AUTHOR=Martin Abigail , Coulter Ian , Cox Reginald , Covey Douglas F. , Todorovic Slobodan M. , Timic Stamenic Tamara TITLE=Comparative electrophysiological study of neuroactive steroid-induced hypnosis in mice: sex and drug-specific differences JOURNAL=Experimental Biology and Medicine VOLUME=Volume 250 - 2025 YEAR=2025 URL=https://www.ebm-journal.org/journals/experimental-biology-and-medicine/articles/10.3389/ebm.2025.10550 DOI=10.3389/ebm.2025.10550 ISSN=1535-3699 ABSTRACT=Since the discovery of their anesthetic effects, some neuroactive steroids have been used as general anesthetics. However, their effects on thalamocortical oscillations and potential sex differences that are associated with their hypnotic/sedative effects are not well studied. Here, we investigated spectral characteristics and sex differences in hypnotic effect of two common neuroactive steroids: Allopregnanolone (AlloP) and its synthetic analog Alphaxalone (Alpx) in wild type mice using behavioral testing (loss of righting reflex - LORR) and in vivo electrophysiology. Our data revealed sex-differences in LORR duration with 100 mg/kg intraperitoneally injected AlloP and Alpx confirming that females are more sensitive to neuroactive steroid-induced hypnosis. Spectral analysis, thalamocortical and corticocortical phase synchronization showed notable differences between two neuroactive steroids. AlloP induced a profound reduction in local field potential (LFP) and electroencephalogram (EEG) after LORR with higher LFP/EEG suppression in females during first 60 min after injection. Also, we observed a decrease in thalamocortical synchronization in lower (delta, theta, alpha) and increase in higher low gamma frequency in AlloP group; similar effects were observed in Alpx treated animals with no change in delta thalamocortical phase locking values. Synchronization between right and left cortex was reduced in all frequencies except low gamma in AlloP-treated group. Similarly, Alpx induced reduction in corticocortical synchronization for theta, alpha and beta frequencies. We conclude that AlloP and Alpx have distinct electrophysiological signatures in thalamocortical circuitry that may underly their sedative/hypnotic effects.