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Abstract

Clinically, reliably restoring meaningful peripheral sensory and motor nerve

function across peripheral nerve gaps is limited. Thus, although autografts are

the clinical “gold standard” repair technique for bridging nerve gaps, even under

relatively good conditions, <50% of patients recover meaningful function. Due

to this low recovery rate, many patients are not even provided repair surgery

and, consequently, suffer permanent loss of function. This paper examines

intrinsic and extrinsic changes associated with injured neurons and Schwann

cells that reduce the extent of axon regeneration and recovery. It also examines

how these changes can be reversed, leading to enhanced regeneration and

recovery. It next examines the efficacy of platelet-rich plasma (PRP) in

promoting axon regeneration and two novel techniques involving bridging

nerve gaps with an autograft within a platelet-rich (PRP) collagen tube or

only a PRP-filled collagen tube, which induce meaningful recovery under

conditions where autografts alone are not effective. Finally, it looks at

potential mechanisms by which platelet-released factors may enhance axon

regeneration and recovery. This review shows that although there are many

limitations to restoring meaningful function following peripheral nerve trauma,

there are a number of ways these can be overcome. Presently, the most

promising techniques involve using PRP.
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Impact statement

Restoring clinical function following peripheral nerve trauma is restricted by neuron

and Schwann cell intrinsic and extrinsic limitations. Further, autografts, the current

clinical “gold stand” technique for bridging nerve gaps to restore function, suffer many

significant limitations in restoring meaningful functional recovery. This review discusses

intrinsic and intrinsic limitations to regeneration and how they can be overcome. It also

discusses how the application of platelet-rich plasma (PRP) promotes axon regeneration
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and how its influences can be increased or decreased. It then

discusses how, clinically, bridging nerve gaps with autograft

within a PRP-filled collagen tube induces axon regeneration and

recovery under currently impossible conditions. It concludes with a

discussion of the potential mechanisms by which platelet-released

factors may exert their influences. Understanding what limits axon

regeneration and recovery and how these limitations can be

overcome will lead to developing new clinical techniques that

induce more extensive axon regeneration and recovery.

Introduction

Sensory nerve autografts, the clinical “gold standard”

technique for restoring function across peripheral nerve gaps

[1], have substantial limitations. Therefore, there is a good

prognosis for reliable, meaningful sensory and motor function

only when (1) the repairs are performed ≤5 months post-trauma

[2–4], with recovery decreasing with longer delays [3–6] (2) the

gaps are <5 (cm) [7, 8], with recovery decreasing for longer gaps

[2, 3, 8, 9], few axons regenerate across grafts ≥8 cm in length [2,

10, 11], and none across autografts >10 cm [3, 5], and (3) patients

are ≤20–25 years old, with recovery decreasing with increasing

ages [3, 4, 6]. Finally, there is little to no recovery when the values

of two or all three variables increase simultaneously [9, 12].

Therefore, <50% of subjects recover meaningful sensory or

motor functions [13]. These findings raise the question of

what underlies these limitations and how can they are

reduced, leading to improved recovery.

Injury-induced intrinsic neuronal
changes reduce their capacity to
extend axons

Partly underlying the decreased capacity of aged and long-

term axotomized neurons to extend axons are changes in their

intrinsic properties [14]. These neurons lose their capacity to

extend axons, and those extended regenerate only short distances

[15, 16] while regenerating more slowly than normal [17]. Thus,

by >4 months post-nerve injury, only about 33% of neurons can

extend an axon [15, 18], and for those that retain the capacity, it is

reduced to ˂10% of normal [16].

Reduced protein synthesis

The c-Jun transcription factor is critical for neurons’ capacity

to extend axons, and nerve injury induces neuronal up-

regulation of c-Jun expression. However, with increasing time

of axotomy, c-Jun expression decreases, paralleling the loss of

neurons’ capacity to extend axons [19]. This change is also

associated with the down-regulation of genes for regeneration-

promoting neurotrophic factors, such as GAP-43 and α1-tubulin
[20], NGF [21], BDNF, and CNTF [16, 22]. Thus, the age-

associated decrease in axon regeneration is due to reduced

protein synthesis, which is required to induce the neurons’

soma to respond to injury by triggering the regeneration

process and growth cone extension [23–25]. This process also

involves decreased levels of axonal translation proteins and the

inability of neurons to increase the translation of regeneration-

promoting axonal mRNAs released from stress granules [26].

