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Abstract

Peripheral nerve trauma commonly results in chronic neuropathic pain by up-

regulating the synthesis and release of pro-inflammatory mediators from local

and invading cells and inducing hyperexcitability of nociceptive neurons and

spontaneous electrical activity. The pain decreases when these cells down-

regulate genes supporting the pro-inflammatory state, up-regulate genes for

expressing anti-inflammatory factors, and modulate genes that reduce

nociceptive neuron spontaneous electrical activity. Pharmacological agents,

the primary technique for reducing pain, do not eliminate pain, and <50% of

patients achieve benefits because they do not address the underlying causes of

pain. Alternative techniques providing longer lasting, but not complete or long-

term pain relief include surgical interventions, electrical stimulation, and

antibody treatment. Anti-inflammatory mediators can reduce pain, but the

effect is not complete or long-lasting. Platelet-rich plasma (PRP) contains a

readably available evolutionarily developed cocktail of factors that induce

longer-lasting and more significant, but not complete, pain relief than other

techniques. However, a novel study shows that unique formulations of PRP can

induce long-term pain elimination. This review examines (1) the efficacy of

drugs, regenerative peripheral nerve interface (RPNI), targeted muscle

reinnervation (TMR), and PRP in reducing chronic neuropathic pain, (2)

recent clinical data showing that a novel PRP application technique induces

long-term chronic neuropathic pain reduction/elimination, and (3) discusses

why the novel PRP may be more effective in reducing/eliminating chronic

neuropathic pain.
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Impact statement

Peripheral nerve trauma and surgical interventions result in

60% of individuals suffering chronic neuropathic pain. The

standard technique for reducing pain is pharmacological

agents, although they may not be effective, may reduce but

not eliminate pain, are not long-lasting, are strongly addictive,

and their side effects may preclude their use. Physiologically,

chronic pain is reduced/eliminated when injured axons

reinnervate their targets. However, because, following nerve

repairs, <50% of patients recover function, most patients

suffer chronic pain. Novel techniques are required that induce

meaningful recovery or directly reduce/eliminate chronic

neuropathic pain. This review examines the efficacy of

pharmacological agents and other techniques for their

analgesic efficacies. It then discusses a novel technique

involving platelet-rich plasma (PRP), which reliably and

rapidly induces long-term chronic neuropathic pain

reduction/elimination. Finally, it briefly discusses various

platelet-released factors that may be responsible for this

influence and their mechanisms of action.

Introduction

Up to 16% of the US population suffers chronic neuropathic

pain due to trauma, amputation, and surgery [1, 2], with

peripheral nerve trauma and surgical interventions leading to

pain in 60% of patients [3–5]. For those who undergo peripheral

nerve surgical procedures, one study found >50% have significant

pain reduction [6], while another 73% continued to have or

developed pain [7]. The pain was chronic and intense for about

30% [3, 8], debilitating for many [9], and challenging to treat [10,

11]. Of patients presenting to pain clinics reporting chronic

neuropathic pain, 78% suffered pain after 6 months,

decreasing to 56% after 12 months [12].

Surgical interventions [13–15], electrical stimulation [16–18]

antibodies against pro-inflammatory mediators and their

receptors [19, 20], and drugs that block nociceptive neurons’

hyperexcitability and spontaneous ectopic electrical activity

[21–23] provide long-term chronic neuropathic pain relief,

but not elimination, to <50% of patients [24, 25].

Extensive evidence shows that injury-induced inflammation

underlies neuropathic pain [3]. This suggests that administering

anti-inflammatory agents should reduce chronic pain. However,

clinically, administering anti-inflammatory drugs prolongs

rather than shortens the time to pain elimination, while

administering pro-inflammatory mediators reduces pain more

rapidly [26]. While counterintuitive, this is because inflammation

induces neutrophil invasion and up-regulates the synthesis and

release of pro-inflammatory factors, which trigger an anti-

inflammatory response [26]. Therefore, reducing/eliminating

chronic neuropathic pain requires understanding which cells

are recruited by injuries, the sequences of their recruitment, and

what leads to the up- or down-regulation of specifically

released factors.

This paper examines the efficacy of drugs and PRP in

reducing pain and the results of two novel clinical techniques

involving PRP, which induce long-term chronic neuropathic

pain reduction/elimination. Finally, the paper discusses the

pro-algesic and analgesic roles played by some platelet-

released factors that induce pain reduction/elimination.

