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Abstract

Epilepsy affects more than 70 million people worldwide. A seizure focus that

develops in different cortical brain regions can present as either focal or

generalized seizures. Temporal lobe epilepsy is a highly pharmacoresistant

form of epilepsy that involves the amygdala, hippocampus with or without

hippocampal sclerosis as well as other limbic structures. Loss and/or

dysfunction of GABAergic inhibitory neurons play a critical role in tipping the

balance toward excitation. Synchronous burst firing is a feature of inhibitory

neurons that is thought to regulate and rectify large excitatory neuronal

networks in the BLA and is thought to underlie higher cognitive function.

Acid sensing ion channels (ASIC) activated by decreases in pH, the presence

of ammonium ion or a slight lowering of temperature are present on excitatory

and inhibitory neurons and can alter excitability. The net effect of the activation

of ASIC1a channels in the BLA is inhibition. ASIC1a channels are active in the

basal state, enhancing primarily GABAergic inhibition by direct depolarization of

interneurons but also by indirect excitation of interneurons via ASIC1a-

mediated depolarization of pyramidal neurons. In this study, we examine the

contribution of ASIC1a channel activation on alpha-linolenic acid (ALA)-

induced GABAergic inhibitory synchronous burst firing in the BLA. Our

results show that ALA initiates inhibitory bursts that are dependent, in part,

on the activation of ASIC1a channels that may in turn be mediated by mature

brain-derived neurotrophic factor.
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Impact statement

Hyperexcitability is associated with informational processing

deficits that may lead to disconnection and clinical cognitive

impairment. Brain injuries caused by acute and chronic

neurological disorders can impair neuronal function and/or

lead to neuronal loss. GABAergic inhibitory neurons carry out

diverse functions in brain. One major function of GABAergic

inhibitory interneurons is to arrange and generate oscillations.

Oscillations in the brain can either synchronize or de-

synchronize neural ensembles. Loss or dysfunction of

GABAergic inhibitory neurons may contribute to epilepsy and

lead to the disruption of oscillations in the BLA. The novel

finding that alpha-linolenic acid facilitates inhibitory bursts

suggests that this nutraceutical may compensate for the loss

and/or dysfunction of inhibitory neurons to reduce seizures and

restore oscillatory function.

Introduction

Epilepsy is one of the most common neurological disorders and

affects more than 70 million people around the world. Epilepsy,

defined as spontaneous recurrent seizures or as two unprovoked

seizures separated by more than twenty-four hours, is commonly

treated with anticonvulsant therapy. There are approximately

150,000 individuals that have experienced one unprovoked

seizure in the United States [1] and those that have had a brain

insult, an electroencephalogram (EEG) with epileptic discharges or

an abnormality on brain imaging and a nocturnal seizure are at

greatest risk of having a second unprovoked seizure over the next

2 years [2]. Whether to treat a single seizure requires clinical

judgement in weighing the risks of having a second seizure

versus anticonvulsant side effects [2]. There are social

implications for anyone that has had their first seizure including

loss of driving privileges and potential employment issues.

Epilepsy has intriguing features beginning with

epileptogenesis, the process of converting a normal functioning

brain with a variable latent period without seizures into one that

generates spontaneous recurrent seizures. A seizure is a transient

synchronous discharge of neuronal activity in the brain but the

process of conversion to an epileptic state is complicated. In fact,

the details of how normal neuronal circuits develop into transient

abnormal synchronous discharges are unknown. The

pathophysiology has been attributed, at least in part, to the

imbalance of excitatory and inhibitory neurons and/or function

in the brain. However, this is not the entire story. Absence seizures,

for example, result from an aberrant increase in inhibition due to

impaired uptake of γ-aminobutyric acid [GABA] [3] although

recent evidence suggests that a reduction in cortical inhibition may

be a significant contributing factor in these generalized seizures [4].

The amygdala is an almond-shaped structure that is located

in the mesial temporal lobe of the brain [5]. At least thirteen

different nuclei define the amygdala where they carry out diverse

functions including emotional memory, and normal behavioral

functions [6]. The basolateral division of the amygdala (BLA) is a

relatively new division of the amygdala that is associated with the

cortex [6]. The BLA has reciprocal connections with the ventral

hippocampus and prefrontal cortex, areas critically involved in

fear memory, among others [7–9].

The amygdala plays a fundamental role in temporal lobe

epilepsy [10, 11]. Temporal lobe epilepsy (TLE) is the most

common type of focal epilepsy and, in the presence of

hippocampal sclerosis, at least one-third of patients suffer

from pharmacoresistance [12, 13]. The amygdala is one of the

brain regions that shows extensive damage in patients with TLE

[11, 14–16]. Studies show that the seizure focus resides in the

amygdala and/or hippocampus although the seizure focus is most

commonly found in both brain regions [11, 17, 18].

The amygdala, however, may be the most common brain

region of the seizure focus. It is well-known that kindling, the use

of repeated electrical stimulation in laboratory animals, results in

spontaneous recurrent seizures much faster when performed in

the amygdala compared with the hippocampus [19, 20].

Moreover, the earliest indication of interictal spike activity or

epileptiform discharges occurs in the amygdala and piriform

cortex even if kindling was performed in the hippocampus [21,

22]. Seizure spread from the amygdala to other areas may be due

to its extensive reciprocal connections to temporal and other

cortical brain regions [23] that facilitates the spread of seizures to

the hippocampus and to other brain regions. The mechanisms of

the vulnerability of the amygdala to the generation of seizures are

largely unknown [11, 24].

The BLA plays an important role in the normal and

abnormal functions of the amygdala. Sensory information

from thalamocortical areas project to the BLA [25, 26].

Importantly, BLA activation is particularly responsible for the

generation of status epilepticus in animal models of seizures even

when the seizures are generated in extra-amygdalar brain regions

[27, 28]. In addition, prolonged electrical stimulation of the

amygdala sets off status epilepticus more readily when it is

done in the BLA compared with other areas of the amygdala

[29]. However, the reasons behind the susceptibility of the BLA

in the generation of status epilepticus are unclear.