The decrease is also associated with an increasing age-associated

decrease in neurofilament mRNA levels and neurofilament

proteins [27], and the loss of Nrg1, which reduces axon-

Schwann cell interactions and remyelination after nerve crush,

further reducing neurons’ capacity to extend axons [28].

Decreased metabolism and
axoplasmic transport

Neurite outgrowth from neonatal neurons in vitro is 40% faster

than adult neurons [29]. This is attributed to an age-related decrease

in cytoskeletal protein expression [30] and axoplasmic transport,

which are required for axon elongation [30, 31]. This is because axon

regeneration requires energy metabolism, which involves oxidative

glycolysis and the formation of high-energy phosphate compounds,

most importantly creatine phosphate and ATP [32]. Increasing age

is also associated with a decrease in the levels of endoneurial ATP

and creatine phosphate [30], which would, therefore, restrict the

extent of axon regeneration.

Reversing injury-induced intrinsic
neuronal changes allows neurons to
extend axons by promoting neuron
protein synthesis

Axon regeneration following a sciatic nerve crush is promoted

by enhanced protein synthesis due to enhanced local translation and

production of the protein synthesis machinery [26]. This involves

dissolving stress granules, resulting in their releasing sequestered

mRNAs and translation factors [33]. Further, following rat sciatic

nerve injury, Nrg1 treatment increases axon diameter, myelin

thickness, distance axons regenerate, and both the extent [34]

and rate of recovery [35]. These effects are partly induced by

neuron-released Nrg1 promoting Schwann cell differentiation,

proliferation, migration, and myelination [28, 36–41].

Electrical stimulation

As mentioned, long-term axotomy results in 33% of neurons

losing their capacity to extend axons. However, electrical

stimulation results in a 34%–50% increase in the number of
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neurons extending axons [42] and a 2.3-fold increase in the

extent of axon sprouting from transected axons [43] while also

increasing the speed of axon regeneration [17, 42]. This influence

is exerted through various mechanisms, including direct actions

on axotomized neurons [17, 44–47]. The influence of electrical

stimulation is similar when applied to acute and long-term

injured neurons [46, 48].

Injury-induced extrinsic neuronal
changes reduce their capacity to
extend axons

Reduced Schwann cell capacity to
support neuron

Schwann cells release the cytokines MCP-1 and LIF [49],

which recruit macrophages and convert them from the M1 to the

M2 phenotype. These macrophages secrete high levels of

cytokines, which promote axonal outgrowth [50]. However,

nerve injury deprives Schwann cells of axon contact, causing

them to become senescent and stop producing and releasing

neurotrophic factors. Schwann cell development of senescence

parallels the decrease in the extent of axon regeneration [8].

Thus, long autografts do not induce axon regeneration and

recovery because by the time the axons reach the distal end of

the autograft, the Schwann cells have become senescent and do

not support axon regeneration [8].

Schwann cell senescence is also associated with a reduction in

their c-Jun expression [51], loss of their injury-induced repair

phenotype [8, 22, 38, 52], and their down-regulation of the genes

for factors required for Schwann cells to support axon

regeneration and proteins required to myelinate axons [30].

These include S100, p75, GFAP, BDNF, NGF, NT-3, NT-4,

CNTF, GDNF, and small molecule trkB agonists.

Schwann cell senescence also leads to their inability to

synthesize and release VEGF [53]. VEGF is essential for

inducing vascularization and recruiting macrophages [54, 55]

to the injury site, where the macrophage normally also releases

VEGF [55, 56]. In addition, senescent Schwann cells lose their

capacity to phagocytize axon andmyelin debris [57], and without

its removal, it inhibits axon regeneration [30]. Therefore,

maximizing functional recovery requires nerve repairs be

performed <3–6 months post-trauma [3, 9, 58].

Reversing injury-induced extrinsic
neuronal changes by reactivating
Schwann cells: applying neurotrophic
factors and restoring c-Jun

Nerve injury induces Schwann cell up-regulation of Shh,

which induces c-Jun expression [59–61], which leads to c-Jun

enhancing axon regeneration through autografts and in vitro

[62]. However, with prolonged denervation and aging, c-Jun

expression decreases in Schwann cells, which is associated with

decreased axon regeneration [51]. Nevertheless, axon

regeneration can be promoted by reactivating senescent

Schwann cells by applying neurotrophic factors, which

restores normal levels of Shh and c-June expression [63].

