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Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder presenting

progressive weakness of the bulbar and extremity muscles, leading to a wide-

ranging clinical phenotype.More than 30 genes have been associated to genetically

inherited ALS yet, approximately 85%–90%of ALS cases are sporadic. Short tandem

repeats expansions, have recently been found in clinically diagnosed ALS patients

and are currently investigated as potential genetic biomarkers. In this paper we

compare the investigation of pathological tandem repeat expansions on a group of

ALS patients by comparing the standard short-read sequencing (SRS) technique

with a long-read-sequencing (LRS) method which has recently become more

accessible. Blood samples from 47 sporadic ALS cases were subjected to SRS by

Illumina Whole Genome Sequencing. The genome-wide tandem repeat

expansions were genotyped using GangSTR, while wANNOVAR was used for

variant annotation. Uncertain cases were further explored using LRS. SRS

identified pathological expansions in HTT, ATXN2, and CACNA1A genes in one

patient, which were not confirmed with LRS. The latter identified large tandem

repeat expansions in the C9orf72 gene of one patient that weremissed by SRS. Our

findings suggest that LRS should be preferred to SRS for accurate identification of

pathological tandem repeat expansions.
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Impact statement

At present, the pathogenesis of Amyotrophic Lateral Sclerosis

(ALS) is not fully understood. Patientsmaywait as long as one year

for a definitive diagnosis, which is still based on clinical criteria. In

this regards, the identification of genetic hallmarks would greatly

improve the diagnostic path, in particular for sporadic ALS forms.

Short tandem repeats (STR) expansions have recently been found

in patients with a clinical diagnosis of ALS as potentially causative

of the disease and therefore as possible clinical biomarkers.Most of

the previous studies identified STR expansions using Short Read

Sequencing (SRS). Thanks to technology improvement, Long Read

Sequencing (LRS) have recently become more accessible.In this

paper, we compared SRS and LRS on a cohort of sALS patients and

showed that SRS might fail in identifying pathological repeats as

well as misidentify existing pathological repeats.Thus, we believe

that our findings will be relevant to the broad readership of your

journal, and be of inspiration for future studies that, by including

large dataset and the proper sequencing technique, will help

elucidating the ALS molecular mechanisms and consequently

identify potential therapeutic targets.

Introduction

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative

disorder presenting progressive weakness of the bulbar and

extremity muscles, leading to a wide-ranging clinical phenotype

like Bulbar, Pseudobulbar and Limb ALS, and Limb and Mill’s

variant [1–3]. Symptoms onset occurs between 58 and 63 years

with a prevalence, among the European population, of 2.2 per

100,000 individuals and a higher incidence in males than in

females [4, 5]. Cognitive impairment occurs in up to 50% of

cases, with 15% of patients diagnosed with frontotemporal

dementia [4]. Approximately 85% of ALS cases are sporadic

(sALS) whereas the remaining 10%–15% are familial (fALS) [4,

6], both showing similar clinical presentations [5, 7]. ALS etiology

is the result of numerous factors including genetic susceptibility,

age-related cellular damage, and environmental exposures among

which gender, geographical region, smoking, sportive activities and

lead exposure [8, 9].

At present, approximately 30 genes have been associated to

ALS [10–12]. Four of them: C9ORF72, SOD1, TARDBP and

FUS, account for approximately 60%–70% of familial ALS cases

and 6%–10% of sporadic ALS cases, listed in order of decreasing

frequency [13]. While known ALS disease genes account for a

minority of sporadic cases, recent research highlights the

potential role of noncoding structural variants and gene

copy number variations in sALS susceptibility and

phenotype modification [13]. Interestingly, the pathogenic

form of the chromosome 9 open reading frame 72

(C9ORF72) gene is a G4C2 hexanucleotide repeat expansion

(HRE) in the intron 1 between the non-coding first exons 1a

and 1b [14]. C9ORF72 is currently the only short tandem repeat

(STR) expansion proven to cause ALS and frontotemporal

spectrum disorder (FTD), however, different expanded STRs

distinctive of other neurodegenerative disease like ATXN1

(spinal cerebellar ataxia type 1 (SCA1)), ATXN2 (SCA2),

ATXN8 (SCA8) and HTT (Huntington’s disease) [15] have

been found in clinically diagnosed ALS patients and FTD cases

[16, 17]. Among them, the CAG trinucleotide expansions in

ATXN2 have been identified as risk factors for ALS [4, 18].