The BLA contains two types of neurons, glutamatergic

pyramidal (principal) neurons and γ-amino-butyric acidergic

(GABAergic) inhibitory neurons [30, 31]. The vast majority of

neurons in the BLA are glutamatergic or principal neurons

(80–85%) whereas GABAergic inhibitory neurons represent

15–20% of neurons [5, 32, 33]. GABAergic inhibitory

interneurons co-express neuropeptides such as the calcium

binding proteins calbindin or calretinin, cholecystokinin

(CCK), vasoactive intestinal peptide (VIP), somatostatin or

parvalbumin [34–38]. Interestingly, GABAergic inhibitory

neurons co-expressing the neuropeptide parvalbumin

comprise about 40% of the total number of GABAergic

Experimental Biology and Medicine
Published by Frontiers

Society for Experimental Biology and Medicine02

Pidoplichko et al. 10.3389/ebm.2025.10545

https://doi.org/10.3389/ebm.2025.10545


inhibitory neurons and are the principle foundation of

perisomatic innervation of principal neurons that may be

involved in feedback inhibition in the BLA. In contrast,

GABAergic inhibitory interneurons that co-express calretinin

make up about 25–30% and mostly synapse on other inhibitory

interneurons [37, 39–41].

GABAergic inhibitory interneurons tightly regulate the

excitability of the BLA [42], despite representing only about

20% of the total number of neurons. The GABAA receptor

mediates fast inhibitory synaptic neurotransmission but there

are modulators that also regulate neuronal excitability in the

BLA. The glutamate receptor subtype, kainic acid, is involved in

synaptic transmission and modulates the presynaptic release of

glutamate [43] and GABA [44–47]. Moreover, kainic acid is

involved in epilepsy [24, 48, 49]. The kainic acid receptor consist

of five different subtypes: Gluk1-3 (previously called GluR5-7),

and GluK4-5 (previously called KA1-2) [50]. Kainic acid

receptors are tetramers forming homomeric or heteromeric

receptors; GluK4-5 subunits form functional receptors only in

combination with GluK1-3 subunits [51, 52]. The N-terminal

amino terminal domain (ATD) plays amajor role in the assembly

of heterodimers and homodimers because the formation of

dimers begins at the ATD domains [53]. Alternative splicing

and mRNA editing alter substrate binding and ion fluxes [51, 54,

55]. Thus, the combination of subunits results in a diverse

complement of distinct receptors with different

pharmacological and biophysical properties. High levels of

mRNA coding for GluK1-3 are expressed in the amygdala

[56–58]. The mRNA levels of GluK1 are especially elevated in

the BLA, higher than in the hippocampus [56, 57]. It has been

shown that GluK1-containing kainate receptors contribute to

excitatory postsynaptic currents (EPSCs) when recorded from

BLA glutamatergic neurons [59, 60] and increases the amplitude

and frequency of action-potential spontaneous GABAergic

inhibitory postsynaptic currents (IPSCs) recorded from BLA

excitatory neurons [57].

Several studies implicate the GluK1-containing kainate

receptors in temporal lobe epilepsy or complex partial

seizures. ATPA, a GluK1 agonist, induces spontaneous

epileptiform bursting in rat amygdala slices [56], and limbic

status epilepticus when administered intravenously or when the

compound is directly injected into the rat amygdala [24, 49]; the

seizure-generating effects of ATPA are blocked by the

GluK1 antagonist, LY293558 [61]. Also, antagonists of GluK1-

containing receptors block limbic seizures beginning in the

hippocampus induced by pilocarpine, a muscarinic agonist, or

electrical stimulation in vitro or in vivo [24, 48]. Topiramate, a

GluK1 antagonist [60], prevents ATPA-induced seizures but has

no anti-seizure effect on other ionotropic glutamate receptor

subtypes [49] i.e., NMDA or α-amino-3-hydroxyl-5-methyl-4-

isoxazole-propionate (AMPA). These results suggest that

blocking GluK1-containing kainic acid receptors is a major

mechanism of stopping seizures by topiramate. Expression

levels of GluK1 are markedly increased in epileptic temporal

lobe brain regions in human as well as in rats [62, 63]. Although

GluK1-containing receptors can increase EPSCs, and therefore,

excitability, in glutamatergic neurons and increase the release of

GABA from presynaptic terminals of GABAergic inhibitory

neurons to reduce excitability of glutamatergic neurons at low

glutamate concentrations, elevated concentrations of glutamate

as occurs during a seizure suppresses the release of GABA from

presynaptic terminals [57] thereby exacerbating seizure activity.

Additional studies have shown that the overall effect of elevated

activation of GluK1-containing kainate receptors is a striking

increase in neuronal excitability in the BLA and generation of

spontaneous epileptiform discharges [61].

Physiological synchronous burst firing, a property of

inhibitory neurons [64–66], resets and controls excitatory

activity [64, 67]. As a result, GABAergic inhibitory

interneurons play a central role in arranging and generating

oscillations [68–71]. Synchronous oscillations in the BLA appear

to be important for safety perception [72] and fear response [73].

Recently, spontaneous rhythmic oscillatory GABAA receptor-

mediated inhibitory bursts were recorded with an average burst

frequency of 0.5 Hz from the rat BLA that were dependent upon

NMDA receptor activation, specifically the NR2A subunit,

located on GABAergic inhibitory neurons [74]. However, the

role of other receptors and/or channels in the generation of

inhibitory burst activity is unknown.

