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Abstract

Ranolazine (RAN) is an acetanilide and piperazine derivative that selectively

blocks the late sodium current in cardiac cells and is prescribed in adults as an

add-on medication for the symptomatic management of patients with stable

angina pectoris who are insufficiently managed or intolerant of first-line

antianginal treatments. RAN was first approved by the U.S. Food and Drug

Administration (FDA) in 2006 and the European Medicine Agency in 2008 for

the treatment of chronic stable angina. RAN has no substantial effect on

hemodynamic indicators, including heart rate and blood pressure. RAN also

slows fatty acid oxidation, which increases glucose oxidation, lowers lactic acid

generation, and optimizes heart performance. Besides its antianginal effect,

RAN has recently revealed additional pharmacological properties such as

neuroprotective, hepatoprotective, renal protective, cardioprotective, and

antidiabetic effects and other beneficial pharmacological activities. We

choose to write this current review paper to address the many hidden

pharmacological and therapeutic potentials of RAN beyond its antianginal

activity.
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Impact statement

Drug re-purposing, finding new therapeutic applications for old or existing drugs,

provides the avenue to increase the therapeutic options for the treatment of disease

conditions with the possible benefit of enhanced efficacy and safety profile. Beyond its

antianginal action, Ranolazine exhibits a variety of pharmacological actions which can be

explored for therapeutic benefits. This review extensively sheds light on a number of these

pharmacological actions to broaden knowledge and spheres of potential therapeutic

applications of Ranolazine.
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Introduction

Ranolazine (RAN) is N-(2, 6-dimethyl phenyl)-4(2-hydroxy-

3-[2-methoxyphenoxy] - propyl)-1-piperazine acetamide

dihydrochloride. It is an active piperazine whose anti-ischemic

effect was originally attributed to the selective inhibition of fatty

acid oxidation with a consequent shift of metabolism to more

energy-efficient glucose oxidation [1]. An alternative mechanism

of action proposed in the past for RANwas the inhibition of β1 and
β2 adrenoceptors [2]. However, this mechanism (which is

associated with sympathetic nervous system regulation of heart

rate and contractility) is less prominent compared to RAN’s

primary action on cardiac ion channels. It is a less significant

involvement at the therapeutic concentration of RAN for the

treatment of angina, with the main mechanism being linked to

inhibition of the late sodium current in cardiac myocytes. This

effect reduces intracellular calcium overload and improves

myocardial relaxation and oxygen efficiency. At the clinical

level, RAN decreases the current of sodium and potassium ion

channels. It has been well studied that inhibition of the late phase

of the inward sodium current occurs during cardiac repolarization

[3]. In pathological conditions, a rise in calcium ion concentrations

contributes to increased sodium-calcium interaction, which

induces an increase in the cytosolic calcium concentration [4].

Calcium overload is thought to be the factor that induces reduced

left ventricular relaxation during moderate ischemia as well as

reperfusion. Increased left ventricular diastolic wall stress

compromises myocardial tension circulation, which continues

to rise still. Moreover, calcium overload has harmful impacts

on myocardial electrical activity, predisposing to ventricular

tachycardia [5]. Although this mechanism has been well studied

mainly in rodents, the anti-ischemic activity of RAN due to late

Na-channel suppression of myocardial perfusion lacks evidence to

support this mechanism in patients with ischemic heart disorders.

RAN slows the delayed rectifying K+ current at therapeutic doses

and enhances the Q-T interval [6]. The total effect of RAN on the

action potential period is equilibrium between the combined

effects of rectifier potassium current as well as late sodium

current suppression, which prolongs the QT interval by 2–6 ms

[7]. Figure 1 shows the mechanism of action of RAN.
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The pharmacologically induced attenuation of the late

sodium current enhances cardiac diastolic relaxation by

decreasing diastolic wall stress. This ultimately results in an

improvement of segmental myocardial ischemia.

RAN was first used in therapeutic settings over 25 years ago.