Interestingly, in addition to the more than 30 genes associated

to fALS, heritability studies suggest a 60% genetic component

for sALS as well [19] suggesting that sALS is triggered by a

complex genetic variation far from being understood.

In this context, STR expansions could represent a valuable

starting point to further investigate and clarify the genetic

predisposition of sporadic cases as well. Proving the association

between STR expansions and sALS will also have beneficial effects

on the diagnosis of the disease, which might take up to 1 year, and

is still based on clinical, electrophysiological, and radiological

investigations while genetic variants or other biomarkers tests

are rarely taken into consideration [20].

Next generation sequencing (NGS), like Illumina short-read

sequencing techniques (SRS), and the development of various

computational methods set the scene for genome-wide STR

detection [21]. It has been shown that, due to technical

limitations, SRS methods often lack sensitivity and specificity

for detecting a significant proportion of structural variants

(SVs) and tandem repeats [22]. These limitations can be

addressed by long-read sequencing (LRS) which, unlike SRS,

can directly sequence long repeat regions without the need for

fragmentation. For example, SRS generates reads of 100–150 base

pairs, which is much smaller than the thousands of base pairs

typical of pathogenic STR expansions. Consequently, SRS is

limited in detecting pathogenic STR expansions, but can still

identify smaller STRs using specialized tools like GangSTR or

ExpansionHunter. In contrast LRS may generate reads up to two

megabases (Mb) in length allowing for more efficient detection of

larger STR expansions [23]. In this context it is important to note

that most reads from LRS platforms (e.g., PacificBiosciences

(PacBio), Oxford Nanopore) are typically shorter ranging from

10 to 100 kb for PacBio and 20–200 kb for ONT) [24].

Long read NGS instruments have been on the market for the

past decade. Initially, the lower yield, higher error rate, and higher

costs of the instruments, have kept them from being more widely

adopted. More recently, PacBio (PacBio) and Oxford Nanopore

Technologies (ONT) have both been working successfully to make

LRS more accessible. These technologies, with the aid of several

available computational tools, such as “ExpansionHunter,

STRetch, and Tandem Repeat Finder” [21], use information

from flanking sequences to provide better alignment for

pathogenic STRs. Being a relatively new technique, only a few

studies have applied LRS to characterize disease-associated STRs

[25–28]. In contrast, most of the previous studies on the
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characterization of ALS-associated pathogenic STRs were

performed using SRS [16, 29, 30].

In our study, we used SRS to sequence the DNA

from 47 sALS patients to investigate pathological STR

expansion. LRS was then used to reanalyze samples from two

patients, as the identification of pathogenic STR expansions

raised ambiguities in the interpretation of their STR lengths.

Asmentioned above, LRS offers distinct advantages over SRS,

including the ability to directly sequence long repeat regions and

accurately determine STR sizes, which is crucial for precise

quantification of STR expansions.

Materials and methods

Population characteristics

Forty-seven patients, accessing the Neurology Department at

the University of Tartu between 2013 and 2018, and diagnosed

with sALS, based on El Escorial Criteria and the absence of a

positive family history were included in the study (Table 1). Blood

samples were collected to perform Whole Genome Sequencing

(WGS) analysis. The research was conducted with the approval of

the University of Tartu Research Ethics Committee (approval: 327/

T-L17), and all participants signed a written informed consent.

The general characteristics of the population are reported

in Table 1. The median age was 65 (interquartile range IQR =

12.5). Most subjects were female (31, 65%) while the

remaining 16 (35%) were male. No patient reported a

positive family history of ALS; all the participants had a

sporadic form. The most frequent clinical subtype was the

classic ALS (82%), with spinal symptoms as the most

common (61%).

Short read whole genome sequencing

Library preparation (Illumina DNA preparation kit PCR free)

and WGS was performed by the Australian Genome Research

Facility (Illumina paired end; 2 × 150bp read length) for all

47 samples. Image analysis was performed in real-time by the

NovaSeq 6000 Control Software v1.7.5 while Real-Time Analysis

(RTA) v3.4.4. RTA performs real-time base calling on the NovaSeq

6000 instrument computer. The Illumina DRAGEN BCL Convert

07.021.624.3.10.8 pipeline was used to generate the sequence data.