A small reduction in the pH or temperature, or the presence

of ammonium ion activates H+-gated sodium channels called

acid-sensing ion channels (ASICs) [75, 76]. The channel was

cloned from rat brain and three types of ASIC channels have been

identified, ASIC1, ASIC2 and ASIC [3, 77]. ASICs are members

of the epilthelial/degenerin sodium channel family with different

biophysical properties. ASIC1 has two splice variants, ASIC1a

and ASIC1b; ASIC1a is broadly distributed in brain with the

highest expression found in the amygdala, among other brain

regions [76, 78]. Pidoplichko et al., (2014) [79] demonstrated that

activation of ASIC1a channels by a reduction in pH or in the

presence of ammonium evokes inward currents depolarizing

excitatory neurons and interneurons and enhanced IPSCs

more than EPSCs from excitatory neurons and increase

inhibitory activity in the BLA by the activation of inhibitory

neurons and indirect activity by the synaptic activation of

glutamatergic neurons. Pharmacological manipulation in rat

BLA slices to induce epileptiform activity using elevated

potassium or low magnesium, a strategy that relieves the

magnesium block of NMDA receptors to increase activity, was

completely blocked by ammonium [79]. These results confirm

that activation of ASIC1a channels enhance inhibition over

excitation in the BLA.

We have shown previously that alpha-linolenic acid (ALA),

an omega-3 polyunsaturated fatty acid (PUFA), increases the

facilitation of GABAA receptor-mediated neurotransmission in

the BLA [80]. An increase in GABAA receptor-mediated
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neurotransmission induced by mature brain-derived

neurotrophic factor (mBDNF) elicited a similar increase in

inhibitory activity. These results suggest that ALA may protect

neurons via a bidirectional effect by reducing excitation through

activation of a background potassium channel [81] and

enhancing inhibition [80]. We now show that ALA enhances

inhibitory burst activity in the BLA by activating ASIC1a

channels possibly via a mBDNF-mediated mechanism.

Ethics statement

The experiments followed the Guide for the Care and Use of

Laboratory Animals (Institute of Laboratory Animal Resources,

National Research Council) and were in accordance with the

guidelines and approved by the Uniformed Services University of

the Health Sciences Institutional Animal Care and Use

Committees (IACUC). The animal care and use programs of

both institutions are accredited by the Association for

Assessment and Accreditation of Laboratory Animal Care

International.

Animals

Experiments were performed using 8–16 weeks old male,

Sprague–Dawley rats (Charles River, Wilmington, MA,

United States). Rats were pair-housed on arrival and

acclimated for 3 days. A total of ten rats were used for the

study. Animals were housed on an environmentally controlled

room (20–23°C, ~44% humidity, 12-h light/12-h dark cycle

[350–400 lux], lights on at 6:00 am), with food (Harlan

Teklad Global Diet 2018, 18% protein rodent diet; Harlan

Laboratories; Indianapolis, IN) and water available ad libitum.

All rats used were not injected with substances prior to

electrophysiological experiments.

Electrophysiological experiments

The procedures for obtaining the whole-cell recordings from

the BLA region have been previously described [80, 82]. The rats

were anesthetized with isoflurane before decapitation. Coronal

brain slices (400 µm thick) containing the amygdala were cut in

ice-cold solution (in mM: 115 sucrose; 70 N-methyl-D-

glucamine-gluconate (NMDG); 1 KCl; 2 CaCl2; 4 MgCl2;

1.25 NaH2PO4; 30 NaHCO3) with the use of a vibratome

(Leica VT 1200 S; Leica Microsystems, Buffalo Grove, IL,

United States). The slices were transferred to a holding

chamber at room temperature of about 23°C, in a bath

solution containing (in mM): 125 NaCl; 2.5 KCl;

1.25 NaH2PO4; 21 NaHCO3; 2 CaCl2; 1 MgCl2; and

25 D-glucose. The recording solution (artificial cerebrospinal

fluid; ACSF) was the same as the holding bath solution. All of the

solutions were saturated with 95% O2/5% CO2 to achieve a

pH near 7.4. The recording chamber (0.7 mL capacity) had

continuously flowing ACSF (~8 mL/min) at 30–31°C. The

osmolality of the ACSF was adjusted to 325 mOsm

with D-glucose.

To visualize the neurons, we used a ×40 water immersion

objective equipped with a CCD-100 camera (Dage-MTI,

Michigan City, IN, United States), under infrared light, using

Nomarski optics of an upright microscope (Zeiss Axioskop 2,

Thornwood, NY, United States).

The recording electrodes had resistances of 3.5~4.5 mW

when filled with the internal solution (in mM): 60 CsCH3SO3;

60 KCH3SO3; 5 KCl; 10 EGTA; 10 HEPES; 5 Mg-ATP;

0.3 Na3GTP (pH 7.2; osmolality was adjusted to

295 mOsm with potassium gluconate). Tight-seal (over

1 Giga Ohm) whole-cell recordings were obtained from the

cell body of the principal neurons, distinguished from the

interneurons by their larger size, pyramidal shape, and

electrophysiological characteristics. Access resistance not

exceeding 20 Mega Ohms was monitored during the

recordings, and the cells were rejected if the resistance

changed by more than 15% during the experiment. The

currents were amplified and filtered (2 kHz) using the

Axopatch 200B amplifier (Axon Instruments, Foster City,

CA, United States) with a four-pole, low-pass Bessel filter,

digitally sampled (up to 2 kHz) using the Clampex

10.7 software (Molecular Devices, Sunnyvale, CA,

United States), and subsequently analyzed using

Origin2019b software (OriginLab Corporation,

Northampton, MA, United States).

GABAA receptors (GABAARs)-mediated sIPSCs were

recorded in a voltage-clamp mode at holding potential (Vh)

of + 30 mV in the presence of D-AP5 (50 μM); SCH50911

(10 μM); LY341495 (3 μM). After a BLA cell was patch-clamped,

the holding potential was switched from conventional − 58 to +

30 mV. The cell was left to equilibrate with the new Vh for about

4 min in drug-free bath solution (ACSF) and then another 4 min

in antagonists-containing bath solution. Spontaneous IPSCs

were recorded after that. Pressure-application of substances

was performed with the help of the technique described

previously [83]. Substances used in this study were as follows:

D-AP5, a competitive NMDA receptor antagonist, NMDA,

Ammonium chloride and all chemicals used for buffers were

purchased from Sigma-Aldrich Chemical Co (St. Louis, MO).

