

time, indicating their active roles in the immune response to

vaccination. Additionally, our study demonstrates the use of

optimal protein combinations to find immune fingerprints for

subjects. By using silhouette scores for clustering optimization,

we identified protein sets that consistently group samples from

the same individual across different time points, highlighting its

potential for personalized medicine.

For future work, we aim to refine our analytical framework

for high-dimensional mass cytometry data, enhancing its

capability to handle large-scale datasets effectively. In our

initial experiment, we employed an exclusion analysis to

assess protein importance. Integrating methods such as

Shapley values with Wasserstein distances could significantly

enhance interpretability. Additionally, our current analysis does

not account for subclusters within the distance matrices.

Investigating these subclusters could reveal new phenotypic

subtypes related to vaccination responses, providing insights

into immune system dynamics.
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