The generated FASTQ files were analyzed with FASTQC1 to check

the quality of the reads. Quality (SLIDINGWINDOW:4:

15 LEADING:10 TRAILING:10) and adapter trimming was

performed using Trimmomatic 0.38 and reads with a minimum

of 36bp were retained [31].

The reads were aligned to the reference genome (hg38;

GRCh38_full_analysis_set_plus_decoy_hla.fa) using the

Burrow Wheeler aligner (BWA-MEM) [32], converted to a

Binary Alignment Map (BAM) file using Sequence Alignment/

Map (SAM) tools [33], and duplicates marked using Picard.2

The sequencing data was of high quality with an average of 99.8%

of reads mapped and 0.12% duplicated reads. The average

coverage across the 47 whole genomes was 34x (ranging from

25x to 73x).

Tandem repeat expansion calling

The bioinformatics tool GangSTR3 was utilized to genotype

12 pathogenic STR loci in the human genome [34]. Default

settings were used, and quality filtering was performed on the

genotypes using dumpSTR.4 The following GangSTR-

recommended filtering parameters were applied: a minimum

call quality of 0.9 and a read depth of at least 20. Genotypes

supported only by spanning and/or bounding reads as well as loci

where the maximum likelihood genotype estimates were outside

the bootstrap confidence interval were excluded. wANNOVAR5

was used (reference genome hg38) for variants annotation from

our cohort’s Variant Call Format (VCF) [35], using only variants

genotypes that passed the quality filter.

TABLE 1 General characteristics of the 47 ALS patients subjected to
WGS. Categorical variables are expressed as absolute count (%),
while continuous variables are expressed as median (IQR).

General characteristics of the
47 participants

Median (IQR) or absolute
number (Percentage)

Age. years 66 (12.0)

Age at onset. years 64 (14.0)

Positive family history for ALS 0 (0%)

Female 32 (68%)

Ethnicity
White 47 (100%)

Duration of diagnosis. months 10 (12.5)

Diagnosis/ clinical subtype of ALS
Classic Amyotrophic Lateral Sclerosis
Progressive Muscular Atrophy
Progressive Bulbar Palsy
Primary Lateral Sclerosis

39 (83%)
5 (11%)
2 (4%)
1 (2%)

Symptoms at onset
Spinal
Bulbar

29 (62%)
18 (38%)

1 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

2 http://broadinstitute.github.io/picard/

3 https://github.com/gymreklab/GangSTR

4 https://trtools.readthedocs.io/en/stable/source/dumpSTR.html

5 https://wannovar.wglab.org/
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Long-read whole genome sequencing

Oxford Nanopore Technologies (ONT) libraries were

constructed using the ligation sequencing kit (SQK-LSK110).

Sequencing was performed on an ONT GridION using two

flow cells (R9.4.1) for patient 28, super accurate base calling,

and a minimum q-score of 10. ONT whole genome sequencing

for patient 21, was performed at the Genomics Core Research

Facility at Murdoch University using a PromethION. The

PromethION enabled increased sequencing output and

therefore sequencing depth for improved coverage of the

genome (11x vs. 26x). The reads were aligned to the reference

genome (GRCh38) using FASTQ files as input and

Minimap2 [36]. For these samples, the BAM files were checked

manually to compare the calls made by GangSTR on the SRS data.

Results

Twelve, potentially pathogenic, STR loci located in the

following genes: C9orf72, ATXN2, ATXN1, ATXN7, FMR1,

DM1-AS, PPP2R2B, ATXN8OS, HTT, CACNA1A, ATXN3,

and TBP, were genotyped in all the 47 sALS patients. Out of

564 genotypes, 308 (54.6%) passed quality filtering. Twenty-six

genotypes (4.6%) failed level 1 general filters, 25 of these had only

spanning and/or bounding reads, and 1 had low read depth. The

remaining 230 genotypes (40.8%) failed the more stringent level

2 filter, which enforces a minimum call quality threshold to

ensure precise repeat length estimation.