Pharmaceutical agents

Clinically, pharmacological agents are best for reducing pain

and providing adequate pain control to 30%–40% of patients

[27]. Among the most effective opioid receptor agonists are

strong [1, 28–34] followed by weak [35, 36] opioids [28],

anticonvulsive drugs [37], such as gabapentin [38–42],

tricyclic antidepressants [43], and the selective

norepinephrine and anti-epileptic drug pregabalin [44].

While opioids are the most effective [45], their efficacies

are increased by combining them with other drugs [46].

The clinical efficacies of other techniques, such as the local

application of capsaicin [47]and lidocaine [48], are less well-

established and are still being tested [49]. Recently, suzetrigine

was FDA approved (first in class JAN 2025) as a non-opioid

analgesic of comparable efficacy to higher-potency opioids.

[50]. Its efficacy compared to PRP is not known. However, it

has been shown to induce mild to moderate severe adverse

events [50], while PRP induces no known adverse events.

The anesthetic ketamine is effective against chronic

neuropathic pain [51]. It is considered to act by inhibiting the

N-methyl-D-aspartate (NMDA) receptor and possibly other

mechanisms, such as enhancing descending inhibition and

central site anti-inflammatory actions [51]. However, short-

term NMDA infusions induced potent analgesia only during

its administration, while prolonged infusion (4–14 days)

induces analgesia for up to 3 months following infusion

[51]. Unfortunately, ketamine’s clinical side effects include

nausea/vomiting, psychedelic symptoms (hallucinations,

memory defects, panic attacks), cardiovascular stimulation,

and somnolence, with a minority of patients suffering

hepatotoxicity [51].

No pharmacological agent provides long-term analgesia [52],

and for patients with chronic pain, 54% use opioid medications

daily, despite up to 97% reporting inadequate pain relief [6, 53].

However, their use is limited because of adverse effects [54, 55]

and problems with abuse, dependence, overdose, and death [54,

55]. Therefore, it is essential to balance opioid pain control and

the development of opioid dependence [56]. These difficulties

can be reduced by multimodal analgesic plans, non-opioid

medications, and regional application techniques [31, 56].

Nevertheless, novel pain relief techniques are required [57],
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including developing alternative forms of nerve surgery [6], and

pharmacological agents.

Targeted muscle reinnervation (TMR) and
regenerative peripheral nerve
interface (RPNI)

Removing painful neuromas reduces but does not

eliminate pain [13], and there is a high rate of neuroma

and pain redevelopment [58]. However, following neuroma

removal, the pain that normally develops is reduced by

securing the nerve stump to an autograft or allograft [59,

60]. For lower extremity amputations, pain is reduced by

nerve capping or implanting nerve stumps in bone [24, 61].

However, there is still no long-term chronic neuropathic pain

reduction [62].

The most effective techniques for preventing or reducing

chronic neuropathic pain or post-amputation neuroma pain are

regenerative peripheral nerve interface (RPNI) and targeted

muscle reinnervation (TMR) [63–67]. RPNI involves coapting

a nerve stump into a small denervated muscle grafts, while TMR

involves coapting the proximal nerve stump to the proximal

motor nerve innervating a small muscle graft. Thus, following

neuroma excision, both RPNI and TMR reduce pain

development [68] and clinically reduce post-amputation

neuroma pain in 75–100% of patients [64–67, 69–71] and

phantom limb pain in 45–80%. However, TMR has the

significant limitation of being only effective if

applied <3 months post-trauma [72], requires sacrificing a

motor nerve and cannot be used if a goal is to both reduce

pain and restore function.

Target reinnervation and cessation of axon
regeneration

Abnormal spontaneous electrical activity of regenerating

dorsal root axons is closely associated with chronic

neuropathic pain [73–75]. Clinically, chronic pain reduction/

elimination occurs only slightly before or in association with

initial signs of functional recovery [76]. These findings led to the

hypothesis that pain remains chronic when axons are

regenerating [73] and only decreases or is eliminated when

axons reinnervate targets, stop regenerating [63, 73, 77, 78],

take up a target-derived factor/s [76, 79–81], which silence

hyperexcitable nociceptive axons [63].