Mature BDNF and Ibuprofen were purchased from Tocris

Bioscience, (Ellisville, MO). Alpha-linolenic acid (ALA) was

purchased from Nu-Chek Prep Inc (Elysian, MN) and was

freshly prepared on the day of experimentation. ALA was

dissolved in ethanol at a molar concentration and then diluted

in ACSF solution to reach a final concentration of 50, 100 or

200 μM. It was reported that ALA undergo auto-oxidation [84],

therefore all manipulations of ALA were made under nitrogen.
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The experiments were performed in the presence of the NMDA

receptor antagonist D-AP5, unless specified in the description of

results and figure legend.

Statistical analysis

Statistical values are presented as means ± standard error

(SE) of the mean, and comparisons weremade using paired-t test.

Results were considered statistically significant when the p value

was <0.05. Sample sizes (n) refers to the number of currents.

Results

In the first experiment we replicate the effects of ALA on

GABAergic neurotransmission in the BLA (Figure 1). Control

current trace is shown in Figure 1A. We demonstrate that bath

application of 50 μM ALA, a lower concentration than used

previously [80] (Figure 5), enhances the facilitation of

GABAergic activity in the BLA in slices (Figure 1B) and this

effect was reversed after wash out with control bath solution

(Figure 1C). To show that the effect was not due to activation of

NMDA receptors, this experiment was performed in the presence

of the NMDA receptor antagonist D-AP5.

Since we have demonstrated that the ALA enhancing

GABAergic inhibitory currents in the basolateral amygdala is

not dependent on activation of NMDA receptors, we tested the

hypothesis that this enhancing effect is dependent on the

activation of ASIC1a channels. To investigate the direct effect

of ALA on ASIC1a receptor (ASIC1aRs)-mediated currents at

Vh = −70 mV, we conducted a second experiment consisting of

pressure application of ammonium chloride for 300 ms, under

control and bath-applied ALA (100 µM) conditions.

Comparisons of ASIC1a-mediated currents, measured in

picoAmpers (pA), tested under control (156 ± 6, n = 5) and

100 µM ALA (180 ± 2, n = 5) showed a significant increase (p =

0.004) when ALA was present in the bath solution (Figure 2).

To confirm that inhibitory effect of ALA is dependent on

ASIC1aRs activation, we conducted a third experiment recording

ASIC1a-dependent inhibitory neuronal bursts in the BLA.

Figure 3 shows 40 min of continuous recording performed on

pyramidal BLA neurons in v-clamp mode at Vh = + 30 mV. In

panel Figure 3A bath-application of ALA initiates ASIC1aRs-

dependent inhibitory bursts. Bursts were initiated also via specific

facilitation of AISC1aRs by reducing the bath temperature, as

FIGURE 1
Typical potentiating effect of bath-applied ALA on inhibitory activity mediated via GABAARs. The experiment was conducted at Vh = +30 mV in
the presence of NMDARs antagonist D-AP5 (50 µM). Control current traces are demonstrated (A). Bath-applied ALA (50 µM) facilitated inhibitory
activity (bursts) (B). Note the initiation of inhibitory bursts in the presence of the NMDA receptor antagonist D-AP5. Inhibitory activity subsided during
wash-out of ALA (C).
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shown in Figure 3A where the lower line is indicating drop of

temperature. In Figure 3B, the bath-application of the specific

ASIC1a receptor antagonist, ibuprofen (500 µM), extinguished

spontaneous inhibitory bursts and when cooling was applied it

failed to initiate bursts. In Figure 3C, after wash-out of ibuprofen,

bath application of ALA (200 µM) initiated transient inhibitory

bursts activity showing that ALA can recover bursts activity after

the washout. Figure 3D shows that in the presence of ibuprofen,

ALA application failed to induce inhibitory bursts as well as

cooling also failed to initiate bursts. After 4 min of washout,

spontaneous bursts reappear and cooling initiated transient

bursts activity via facilitation of ASIC1a receptors. The

pharmacological induced changes on inhibitory neuronal

bursts in the BLA clearly demonstrate that the effects of ALA

are dependent on ASIC1aRs activation.

Since we have previously demonstrated that the ALA

enhances the inhibitory GABAergic currents of pyramidal

neurons through a BDNF-tyrosine receptor kinase (Trk)-

mediated pathway [80] (Figure 7), we hypothesized that ALA

initiation of bursts may occur due to activation of ASIC1a

receptors by BDNF. Therefore, we investigated the effects of

BDNF on ASIC1a currents. The specific ASIC1a receptor agonist,

ammonium chloride, was pressure applied to BLA principal

neurons (demonstrated by arrowheads in Figures 4A–C).

Bath-applied mBDNF increased ASIC1a receptor-mediated

inward currents in control (Figure 4A; v-clamp mode,

Vh = −70 mV) by about 40% (Figure 4B) and the effect was

reversed after wash-out (Figure 4C).

To test the hypothesis that mBDNF may enhance NMDA

receptor-mediated evoked currents in the BLA, we conducted an

experiment with pressure application of NMDA in BLA principal

neurons. During this experiment, the NMDA antagonist D-AP5

was not present at the control bath solution. Figure 5 shows

recordings of the current evoked by pressure-applied NMDA

(100 µM for 100 ms; arrowheads) under control bath-solution

Figure 5A, BDNF (20 ng/mL) bath applied Figure 5B, wash-out

Figure 5C, NMDA receptor antagonist D-AP5 (50 µM) bath-

applied Figure 5D and wash-out Figure 5E. Results showed that

NMDA receptor-mediated currents are completely inhibited by

D-AP5 and there was an incomplete recovery of the current

amplitude after washout. No changes in NMDA receptor-

mediated currents were observed in the presence of mBDNF,

demonstrating that mBDNF does not facilitate NMDA receptor-

evoked currents in principal BLA neurons.