It is widely used to treat some disorders and is safe and effective

in many cases. Many preclinical and clinical experiments show

that RAN may exert cellular protective effects by specifically

suppressing the late sodium inward current (late iNa). In the past

few years, RAN has been associated with numerous positive

properties, such as anticancer, renoprotective, hepatoprotective,

neuroprotective, cardioprotective, analgesic, and anti-

inflammatory activity, and other benefits independent of its

antianginal function.

RAN modulates several cellular pathways like TNF-α, NF-
κB, Capase-3, IL-1β, IL-6, PPAR-γ, Bax bcl-2, Notch2/Hes1,

AKT-eNOS, COX-2, and ERK, which is activity independent of

its cardiac protective mechanism.

Search strategies

The literature search was done on multiple electronic

databases. These include Web of Science, PubMed, Scopus, and

Google Scholar. Appropriate search terms and combinations were

used, including ranolazine, pharmacokinetics, neuroprotective,

hepatoprotective, renoprotective, cardioprotective, and

antidiabetic effects.

Pharmacokinetics

RAN is available as an oral tablet for therapeutic use and as

an intravenous formulation for experimental application.

Initially, oral RAN was evaluated as an instant release (IR)

formulation. RAN IR has an overall terminal removal half-life

of 1.4–1.9 h and a 10-fold peak-trough gap of 240–400 mg three

times per day [8]. RAN is now commonly available as a

sustained-release (SR) formulation with a more extended

absorption phase, with a maximal plasma concentration

(Cmax) usually seen 4–6 h after oral administration and an

estimated apparent total elimination half-life of 7 h after steady

state. The peak-trough difference at 500–1000 mg twice/day is

only 1.6-fold, which is much improved over that of the IR

formulation [9–11]. The steady state is usually reached within

3 days of twice-daily dosing. RAN plasma amounts that are

clinically beneficial for chronic angina range from 2 to 6 μmol/L

[12, 13]. The oral bioavailability of RAN is 30%–55% and is not

influenced by food. RAN is approximately 65% bound to serum

protein, mainly α1-acid glycoprotein [14]. RAN is mainly cleared

by the liver metabolic enzyme cytochrome P450 (CYP) 3A4

(70–85%) and is a substrate of P-glycoprotein. Additional

processes include CYP2D6 metabolism (10–15 percent),

glucuronidation (<5 percent), and renal excretion of

unchanged RAN (<5 percent) [8].

Anticancer effects

Driffort et al. found that RAN repressed the pro-invasive

shape of human breast cancer MDA-MB-231 cells and decreased

the localized extracellular matrix degradation activity [15]. Qiu

et al. and Lee et al. validated similar findings and discovered that

the anti-invasive action might occur independently of

proliferation [16, 17]. Qiu and his group found that RAN’s

anti-invasive activity was dose-related, with concentrations as

low as 2.5 μM during hypoxia [16]. Guzel et al. found that, in

human colorectal cancer cells, (i) hypoxia markedly increased

Matrigel invasion and (ii) therapeutic dosages of RAN decreased

invasiveness without compromising proliferative ability or cell

survival [18].

Rizaner and colleagues demonstrated that for robust

metastatic rat prostate cancer Mat-LyLu cells, RAN (i)

hindered Matrigel migration under both normoxic and

hypoxic circumstances and (ii) decreased the proportion of

cells in the lung metastases showing Nav1.7 [19]. Pemmireddy

and team examined the anticancer action of RAN on 1,2-

Dimethyl hydrazine (DMH)-induced colon cancer in mice

and found that RAZ substantially reduced colon cancer in

FIGURE 1
Mechanism of action of ranolazine.
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mice, most likely because of cancer cell growth deregulations

[20]. Using the Dunning model of rat prostate cancer, Bugan and

coworkers demonstrated in double-blind tests that gavage

administration of 2.5–5 μM RAN inhibited lung metastasis by

as much as 63% [21]. Guth et al. demonstrated that RAN (i)

inhibited tumor development and (ii) boosted anti-cancer

immunity, as shown by reduced tumor CD8+ T-cells

Tim3 content, enhanced macrophages, and lowered blood

myeloid immunosuppressive monocytes in the

TRAMPC1 genetic mice model of prostate cancer [22]. Lastly,

Lasheras-Otero et al. demonstrated that RAN inhibited liver

metastases in a mouse model of melanoma [23].