Reactivating Schwann cells: applying
electrical stimulation

Electrical stimulation reactivates Senescent Schwan cells.

This induces their expression of P0, Par-3, BDNF, NGF, and

GDNF, which initiate and enhance axon regeneration and

myelination [64–66].

PRP promotes axon regeneration

Platelet-released factors

Platelets contain and release an evolutionarily complex

cocktail of factors, including high levels of neurotrophic and

other growth factors, such as IL-10, insulin-like growth factors

1 and 2, VEGF [67], BDNF [68], transforming growth factor-β1,
HGF, and FGF. This allows platelets to play different essential

roles in tissue healing and promoting axon regeneration [69–72].

In animal model studies, PRP significantly enhances the

extent of axon regeneration when injected into a nerve

following a nerve crush [73], is applied to sites of a nerve

crush [74–78], neurorrhaphy [69, 79–82], site of rat

prostatectomy [83], following nerve crush, mycobacterium

leprae (leprosy bacteria) -induced lesion [84], sucrose-induced

injury [85], autografts [86, 87], acellular allografts [88], when

applied onto or injected into neurorrhaphy sites [89–92], is

injected onto injured nerves [89, 93, 94], or short nerve gaps

within the preserved epineurium [95], PRP exosomes are injected

under the perineurium [96], and site of carpal tunnel syndrome

[97–99]. However, questions have been raised about the efficacy

of PRP in treating carpal tunnel syndrome [100].

PRP is similarly effective when added to vein grafts [67,

101–104], conduits composed of many different materials

[105–111], and when combined with other cells, such as

nMSCs [80] applied outside [86] or inside acellular allografts

[88], when conduits are composed of platelet gel [112] or platelet-

rich fibrin (PRF) [113, 114]. The PRP can induce axon

regeneration that is as effective as autologous nerve grafts

[112]. It is important to note that when PRP is applied to a

rat sciatic nerve crush site, its influence is increased by

surrounding the site with a collagen tube [70].

Clinically, bridging nerve gaps with an autograft within a

PRP-filled collagen tube [115–118], or only a PRP-filled collagen
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tube [118], induces meaningful recovery under conditions where

allografts alone are ineffective. Thus, platelet-released factors

alone can induce axon regeneration.

PRP-containing leukocytes

Leukocytes are reported to negatively affect axon

regeneration by releasing catabolic cytokines and inducing

inflammation [119, 120], while leukocyte-poor PRP (LP-PRP)

exerts anabolic effects that promote axon regeneration [121, 122].

However, PRP efficacy is reported to increase with increasing

leukocytes and white blood cells concentrations, and bioactivity

of platelet-released factors. Platelet growth factor concentrations

in leukocyte-rich PRP (LR-PRP) depend on the leukocyte

concentrations, with the catabolic protease MMP-9 expressed

at a considerably high concentration in the LR-PRP [121]. LR-

PRP releases significantly more inflammatory mediators, such as

TNF-α, IL-6, and IFN-ϒ than LP-PRP. However, it also increases

the release of the anti-inflammatory mediators IL-4 and IL-10

[123, 124]. The combination and concentration of PRP platelets,

leukocytes, and erythrocytes influence the extent of these factors’

release [120].

A case report showed that LR-PRP induces meaningful

recoveries despite long nerve gaps being repaired with a long

repair delay, even in an older subject [118]. This influence is

greater than that seen in other studies. The better recovery may

be because the PRP was prepared using the Zimmer Biomet GPS

III centrifuge system, which increases the platelet concentration

9.3-fold and leukocyte concentration 5-fold (Zimmer Biomet

Data on File. Validation Report, GPS III Platelet Concentrator,

Test new design for GPS III Buoy re-design, OT000183, 2007),

which is at least two times higher than in PRP prepared using

other devices [125–127].

The influence of PRP is also affected by its concentration of

factors, which is influenced by how PRP is prepared [128]. FGF

and TGF are rapidly released from platelets, with their

concentration decreasing over time, while PDGF and VEGF

are released at a constant rate for 7 days [128]. PRP from the

Biomet GPS III has the highest concentrations of VEGF and

MMP-9 but the lowest TGF concentration [128]. However, it has

also been shown that the concentration of cytokines is not

directly related to the cellular composition of PRP [128].