Since the effects of mBDNF on inhibitory GABAergic currents

in the BLAdid not depend on facilitation ofNMDA receptor-evoked

currents, we further investigated the effects of BDNF on ASIC1a-

dependent inhibitory bursts. Figure 6 shows recording of inhibitory

currents in the absence of the NMDA antagonist D-AP5: Figure 6A

regular excitatory bursts were recorded at holding potential (Vh) =

+30 mV and bursts frequency is about 0.5 Hz under control

conditions; Figure 6B the initial effect of bath applied of the

NMDA receptor antagonist D-AP5 (50 µM) shows disruption of

NMDA receptor-dependent wide excitatory bursts generation;

Figure 6C After 6 min in D-AP5, mBDNF (20 ng/mL) was bath-

applied and results show the restoration of bursts generation;

Figure 6D Bursts persisted after the washout of BDNF suggesting

an ASIC1a receptor-mediated mechanism although the bursts

become more narrow; Figure 6E Bursts are again recorded after

the washout of D-AP5; Figure 6F the ASIC1a receptor antagonist,

ibuprofen (1 mM) completely blocked inhibitory bursts generation;

Figure 6G addition of BDNF shows no effect; Figure 6H After a

10 min washout, generation of bursts show recovery. The

pharmacological induced changes on inhibitory neuronal bursts

in the BLA principal neurons demonstrated that mBDNF restores

inhibitory bursts generation that are prevented by NMDA receptor

inhibition.

To confirm that mBDNF is enhancing GABAergic currents in

the BLA via ASIC1aRs activation, we recorded depolarizing bursts

on BLA interneurons. In Figure 7, we demonstrate that regular

depolarizing bursts recorded at Vh = −70 mV under control bath-

solution show bursts frequencies at about 0.8 Hz Figure 7A. When

1 mM of Ibuprofen, the ASIC1a receptor antagonist, was bath

applied there was a reduction in bursts activity to about 0.5 Hz.

After 8 min of ibuprofen application, bursts frequency decreased

further to about 0.3 Hz Figure 7B. Bath application of mBDNF

(20 ng/mL) on the background of ibuprofen produced no effect

Figure 7C. After 10 min washout Figure 7D, regular bursts pattern

was restored (bursts frequency 0.8 Hz). Addition of mBDNF to the

bath Figure 7E increased bursts frequency to about 1.3 Hz. The

pharmacological induced changes on inhibitory neuronal bursts in

FIGURE 2
The effect of bath-applied 100 µM ALA on the amplitude of
ASIC1a receptor-mediated currents evoked by pressure
application of specific ASIC1a agonist NH4Cl. ASIC1a receptor-
mediated inward currents were evoked by 40 mM NH4Cl
applied for 300 ms at Vh = −70 mV. Ordinate axis: current
amplitude in picoamperes. The increase in the amplitude of the
currents was statistically significant (n = 5; t-test; p = 0.00455).
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the BLA principal interneurons demonstrated that mBDNF

enhances depolarizing burst activity in interneurons in the BLA,

therefore increasing GABAergic inhibitory activation.

Discussion

An epileptic focus of an idiopathic nature can develop in any

area of the cortex that results in the appearance of enduring

spontaneous recurrent seizures and neurocognitive and

psychosocial consequences [85]. A prior brain injury,

structural lesion and seizures during sleep are predisposition

factors associated with seizure recurrence [2]. Seizures are

transient events characterized by abnormal synchronous

neuronal discharges that spread to cortical and subcortical

areas in the brain [86]. Generalized epilepsy is associated with

a higher rate of freedom from seizures (64–82%) compared with

focal epilepsies (25–70%) during the first 2 years after diagnosis

[87]. The mortality rate in epileptic individuals is 1.6–9.3 times

higher than in the general population. Dire consequences of

FIGURE 3
Continuous 40 min recording demonstrating initiation of ASIC1a receptor-dependent inhibitory bursts via bath-application of ALA. The
recording was performed on principal BLA neurons in v-clamp mode at Vh = + 30 mV. Upper traces demonstrate currents at Vh = +30 mV in all
panels. Lower traces represent changes in temperature in all panels. Bath-application of ALA (200 µM) facilitated the generation of inhibitory bursts
(A). Bursts were initiated also via specific facilitation of AISC1a receptors by cooling (A). Spontaneous bursts in the beginning of (B) subsided and
the cooling failed to initiate bursts in the presence of the specific ASIC1a receptor antagonist ibuprofen (500 µM). After the wash-out of ibuprofen,
bath application of ALA initiated transient inhibitory bursts activity proving that the ALA effect can recover after the wash-out (C). ALA application
failed to induce inhibitory bursts as well as cooling also failed to initiate bursts in the presence of ibuprofen [see beginning of (D)]. After 4min of wash
out, spontaneous bursts reappear. Cooling initiated transient bursts activity via facilitation of ASIC1a receptors [end of panel (D)]. The ALA initiation of
bursts most likely depended on the facilitation of ASIC1a receptors by BDNF.
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epilepsy commonly include sudden unexpected death in epilepsy,

drowning, status epilepticus, and suicide [88]. Unfortunately, the

seizure-free rate, defined as the absence of seizures over a 5-year

period in focal and generalized epilepsy, has remained

unchanged over the last twenty years despite the addition of

seventeen anti-convulsants to the armamentarium of anti-seizure

medications [88].