Supporting this hypothesis is that the extent of pain

reduction decreases proportionately with the increasing extent

of functional recovery [82, 83]. In rats, pain behavior is reduced

or eliminated when axon regeneration is stopped/inhibited [73,

84], such as by applying semaphorin 3A [85] and injecting small-

interfering RNA (siRNA) into axotomized sensory ganglia to

block growth-associated protein-43 (GAP-43) expression [73,

86], This hypothesis is consistent with studies showing that TMR

reduces/eliminates chronic neuropathic pain [69, 77, 87],

including complex regional pain syndrome (CRPST) type II

[88]. This idea is also consistent with rat chronic pain

behavior being blocked by tetrodotoxin (TTX), GAP-43

knockdown, and semaphorin 3A, which stop axon

regeneration and the electrical activity of nociceptive neurons

[73]. Target reinnervation and the cessation of axon regeneration

are consistent with TMR and RPNI reducing/eliminating chronic

neuropathic pain, which occurs in 71%–100% of the

subjects [66, 69].

PRP and the reduction/elimination of
chronic neuropathic pain

One of the challenges in using PRP is consistency in the

findings between different studies. Thus, some clinical studies

concluded that PRP provided little or no pain relief for

tendinosis or rotator cuff tears [89–91]. Meta-analyses of

multiple studies support this conclusion [89, 92, 93].

However, other clinical studies found that PRP reduced

pain associated with tendinosis [94, 95], tendon injury

[96–98], rotator cuff tears [99, 100] osteoarthritis [101,

102], plantar fasciitis [103], and muscle injuries [104].

These findings were supported by meta-analysis [105].

Animal model studies show PRP reduces pain caused by

many types of injuries [106, 107], such as skin burn-

induced neuropathic pain [108], painful lesions caused by

mycobacterium leprae (leprosy bacteria) [109], and rat spinal

cord injury sites [110]. Clinically, PRP also reduces peripheral

nerve pain when applied to digital [111] and sciatic [112]

nerve crush sites, pudendal nerve neurolysis surgery sites

[113], the median nerve at the carpal tunnel’s proximal

edge [114], and when injected into the perineurium of

patients suffering from diabetic neuropathic pain [115].

These techniques result in >80% of patients achieving ca.

three months of pain relief [116].

Clinically, a single epidural PRP injection provides lower

back pain relief for up to 6 months [117, 118] while reducing

complex chronic degenerative spinal pain [119]. Multiple PRP

epidural injections provide temporary lumbar radicular pain

relief [120], which is significantly increased by adding

corticosteroids, although this is effective for only about 50%

of patients [121, 122]. In comparative studies, the analgesic

efficacy of PRP is similar to [120, 123] or better than [94,

124] that is provided by injecting a corticosteroid. An effective

alternative technique for rats involves wrapping nerves in a PRP-

coated NeuraWrap Nerve Protector [125]. Nevertheless, two

meta-analyses found that in animal models and clinically,

although PRP induces pain relief and nerve regeneration, the

effect is not long-lasting [114, 126].
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Variability in PRP efficacy in reducing
neuropathic pain

The efficacy of PRP in reducing pain and the duration of the

suppression varies significantly between individuals [127] and

studies [128]. This variability is best explained by significant

differences in the composition of the PRP due to how it is

prepared [129]. These techniques include single vs. double-

spin PRP separation and >30 different types of commercially

available PRP separation systems [130–132]. These different

techniques yield PRP with platelet concentrations ranging

from 0.52- to 9.3-fold relative to whole blood [133]. PRP

differences are also caused by how and whether the platelets

are activated before or when the PRP is applied, and the

centrifugation parameters [132, 134, 135], which affect the

ratios of unactivated vs. activated platelets, numbers of other

different cell types, levels of bioactive factors, and leukocyte

concentration [128, 130, 135–138], when platelets release their

factors, (3) the ratios of the factors released, and (4) the level of

factor bioactivity [139].