In each individual, on average, 56.4% (0%–92%) of the

genotypes at the 12 loci passed filtering. No significant

correlation was observed between the average sequencing depth

and the number of loci genotyped in each individual (cor = 0.12, p =

0.42). Post filtering, the percentage of genotypes available at each loci

ranged from 0% to 83% and there was a significant negative

correlation with the number of genotypes called and the size of

the repeat in the reference genome (cor = −0.72, p = 0.007). The only

locus in which no genotypes passed the quality filtering for the STR

located in the TBP gene which was the largest in the reference

genome (114bp). More than half of the failed calls were due to the

absence of reads fully enclosing the repeat, indicating that longer-

read sequencing covering the entire repeat and its flanking regions is

necessary for accurate genotyping. This underscores a key limitation

of short-read sequencing when genotyping larger genomic repeats.

The tandem repeat data are summarized in Table 2.

Out of 47 patients, 46 showed tandem repeat lengths within

the normal range (Table 2). Only one patient (patient 21) showed

pathogenic STR expansions in the HTT (40 CAG length),

ATXN2 (36 CAG), and CACNA1A (46 CAG) genes, and

intermediate length STR in the ATXN3 (50 CAG) and DM1-

antisense RNA (39 CTG) genes. Patient 21 was further

investigated by WGS LRS. The sequencing reads from patient

21 were visually inspected in the bam file using Integrative

Genomic Viewer (IGV) to determine the repeat lengths, the

LRS did not support the STR calls from the SRS data (Table 3).

When analyzing the C9orf72 intron 1, located between the

non-coding first exons 1a and 1b, for potentially pathogenic

hexanucleotide repeat expansion (HRE), the SRS did not reveal

TABLE 2 Tandem repeats genotyped in the population based onWGS SRS data. Categorical variables are expressed as absolute count (%). TBP gene is
not displayed.

Genes (locus) Repeat motif HGNC ID Number of patients (%) Passed QC

Range

Normal Intermediate Pathological

ATXN7(3p14.1) CAG 10560 6 (12.7) - - 28

HTT (4p16.3) CAG 4851 14 (29.8) - 1(2.1) 27

ATXN2(12q24.12) CAG 10555 - - 1(2.1) 28

ATXN3(14q32.12) CAG 7106 23 (48.9) 1(2.1) - 27

CACNA1A (19p13.13) CAG 1388 1(2.1) - 1(2.1) 33

ATXN1(6p22.3) CAG 10548 23 (48.9) - - 29

FMR1(Xq27.3) CGG 3775 18 (38.3) - - 19

PPP2R2B (5q32) CAG 9305 21 (44.7) - - 28

ATXN8OS (13q21.33) CTG/CAG 10561 7 (14.9) - - 24

DM1-AS (19q13.32) CTG 53125 - 1(2.1) - 30

C9orf72 (9p21.2) GGGGCC 28337 24 (51.1) - 4 (8.5) 39
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any allele neither in the intermediate nor in pathological length

range. However, inspection of the calls made by GangSTR for the

C9orf72 repeats, prior to filtering, suggested that two samples

(patients 28 and 29) might carry pathogenic expansions at this

locus. Such calls were filtered out due to low quality.

Moreover, the number of soft clipped reads observed over the

C9orf72 loci (Figures 1a,b) also suggests the presence of STR

expansions for both patient 28 and 29.

LRS was then performed for patient 28 only because the DNA

available for patient 29 was insufficient for long-read library

construction (unfortunately patient 29 died before obtaining the

SRS data). LRS for patient 28 (Figure 1c) showed two reads over the

C9orf72 hexanucleotide repeat containing large expansions: the first

one containing an additional 4628 bp (771.3 repeats) and the second

one containing an additional 6285 bp (1047.5 repeats), confirming

the presence of the pathogenic C9orf72 STR expansion in the

genome of patient 28 (Table 3). From a pathological standpoint,

patient 28 exhibited, in addition tomotor neuron disease symptoms,

a dementia syndrome suggestive of frontotemporal dementia. The

disease progression was very rapid. In contrast, patient 29 followed a

typical ALS course, beginning with bulbar paralysis followed by the

emergence of additional typical ALS symptoms.

Discussion

ALS is a neurodegenerative disorder presenting phenotypic and

genetic heterogeneity [37] with a multifaceted molecular basis

difficult to characterize. The identification of reliable biomarkers

could positively impact the understanding of the underlying disease

mechanisms and, consequently, patient diagnosis and management.