The detailed cellular and molecular mechanisms of

epileptogenesis and epilepsy are unknown. Surgical removal of

human epileptic tissue from patients with intractable seizures has

provided insight into the electrophysiological properties of ictal

and interictal events, synapse formation and characteristics of

pyramidal and inhibitory interneurons. Data acquired from

human epileptic tissue has shown that afferent fiber

stimulation, resulting in excitatory bursts with variable

latencies, were formed in the temporal or frontal cortex that

depended in part on the glutamate receptor subtype, NMDA

receptors [89]. Prolonged responses with after-discharges are

observed in the dentate gyrus by low frequency performant path

stimulation in the hippocampus from epileptic human tissue that

is only found in healthy tissue when GABAA receptors are

partially blocked [90]. There may be decreased inhibition in

dentate neurons from epileptic human tissue with hippocampal

sclerosis. Single high frequency stimulation of the perforant path

resulted in dentate neuronal depolarization that was amplified

with the addition of a low concentration of bicuculine, a GABAA

receptor antagonist, suggesting that reduced inhibition may be a

critical component of hyperexcitability in sclerotic hippocampal

epileptic tissue [91]. Hippocampal epileptic tissue with sclerosis

shows reduced GABAergic neurotransmission by fast and slow

inhibitory post-synaptic potentials (IPSCs) in the dentate gyrus

providing additional evidence of impaired inhibition [92].

In the absence of extracellular magnesium, a manipulation

that relieves the magnesium block on the NMDA receptor-

associated channel, both interictal bursts and long ictal

synchronous epileptiform discharges were observed from the

cortex of human epileptic brain tissue; ictal events were blocked

by the NMDA receptor antagonist, 2-amino-5-

phosphonopentanoic acid [APV], while non-NMDA receptor

antagonists had no effect on the ictal discharges in the absence of

magnesium [93]. In the hippocampus, repetitive low frequency

stimulation resulted in spontaneous epileptiform discharges and

were reduced in the presence of the NMDA receptor antagonist,

3-(2-Carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP).

The investigators also showed spontaneous rhythmic positive

polarity potentials that became more hyperpolarizing when the

neuronal membrane became less negative relative to the resting

membrane potential and these potentials were markedly

attenuated or abolished with the addition of bicuculline. The

spontaneous epileptiform discharges resulting from repetitive

focal stimulation of the human epileptic tissue was associated

with a reduction in the GABAA receptor-mediated spontaneous

rhythmic currents. These results suggest that the initiation of

epileptiform discharges may be due in part to a reduced GABAA

receptor inhibitory-mediated mechanism even though GABA-

mediated inhibition is functional in human epileptic brain tissue

and confirmed in human and animal models of chronic epilepsy

[94, 95]. In these cases, the human brain tissue was obtained from

patients with intractable epilepsy where the tissue was described

as having neuronal loss and gliosis [93]. Curiously, interictal-like

discharges have been observed in the subiculum, the outflow

region of the hippocampus in patients with hippocampal

sclerosis. This type of activity was not detected in the CA1,

CA3, dentate gyrus or entorhinal cortex. Interictal field potentials

in the subiculum are significantly reduced by ionotropic

glutamate and GABAA receptor antagonists [96]. Inhibitory

interneurons fire just before and during interictal-like

discharges. Curiously, some of the subicular pyramidal

neurons have an impaired chloride homeostasis and analysis

of human epileptic tissue in vitro confirmed the subiculum’s role

in epileptogenesis [97]. It is interesting that subicular pyramidal

and inhibitory interneurons abundantly express CaV
3.1 T-channels that contribute burst firing in the subiculum.

That is, when T-channels are antagonized in the subiculum, burst

firing changed to spike firing with low depolarizing stimuli; the

FIGURE 4
The effect of pressure-applied specific ASIC1a receptor
agonist NH4Cl on BLA principal neurons. ASIC1a receptor-
mediated currents were evoked by pressure applied NH4Cl
(40 mM for 300 ms). Control current is demonstrated (A).
Bath-applied BDNF (20 ng/mL) increased ASIC1a receptor-
mediated inward currents (v-clamp mode) by about 40% (B).
Current amplitude diminished during wash-out of BDNF (C).
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absence of T-channels by genetic manipulation resulted in

suppression of burst and spike firing [98].

The number of GABAergic inhibitory interneurons in the

brain is relatively small (about 20%) compared with the number

of excitatory neurons. Loss of GABAergic inhibitory neurons in a

non-primate model of focal epilepsy was first reported by Ribak

et al., (1982) [99]. More reports of GABAergic inhibitory loss or

abnormalities in GABAergic function in human and animal

models of status epilepticus/epilepsy followed [100–106].

When GABAA receptors are activated, the chloride-

associated channel opens that in turn influxes chloride. This is

due to a higher extracellular concentration of chloride compared

with the intracellular concentration. However, the regulation of

chloride is more complex and involves the sodium-potassium-

chloride (NKCCl) and potassium-chloride (KCC2)

cotransporters. NKCCl increases the intracellular

concentration of chloride using the sodium ion

electrochemical gradient whereas KCC2 eflluxes chloride from

the cell by the chemical gradient of potassium ions [107]. In

normal tissue, KCC2 is highly expressed whereas the expression

levels of NKCCl may be low or inhibited [108], thereby keeping

the intracellular concentration of chloride low in part so that

when GABAA receptors are activated, the chloride-associated

channel opens and chloride goes down the electrochemical

gradient and influxes into the neuron. The dynamics of

chloride regulation are not just a matter of an intellectual

exercise. Emerging evidence suggests that inflammation is

implicated in the process of epileptogenesis and drives seizure

severity, frequency and excitotoxicity [109, 110]. In a recent

study, a single injection of lipopolysaccharide (LPS) into the

peritoneum of male and female mice, a method known to induce

a cytokine cascade in the brain within 60 min after injection,

leads to a significant reduction in the efflux of chloride and an

uptake of chloride into neurons in the dentate gyrus and

hyperexcitability and increases the probability of spike activity

24 h after injection [111]. Thus, a reversal of the normal role of

the KCC2 and NKCCl cotransporters occurs that results in

hyperexcitability in the brain after an episode of acute

peripheral inflammation. This novel finding in vivo provides

new mechanistic insights into epileptogenesis that may involve

systemic inflammatory insults that result in an inflammatory

response in brain in addition to genetics and other traditional

etiologies.