When comparing the analgesic efficacy of PRP, parameters

that are never considered are how it is prepared and applied and

the uncontrolled differences in the physiology, health, and

products consumed by patients [128, 140, 141]. Thus, platelet

aggregation, and therefore its efficacy, is increased by smoking

[142], while platelet activation and aggregation are decreased by

alcohol consumption [143], which also reduces the response of

platelets to thrombin [144] and collagen. Platelet aggregation is

also reduced by diets containing isoflavones [145], caffeine [146],

quercetin (a flavonoid) [147], and anthocyanins [148]. However,

platelet aggregation is increased by diets high in saturated fats

[149], sugar [150], and simple carbohydrates [149]. Finally,

platelets of patients with high blood pressure have a decreased

whole blood platelet count [151], and their platelets have lower

bioactive factor concentrations than those with normal blood

pressure [152]. Therefore, without standardizing how PRP is

prepared and applied, it is not possible to eliminate the variability

in the efficacy of PRP and to ensure that PRP exerts its maximum

potential effects [138].

Novel clinical PRP application techniques
induce long-term chronic neuropathic
pain reduction/elimination

Recent case studies show that PRP induces long-lasting

and complete pain elimination. These applications involved

bridging nerve gaps with an autograft within a PRP-filled

collagen tube [153–158] or only a PRP-filled collagen tube

[159, 160]. The first technique reduced the pain in 8% and

eliminated it in 92% of subjects, while the second eliminated

pain in all the subjects. The pain reduction/elimination lasted

throughout the 1.1–15 years follow-up. Thus, platelet-released

factors have the capacity to induce long-term pain

elimination.

Novel PRP techniques are superior to TMR
and RPNI

The novel PRP techniques are superior to TMR and RPNI.

(1) They reduce/eliminate pain while promoting meaningful

recovery. (2) While TMR is effective when applied up to

3 months post-trauma, its efficacy decreases with longer

delays [72]. (3) RPNI requires survival or a small muscle

graft, which PRP does not. (4) RPNI requires sacrificing a

motor nerve, while using PRP does not.

What underlies the high level of efficacy of
the novel PRP application techniques?

While PRP provides short-term pain reduction/elimination

[161, 162], the pain returns to 86% of patients [163]. This raises

the question of why the novel PRP application techniques induce

long-term pain reduction/elimination in 92%–100% of patients.

The best explanation is in how the PRP was prepared and

applied. First, applying PRP in a liquid form (without fibrin

polymerization) causes the platelets to release all their factors

within a few hours, while applying PRP in a polymerized fibrin

form allows the platelets to release their factors over days

[164], thus allowing the factors significantly more time to act.

The novel PRP technique involved applying PRP in a

polymerized fibrin form.

Second, although the optimal platelet concentration to

provide maximal pain relief has not been determined, the

degree of pain relief provided by PRP is reported to be

linearly related to the number of platelets, the number and

concentration of the growth and inflammatory factors they

contain, and the number of neutrophils and monocytes [165].

Double centrifugation is the most commonly used PRP

separation technique, yielding a ca. 4-fold increase in platelet

concentration. This concentration is consistent with the finding

that the degree of pain reduction associated with tennis elbow

increases as the PRP platelet concentration is increased to 4-6-

fold [166], while for knee osteoarthritis [167] and tendinopathies

[168], a 3-4 fold concentration increase is recommended.

However, it has also been reported that while a 2-fold

increased platelet concentration yields good results for tissue

healing, a 5-fold increase reduces healing [169, 170], and in vitro

kills human tenocytes [171]. However, PRP used in the novel

techniques prepared using GPS III concentrator tubes (Zimmer

Biomet, Warsaw, IN) had a 9.3-fold increased platelet

concentration.

Third, PRP from the GPS III concentrator tubes increased

leukocytes by four-fold. Fourth, while most studies involve
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applying a small amount of PRP (≤1 mL), long-term pain relief is

associated with the application of a significantly larger volume

(4–6 mL). Fifth, long-term pain relief was associated with

applying PRP to long (4–16 cm) vs. short (<0.5 cm) lengths of

nerve [172]. Sixth, most studies showing a temporary

analgesic influence of PRP involve applying it to the

surface of nerves. However, PRP provides longer-lasting

analgesia when the nerve and applied PRP are surrounded

by a collagen tube. The tube reduces the diffusion of platelet-

released factors away from the site, resulting in a higher

effective concentration of the factors, which allows them to

act on the axons for a longer time. This hypothesis is

supported by the finding that the efficacy of PRP applied to

a rat nerve crush site is increased by surrounding the

application site with a collagen tube [112].

Platelet-released factors

Platelets contain and release >300 identified factors [173].