Cardioprotective effects

Tocchetti et al. revealed that RAN could avert doxorubicin-

induced cardiac failure in mice and HL-1 cardiomyocytes via

lowering ROS production [24]. Furthermore, RAN has been

shown to mitigate cardiac dysfunction induced by

trastuzumab, which is believed to mediate its activity by

inhibiting the generation of ROS [25]. De Lorenzo and

teammates found that RAN mitigated not just the cardiotoxic

adverse effects of trastuzumab but also of pertuzumab and

trastuzumab-emtansine (TDM1) when employed in

combinatorial therapies both in vitro and in vivo [26].

Cappetta et al. conducted an experiment using RAN and

stated that it could protect cardiomyocytes from doxorubicin-

caused oxidative damage [27]. RAN could attenuate MTX-

caused oxidative damage in H9c2 cardiomyocytes by reducing

MDA, LOOH, AOPPs, and XO activity, maintaining T-SH, CAT,

and TAC levels, and prohibiting the HIF-1α inflammatory

cascade [28]. Jiang et al. reported that therapy with RAN in

Phospholamban (PLN) knockout hiPSCs-CMs could

significantly repair Ca2+ handling abnormalities and cellular

energy metabolism, thus alleviating the PLN knockout

phenotype of HF [29].

In high glucose-treated cardiac fibroblasts, RAN decreased

pyroptosis, prevented collagen deposition, and enhanced heart

function via enhancing miR-135b expression [30]. Furthermore,

RAN protected against diabetic cardiomyopathy-induced

apoptosis in rats via activation of the NOTCH1/

NRG1 signaling cascade [31]. Tawfik and team showed that

RAN administration ameliorated the isoprenaline-mediated

myocardial damage in both nondiabetic and diabetic rats by

improving histopathological scores, reducing apoptotic markers,

and modulating AMPK activity [32]. Le DE and his team proved

that RAN increased both resting and stress-induced cardiac

adenosine levels and caused small-vessel vasodilation, which

improved ischemia in dogs [33]. RAN also showed a positive

effect on cardiomyocytes subjected to ischemia/reperfusion, but

only when used during ischemia, and this effect is accomplished

through improving calcium regulation during ischemia [34].

Tantray et al confirmed that RAN had a protective role in

myocardial infarction, similar to ischemic preconditioning

facilitators, via promoting myocardial Nitric oxide, Adenosine,

Bradykinin, and K+ATPase levels in an isolated heart [35]. In

anaesthetized rabbits subjected to ischemia and reperfusion,

RAN lowered infarct size and raised salvage area index,

activating a process similar to PreC and PostC that required

activation of the RISK axis [36]. Feng and co-workers

demonstrated that chronic RAN treatment effectively reduced

the increased concentrations of NE and BNP-45 caused by CHF

and improved LV function in CHF rats [37]. RAN increased

cardiac function and decreased the level of heart injury in rats

with congestive heart failure, which is likely due to the activation

of AKT phosphorylation [38]. RAN attenuates pressure

overload-mediated cardiac hypertrophy and systolic and

diastolic activity by restoring Na+ and Ca2+ handling,

preventing downstream hypertrophic pathways, and reducing

ER stress [39].

In an animal model of heart failure, RAN ameliorated cardiac

remodeling and improved systolic and diastolic performance by

normalizing Ca2+ storage [40]. Coppini and colleagues showed

that acute RAN treatment lowered intracellular Na+ and Ca2+

levels as well as CaMKII activity, which contributed to the

decrease in hypertrophic cardiomyopathy-associated cardiac

remodeling and myocardial dysfunction [41]. Moreover, RAN

treatment decreased oxidative stress and alleviated diastolic

dysfunction in rats fed a high-salt diet to develop

hypertension [42].

Williams and co-workers demonstrated that RAN was

efficient in lowering diastolic dysfunction in spontaneously

hypertensive rats, and its mechanism of action was associated

with suppression of the enhanced late sodium current in the

SHR, resulting in decreased Ca2+ overload [43]. Le et al. proposed

that RAN elevated adenosine concentrations in coronary veins in

anaesthetized dogs, both at rest and during dobutamine-caused

myocardial ischemia, mostly via enhancing the function of the

cytosolic-5′-nucleotidase enzyme [33].