In this context, Feldman et al. [4] recently proposed to replace the

categorization of sALS and fALS cases with a new binomial:

genetically vs. non-genetically confirmed forms, respectively,

underlying the importance of genetic testing in disease

characterization. Despite the approximately 30 genes already

associated to ALS [10–12] detecting, genetically, sALS forms is

challenging because they display a clear genetic background in a

minority of patients only [38]. Furthermore, the challenge increases

when STR expansions are involved as predisposing mutations. For

instance, no consensus on a specific disease-related threshold for

various polyglutamine-associated disorders has been reached, since

healthy individuals may also carry expansions in the pathological

range [39]. Although C9orf72 expansions have been extensively

associated with ALS/FTD, a disease-causing cut-off for the

hexanucleotide repeats is still questioned [40]. Both healthy and

affected individuals show repeats in the intermediate range (20-

30 hexanucleotides), confirming that the pathological role of

intermediate STR expansions is far from being understood [4,

41–45]. Furthermore, with the exception of C9orf72, the

abundance of STR expansions in ALS patients compared to

healthy control subjects is often narrow [30, 46]. For these

reasons, the presence of STR expansions must be evaluated with a

robust and reliable sequencing technique, displaying both high

diagnostic sensitivity and specificity. Our study showed that even

very long STR expansion might not be properly identified by SRS

and, on the other end, SRS can falsely identify STR expansion not

present in the subject genome. This could result in false negatives,

delaying ALS diagnosis and hindering timely clinical management,

access to disease-modifying therapies, multidisciplinary care, and

clinical trial participation [47]. Although less common, false positive

could lead to unnecessary and potentially anxiety-inducing tests.

Thus, LRS must be the preferred choice genotyping a patient

DNA in search of pathological STR expansions.

TABLE 3 Comparison of SRS vs. LRS results in patients 21 and 28.

Gene Patient 21 Patient 28

SRS LRS SRS LRS

ATXN7 N/A 10/10 N/A 10/12

HTT 18/59 18/18 N/A 18/19

ATXN2 22/59 22/22 N/A 21/22

ATXN3 8/58 8/16 N/A 17/21

CACNA1A 8/59 8/14 N/A 4/7

ATXN1 29/60 29/32 N/A 27/29

FMR1 20/36 20/36 N/A 29/31

PPP2R2B N/A 10/13 N/A 10/14

ATXN8OS N/A 9/13 N/A 7/15

DM1-AS 5/59 5/5 N/A 5/5

C9orf72 2/6 2/6 N/A 10/1050

The table describes the number of repeats called at each loci by GangSTR SRS or from manual inspection of the LRS. Pathogenic repeat expansions are in bold. N/A: not available.
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From an epidemiological point of view, despite the limitation

due to the relatively small patients cohort and the recruitment

from a single Neurology Department, our study seems consistent

with previous ones showing a 5–10% of sALS patients carrying

C9orf72 STR expansion [16]. Because patient 29 showed SRS

characteristics similar to patient 28, we might speculate that both

carried pathological STR expansion. However, because no DNA

was available for LRS, our hypothesis remains a conjecture. Thus,

4–5% of our sALS cohort showed the presence of expanded

C9orf72 hexanucleotide repeats.

Conclusion

Our study highlighted the benefits of LRS for accurate

characterization of large tandem repeats: SRS identified

FIGURE 1
Panel (a): SRS reads over the repeat visualized in IGV for patient 28. Panel (b): SRS reads over the repeat visualized in IGV for patient 29. Panel (c):
LRS for patient 28. For graphical reason, the number of the pathological tandem repeats have been highlighted (panel c).
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multiple REs in a patient which were not confirmed by long

read sequencing. Conversely, in another patient, unfiltered

calls from GangSTR (that did not pass the quality filtering) as

well as manual inspection of the bam files suggested the

presence of expanded alleles in C9orf72 which were further

confirmed by LRS. This could lead to ALS misdiagnosis,

resulting in either false negatives or false positives, along

with the various problems associated with these types of

medical errors. These point out SRS limitations in

evaluating broader repeat sequences and large genomic

rearrangements (32) and recommend the use of LRS to

flank ALS clinical diagnosis [48].
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