While some are pre-packaged, with different types of platelet

granules containing different factors, others are synthesized by

platelets. The platelet’s environment determines the factor

synthesis and release pattern [174–176]. Thus, physiologically,

platelets release their factors in a specific order, with some

released fast and others more slowly [173, 177, 178]. For

example, nerve growth factor (NGF) is released within

minutes, while brain-derived neurotrophic factor (BDNF) is

released more slowly [176]. This sequence is critical to allow

the factors to perform specifically timed functions, such as

releasing pro-inflammatory factors first, followed by releasing

anti-inflammatory factors, which suppress pain [179].

Platelet-released factors reduce/eliminate pain by additional

mechanisms, but journal length limitations do not allow a

complete discussion of the platelet-released factors that may

be involved in reducing/eliminating pain. However, nerve

injury induces voltage gated sodium channel (Na(v))

1.3 channel expression in nociceptive and higher-order spinal

sensory neurons, leading to their hyperexcitability, spontaneous

ectopic electrical activity, and the development of neuropathic

pain [180–182]. Therefore, one mechanism for reducing/

eliminating chronic neuropathic pain is to down-regulate the

expression of these channels, thus eliminating the spontaneous

electrical activity that underlies pain.

Drugs, such as local anesthetics and other Na(v) channel-

blocking techniques, reduce neuropathic pain by inhibiting

nociceptive axon spontaneous ectopic nerve activity and

hyperactivity [183–185]. The pharmacological blockade of

sodium channel activity reduces ectopic electrical activity

[185, 186] and reverses nerve injury-induced hyperalgesia

[187]. This has been attributed to the blocking of Na(v)

1.8 and Na(v) 1.7 channels, leading to reduced or eliminated

nociceptive neuron hyperexcitability. However, the role of Na(v)

1.7 in neuropathic pain must be further investigated, and new

analysis of a mouse Na(v)1.8 knockout suggests it is not involved

in changing the neurons’ post-injury pain threshold following

peripheral nerve injury [188]. However, it has also been shown

that administering antisense oligonucleotides against Na(v)

1.8 administered intrathecally completely reverses neuropathic

pain behavior [189].

This is in contrast to the finding of Lai et al who reported that

antisense oligonucleotides directed against Na(v)

1.8 administered intrathecally completely reverse neuropathic

pain behavior [18]. It is possible that this discrepancy could be

due to the up-regulation of the Na(v)1.7 channel seen in the

Na(v)1.8 knockout mouse [12], which might mask an otherwise

important role for Na(v)1.8 in neuropathic pain.

However, the pain suppression is not long-lasting. However,

in rats, nerve injury-induced chronic pain is reduced by Na(v)

1.3 knockdown [190]. Further, intrathecal IL-10 infusion reduces

neuropathic pain [191, 192] in part by down-regulating

sodium channel expression in dorsal root ganglion (DRG)

neurons [179], resulting in blocking nociceptive neurons’

hyperexcitability and spontaneous ectopic electrical activity

[21–23, 185, 189, 193]. Although platelets do not contain IL-

10, they release large amounts of prostaglandin E2 (PGE2),

which induces interleukin-10 (IL-10) release [194, 195], which

reduces pain [196–198]. Thus, multiple platelet-released

factors can induce long-term chronic neuropathic pain

reduction/elimination.

Conclusion

Tissue injury-induced inflammation is the primary trigger of

neuropathic pain, with chronic inflammation resulting in

chronic pain. Injury induces the release of pro-inflammatory

factors from local cells and other cells recruited to the injury site.

While inflammation and pain are adverse events, they are

required to trigger the normal physiological responses that

induce the transition of a pro-inflammatory environment into

an anti-inflammatory one, which is necessary for healing and

pain elimination. Although some factors initially play pro-

inflammatory roles, over time, they begin to play anti-

inflammatory roles. Their roles depend on when they act after

injury, what other factors are present, the cells on which they act,

and the receptors on those cells. Thus, controlling pain requires

controlling which factors are released and when. Platelets are an

evolutionarily developed toolbox containing a physiological

cocktail of factors for controlling cellular environments to

promote healing and pain relief. While most studies find PRP

only induces short-lived pain relief, two novel clinical techniques

show that PRP can induce long-term chronic neuropathic pain

elimination in all subjects. Further studies must determine which

platelet-released factors, ratios, and concentrations induce

these effects.
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