Angiogenesis

Proteomics analysis found that the local application of PRP

significantly increases integrin β-8 (ITGB8) expression [95],

which promotes angiogenesis [129, 130]. In addition to

providing oxygenation to the region of the regenerating axons,

Schwann cells use these new blood vessels as their pathway to

migrate into the injury site, forming Schwann cell cords that

facilitate axon regeneration [55]. Thus, it has been proposed that

PRP-released factors contribute significantly to axon

regeneration by promoting vascularization, leading to the

migration of cells by activating the FAK pathway mediated by

integrin β1 [131, 132].

Limitations of PRP

While many studies show that PRP promotes axon

regeneration and recovery, the extent of the efficacy varies

greatly. This is unsurprising because no standard techniques

exist for preparing or applying PRP. The simplest and least

expensive PRP preparation technique is single spin separation,

which yields an increased platelet concentration of 2.67-fold

[133], while the double spin technique increased it by 2.48 -

5.71-fold, with a mean of 3.47-fold [134]. A PRP 2.5-3.5-fold

increased platelet concentration is considerably less effective in

rats than a 4.5 - 6.5- or 7.5 - 8.5-fold increase, although both

higher concentrations induce similar influences [135].

Working with New Zealand white rabbit 5 mm nerve gaps,

PRP with a 2.5–3.5-fold increased platelet concentration

induces limited axon regeneration, significantly greater with

the higher concentration of 4.5–6.5-fold and 7.5–8.5-fold [95].

Although a 5-fold increased platelet concentration is

recommended as the minimum to exert a meaningful

physiological effect [136], the optimal concentration for

maximal analgesia remains unknown.

pH

Various devices yield PRP with higher acidification than

normal blood, reducing it from 7.35 to 6.8–6.5 [137, 138]. This

decreases platelet aggregation by >25% [139–141] and reduces

platelet sensitivity to thrombin, resulting in decreased platelet

activation, which reduces PRP efficacy. Therefore, it is necessary

to avoid PRP acidification during its preparation.

Glucose

Different PRP preparation devices yield PRP with glucose

concentrations increased 3- to 6-fold over the starting blood

[138]. Increasing PRP glucose concentration increases platelet

activation [142]. Therefore, maximizing the efficacy of PRP

required avoiding changes in its glucose level.

Diet and physiology affect PRP efficacy

A patient’s physiology and diet can greatly affect PRP

efficacy. Smoking increases platelet aggregation [143], while
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alcohol consumption decreases platelet activation and

aggregation [144] and reduces platelet responses to thrombin

[145] and collagen. Diets including isoflavones [146], caffeine

[147], quercetin, a flavonoid [148], and anthocyanins [149]

reduce platelet aggregation. Conversely, diets of high saturated

fats [150], simple carbohydrates [150], or excessive sugar [151]

increase platelet aggregation. Platelets in patients with high blood

pressure have lower concentrations of factors than platelets of

patients with normal blood pressure [152] and have a decreased

whole blood platelet count [153].

Platelet activation methods

The PRP efficacy is influenced by (1) whether its platelets are

activated before or when PRP is applied, (2) the timing of platelet

release, (3) the ratios of the various platelet released factors, and

(4) their level of bioactivity [154]. Therefore, PRP that does not

comply with the necessary physiological parameters will not

exert maximal effects [155].

Potential mechanisms by which
platelet-released factors increase
axon regeneration

Platelets contain more than 300 identified factors [156, 157].

Many of these have been shown to play important roles in

promoting axon regeneration and recovery. However, space

limitations do now allow a discussion of these factors.

Conclusion

Over the past 70 years, little progress has been made clinically

in increasing the percentage of patients who recover meaningful

function following peripheral nerve injuries and repairs. Two

significant steps forward are the demonstration that, clinically,

electrical stimulation and the application of PRP enhance axon

regeneration and the extent of recovery. However, the efficacy of

PRP varies greatly, within and between studies, which may result

from differences in how the PRP is prepared and applied, as well

as the patient’s physiological status. Therefore, to optimize the

influence of PRP, it is necessary to develop a standardized PRP

preparation and application protocol. However, it is also

necessary to determine which of a subject’s physiological

properties, such as diet, consumption of drugs, smoking, and

alcohol, must be changed to allow PRP to exert its

maximal influences.
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