In individuals with CCS, RAN has been proposed as a way to

increase myocardial perfusion and lessen mechanical

compression of coronary microcirculation [44]. RAN

enhanced coronary flow reserve in 58 patients with angina

and myocardial ischemia but no obstructive coronary artery

disease. This was likely because it improved abnormal

coronary autoregulation, which decreased the baseline

diastolic coronary flow rate and elevated the hyperemic

diastolic coronary flow rate [45]. Furthermore, angina was

found to improve when RAN was given in comparison to a

placebo in a small trial involving women who had angina, signs of

myocardial ischemia, but no obstructive coronary artery disease

(CAD). There was also a trend towards improvement in the

anomalies of myocardial perfusion detected by cardiac magnetic

resonance imaging (CMR imaging). Additionally, compared to

women with CFR >3.0, those with CFR ≤3.0 had a markedly
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increased myocardial perfusion reserve index (MPRI) while

using RAN versus placebo [46]. RAN therapy also increases

arginine plasma values and reduces oxidative stress in a

randomized controlled study of 20 patients with unstable

angina pectoris and acute cardiac ischemia [47].

Chou and colleagues discovered that RAN notably reduced

action potential time, Cai transient time, and Cai decay duration,

improved conduction inhomogeneity, and repressed

arrhythmogenic alternans induction in db/db mouse hearts

with acute IR damage [48]. Wolfes et al. studied the impact of

RAN paired with various selective NCX-blockers in an isolated

whole-heart model of AF in rabbits and discovered that both

combinations extended aERP and aPRR and thereby reduced the

development of AF [49]. In levosimendan-produced atrial

fibrillation, RAN has a prominent antiarrhythmic effect, and

the primary mechanism is a slight delay in repolarization and

refractory period, which preserves the atrial myocardium against

premature excitement and atrial fibrillation in rabbits [50].

Additionally, RAN appeared to have a dose-dependent

antiarrhythmic impact on pacing-induced reentrant

ventricular arrhythmias during the late phase of myocardial

infarction in anaesthetized rabbits [51].

Markandeya et al. revealed that RAN inhibited late INa,

which shortened APD and abolished triggered activity in Lmna

(N195K/N195K) ventricular myocytes [52]. RAN has been found

to enhance redox balance and mitochondrial activity in the

atrium of rats suffering from acetylcholine-CaCl2-mediated

atrial fibrillation [53]. RAN reduced delayed repolarization,

aberrant electrical activity, and greater late sodium currents in

elderly rats continuously exposed to low testosterone, all of which

encouraged maladaptive electrical remodeling in ventricular

myocytes [54].

Mustroph and colleagues investigated the beneficial effect of

RAN on ethanol-induced atrial fibrillation and discovered that it

efficiently suppressed atrial fibrillation by altering the activity of

the CaMKII-dependent NaV1.5 channel [55]. RAN also

inhibited electrical remodeling, causing atrial fibrillation in

HL-1 atrial myocytes through modification of the PI3K/Akt

signaling axis [56]. Opacic and his group emphasized that

RAN effectively lengthened the atrial effective refractory time

and lowered the atrial conduction rate at baseline and after 2 days

of AF in a goat model of lone AF [57]. RAN was also compared

with vernakalant for cardioversion of acutely produced AF in

15 rabbit hearts. AF was produced with atrial burst pacing and

acetylcholine/isoproterenol. RAN besides vernakalant showed

equal efficacy in preventing AF [58].

Similarly, recent research in horses found that, in comparison

with single medications, the combination of dofetilide and RAN

improved the antiarrhythmic effects on acutely generated AF,

influencing cardioversion time, susceptibility at AF, and AF

latency [59]. The combination of RAN and ivabradine has

been evaluated in AF in pigs and the combined effect of these

two drugs reduced ventricular rate via decreasing conduction at

the AV node (increased A-H period) and minimizing the

dominant AF frequency [60].