An episode of status epilepticus (SE) can trigger

epileptogenesis. In the kainic acid model of status epilepticus,

prior work showed profound loss in GABAergic inhibitory

neurons compared with the loss of excitatory neurons in the

rat BLA seven to 10 days after status epilepticus. These changes

were associated with an increase in the α1 GABAA receptor

subunit, glutamate decarboxylase (GAD), the enzyme that

FIGURE 5
BDNF fails to facilitate NMDA-evoked currents in principal BLA neuron. Control recording of the current evoked by pressure-applied NMDA
(100 µM for 100ms, arrowheads), a subtoxic concentration (A). Current evoked by pressure application of NMDA in the presence of BDNF (20 ng/mL)
(B). Wash out of BDNF (C). Block of the current by bath applied D-AP5 (50 µM) (D). Incomplete recovery of the current amplitude after wash out (E).
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converts glutamate to GABA, and a decrease in the glutamate

ionotropic receptor kainate type subunit 1 (GluK1). Whole-cell

recordings showed a significant reduction in the amplitude and

frequency of spontaneous action potential-dependent IPSCs, a

reduction in the frequency but not amplitude of miniature IPSCs

and an impairment in the modulation of IPSCs via GluK1-

containing receptors [112]. These results underscore the

striking vulnerability of GABAergic inhibitory interneurons

after SE that is not compensated by surviving GABAergic

inhibitory neurons that expressed increased levels of the

α1 subunit of the GABAA receptor and the increase in GAD.

These alterations may set the stage of the development of an

epileptic focus due to the loss of GABAergic inhibitory neurons

in the rat BLA.

Because loss or impairment of GABAergic function has been

implicated in human and animal models of temporal lobe

epilepsy, compounds that positively affect the GABAergic

system would be beneficial in controlling and/or preventing

epilepsy. Anticonvulsants that enhance GABAergic function

have been approved by the FDA such as valproic acid, and

lamotrigine and are already in use today. Unfortunately, many of

the anticonvulsants have side effects, with some that are serious

and/or debilitating [88].

Alpha-linolenic acid is an omega-3 essential polyunsaturated

fatty acid (PUFA) found in plants including flaxseed, nuts, and

vegetable oils [113]. In contrast to anticonvulsant drugs, ALA has

a wide safety margin There is ample literature to suggest that

omega-3 polyunsaturated fatty acids, including alpha-linolenic

FIGURE 6
The effect of BDNF on principal BLA neuron supports the importance of ASIC1a receptors in inhibitory bursts generation. Regular inhibitory
bursts have been recorded at Vh = + 30 mV. Bursts frequency was about 0.5 Hz in control (A). The initial effect of the bath applied NMDA receptor
antagonist D-AP5 (50 µM). NMDARs-dependent wide excitatory bursts generation was disrupted (B). After 6 min in D-AP5, the addition of BDNF
restored the burst generation (C). Bursts persisted after wash-out of BDNF (ASIC1a receptors were involved: please note that the profile of the
bursts became narrow) (D). Bursts were recorded after the wash-out of D-AP5 (E). The ASIC1a receptor antagonist ibuprofen (1 mM) blocked
inhibitory bursts generation completely (F). Addition of BDNF produced no effect (G). After 10 min-long wash-out, the generation of bursts has
recovered (H).

Experimental Biology and Medicine
Published by Frontiers

Society for Experimental Biology and Medicine10

Pidoplichko et al. 10.3389/ebm.2025.10545

https://doi.org/10.3389/ebm.2025.10545


acid, have therapeutic potential for neurologic and psychiatric

disorders. Therapeutic efficacy of ALA has been observed in

animal models of stroke [114–119] that improves outcome [120],

spinal cord injury [121], kainic acid-induced status epilepticus

[81], a temporal lobe epilepsy model, after soman-induced status

epilepticus [122] that reduces behavioral and cognitive

impairment [123, 124] in part via an mammalian target of

rapamycin-mediated mechanism [125] and in a mild

traumatic brain injury model [126]. ALA is metabolized to

oxylipins by exposure to air [84], lipoxygenase, and

cyclooxygenase pathways [127]. Polyunsaturated fatty acids

also undergo metabolism by the CYP450 pathway [128]. A

new report showed that ALA is metabolized to linotrins and

these oxylipins exert anti-inflammatory properties in cultured

microglia exposed to lipopolysaccharide [113].

Administration of three doses of ALA at 30 min, 3 days and

7 days after injury was originally found to enhance brain

plasticity including a two-fold increase in mBDNF in the

hippocampus and cortex, two brain regions involved in

neuronal plasticity, a significant increase in neurogenesis in

the subgranular zone of the dentate gyrus, an increase in

expression in key proteins involved in synaptogenesis and

glutamate neurotransmission; This same dosing schedule also

exerts an anti-depressant effect [129]. The administration of

three doses or subchronic treatment of ALA was used to show

neuroprotective efficacy in animal models of stroke, mTBI and

soman-induced status epilepticus. It’s been known for about

20 years that ALA activates a neuronal TREK (TWIK-related

potassium channel)-1 channel. TREK-1 channels are 2-pore

domain background potassium channels that are open at

membrane potentials and likely contribute to the resting

membrane potential [130]. Activation of TREK-1 channels by

ALA hyperpolarizes the membrane to advantage the magnesium

block and reduce NMDA receptor activation on post-synaptic

membranes as well as reduce the excessive release of glutamate

from presynaptic sites. Activated TREK-1 channels by ALA are

also involved in cerebral vasodilation to increase blood flow and

protect against stroke [117].

There are some reports showing that ALA reduces seizures. An

early study showed that a mixture of ALA and linoleic acid, an

omega-6 PUFA, in a ratio of 1:4 administered over 3 weeks prior to

exposure to four different models of seizures reduced the seizure

latency 22-fold in up to 84% in the number of rats with seizures and

up to a 97% reduction in the duration of seizures [131]. Recently,

intra-gastric administration of ALA for 40 days after injection of

pentylenetetrazol (PTZ), a convulsant compound, reduced the

frequency of epileptic seizures, improved the cognitive and

behavior impairment and reduced neuronal apoptosis via

downregulating the JAK/STAT-3 pathway [132]. The exact

mechanisms of how ALA reduces the various elements of

seizures i.e., duration, frequency, latency, are unknown.

We have shown previously that a single dose of ALA

(1500 nmol/kg) injected subcutaneously into male Sprague-

Dawley rats increased the charge transfer of inhibitory

postsynaptic potential currents mediated by GABAA receptors in

pyramidal neurons by 52% in the BLA and by 92% in the CA1. Bath

application ofALA also increases the facilitation ofGABAA receptor-

mediated neurotransmission in the BLA and CA1 subfield of the

hippocampus in naïve male rats. Interestingly, K252a, the high

affinity and selective TrkB inhibitor, completely blocked the

ALA-induced increase in GABAergic neurotransmission in the

BLA and CA1, suggesting an mBDNF-mediated mechanism.

Bath application of mBDNF (20 ng/mL) also enhanced

FIGURE 7
The BDNF effect on a BLA interneuron. Control: regular
excitatory bursts were recorded at Vh = −70 mV; Bursts frequency
was about 0.8 Hz (A). The initial effect of bath applied the ASIC1a
receptor antagonist ibuprofen (1 mM) (B). The regularity of
excitatory bursts was disrupted and the bursts frequency
decreased to about 0.5 Hz. After 8 min in ibuprofen, bursts
frequency decreased further to about 0.3 Hz. Bath applied BDNF
(20 ng/mL) on the background of ibuprofen produced no effect
(C). After 10 minutes-long wash-out, regular bursts pattern was
restored (bursts frequency 0.8 Hz) (D). Addition of BDNF (20 ng/
mL) to the bath increased bursts frequency to about 1.3 Hz (E).
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GABAergic inhibitory activity in the BLA and CA1 pyramidal

neurons similar to what was observed with ALA [80]. We

proposed that low-level activation of NMDA receptors results in

the immediate release of mBDNF from either presynaptic neurons

[133] or astroglial cells [134] to mediate this effect.

Here, we show that bath application of ALA elicits ASIC1a-

dependent GABAA receptor-mediated inhibitory bursts located on

glutamatergic and GABAergic inhibitory neurons in rat BLA slices.

Because we suggested that the enhanced facilitation of GABAergic

neurotransmission was elicited via a TrkB-mediatedmechanism, we

tested whethermBDNFmight be involved in theASIC1a-dependent

GABAergic inhibitory bursts. To this end, mBDNF (20 ng/mL) was

bath applied in the presence of the NMDA receptor antagonist,

D-AP5. Because the effects of mBDNF on inhibitory GABAergic

currents in the BLA did not depend on activation of NMDA

receptor-evoked currents, we investigated the effects of mBDNF

on ASIC1a-dependent inhibitory bursts. Activation of NMDA

receptor-evoked currents elicit inhibitory bursts. However, in the

presence of the NMDA receptor antagonist, D-AP5, NMDA

receptor-mediated excitatory bursts showed disruption. Mature

BDNF (20 ng/mL) was bath applied 6 minutes after the addition

of D-AP5 and results showed restoration of bursts generation

(Figure 6). The bursts persisted after the washout of mBDNF

suggesting an ASIC1a receptor-mediated mechanism and this

mechanism was confirmed when the ASIC1a receptor antagonist,

ibruprofen (1 mM) was added and inhibitory bursts generation was

completely blocked. Washout resulted in the return of bursts. These

results show that mBDNF restores inhibitory burst generation in the

presence of AP-5, an NMDA receptor antagonist.

To provide confirmatory data that mBDNF enhances

GABAergic currents in the BLA via ASIC1aR activation,

depolarizing bursts were recorded on BLA interneurons. Burst

frequencies in the bath solution recorded at a holding voltage

of −70 mV show bursts frequencies about 0.8 Hz; addition of

Ibuprofen reduced bursts activity to about 0.5 Hz. Eight minutes

later, bursts frequency decreased further to about 0.3Hz. Addition of

mBDNF to the bath on the background of ibuprofen showed no

effect.Washout for 10min showed regular bursts pattern restoration

(bursts frequency 0.8 Hz) and bath application ofmBDNF increased

bursts frequency to about 1.3 Hz. These results show that mBDNF

enhances depolarizing burst activity in interneurons in the BLA,

thereby enhancing GABAergic inhibitory activation.

The amygdala is critically involved in TLE and shows extensive

damage in TLE patients. The amygdala’s reciprocal connections with

the hippocampus and other temporal structures likely mediate the

spread of the seizure focus. In addition, the amygdala may be the

location of the seizure focus as kindling produces seizures in the

amygdala faster than the hippocampus and the earliest interictal

spikes or epileptiform discharges occur in the amygdala even if

kindling was performed in the hippocampus. Moreover, BLA

activation is especially implicated in the generation of status

epilepticus in animal models of seizures even when the seizures

are generated in extra-amygdalar brain regions. Our results show

that ALA enhances the facilitation of GABAergic inhibitory activity

and initiate GABAergic inhibitory bursts via the facilitation of ASIC1a

channels. Because ALA increases GABAergic inhibitory bursts

directly on inhibitory neurons and indirectly via activation of

ASIC1a channels located on glutamatergic neurons in the BLA

and activation of ASIC1a channels produce an overall reduction in

neuronal excitability, we suggest that chronic administration of ALA,

an omega-3 PUFA with a wide safety margin may reduce seizure

activity in the BLA via enhancing GABAergic inhibitory activity and

by facilitating the activation of ASIC1a channels. We showed

previously that ALA enhances GABAergic inhibitory activity in the

CA1 subfield in the hippocampus. Our resultsmay also explain recent

results showing that ALA exhibits anti-convulsant properties in

generalized seizures [132].
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