RAN was tested to assess its effects in a canine model of heart

disease. It blocks atrial fibrillation in animals by lengthening the

atrial refractory duration and atrial conduction time. No pro-

arrhythmic influence was apparent on the ventricle [61]. Also,

RAN administration avoided VT in the porcine model of

catecholaminergic polymorphic ventricular tachycardia and

decreased the T-wave length [62]. RAN has also been found

to be non-inferior to lidocaine and sotalol in avoiding ischemia-

reperfusion-induced ventricular tachycardia in a rat model [63].

Malavaki and team examined the vasorelaxant action of RAN

and nicardipine on the rabbit aorta. Researchers found that RAN

has a synergistic interaction with nicardipine to trigger vaso-

relaxation in rabbit aortas [64]. RAN inhibited the occurrence

and minimized the duration of action potentials in HL-1 cells,

resulting in an antiarrhythmic response [65].

In another study, RAN reduced HOCl-LDL-associated

alterations in cardiac contractility and electrophysiology,

including arrhythmias in primary cardiomyocytes [66]. Del-

Canto et al. found that RAN ameliorated the electrophysiological

effects responsible for the stretch-induced modification of HL-1 cell

fibrillatory activation patterns by altering the rise in activation rate

and preserving the magnitude of activation [67]. RAN modified the

ECG abnormalities, diminished Ca2+ sparks and abnormal waves,

lowered the in vitro events and the frequency of arrhythmias noticed

in isolated cardiomyocytes of hypothyroid mice [68]. Two

preclinical studies of RAN demonstrate promise in preventing

long QT syndrome in rats. RAN suppressed QT prolongation,

prevented early after depolarizations, and reduced the duration of

torsades de pointes [69, 70].

RAN showed antiarrhythmic efficacy against AT (Atrial

Tachycardia) elicited by rapid burst stimulation in

anaesthetized rabbits [71]. Nunoi and his team examined the

anti-atrial fibrillatory effect and pharmacological safety

characteristics of RAN in halothane-anesthetized dogs.

Researchers found that RAN had little effect on ventricular

early repolarization in vivo, but it did extend late

repolarization with no danger of re-entrant arrhythmias [72].

Wolfes and colleagues evaluated the impact of RAN in

combination with several specific NCX-blockers in an isolated

whole-heart AF model. Both combinations increased the atrial

effective refractory time while decreasing the frequency of AF

episodes [49]. Aidonidis et al. investigated whether co-treatment

of RAN-AMIOwould show additive antiarrhythmic effects. RAN

notably improved the propagation duration of fast atrial

depolarizations and enhanced the AMIO-mediated mild

elevations in aPRR [73]. Miranda and co-workers explored the

influence of RAN on healthy cardiomyocytes as well as a cellular

model of type 3 long QT syndromes (LQT3). RAN had a small

effect on sarcomere shortening in healthy ENDO and EPI cells,

and it reduced arrhythmias caused by INaL to the same rate as

ENDO and EPI cells [74].
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Eleclazine and RAN reduced the AF window and AF burden

in association with the inhibition of both endogenous and

enhanced atrial late INa with half maximal inhibitory

concentrations (IC50) of 1.14 and 9.78 μM and 0.94 and

8.31 μM, respectively [75]. RAN normalized AV-conduction

in Scn5a1798insD/+ mice by preventing the mutation-induced

increase in intracellular sodium ([Na+]i) and calcium ([Ca2+]i)

concentrations [76]. RAN also inhibited TASK-1 channels, and

inhibition of TASK-1 may contribute to the observed

antiarrhythmic effects of RAN [3]. RAN suppressed CaT

alternans and decreased the Ca2+-voltage coupling gain in a

dog HF model, reducing arrhythmogenic cardiac alternans

[77]. RAN has continued to yield amazing outcomes, such as

the cessation of acutely caused AF in horses via cardioversion

[78]. RAN partially prevented action potential and QT interval

prolongation in 4-week-old Scn5a+/ΔQKP mice and suppressed

arrhythmias [79].

Ke and colleagues examined how Ca2+ homeostasis was

affected in CKDmice and discovered that RAN, by controlling

CaMKII, PLB, and late Na+ current, reduced the length of the

QT interval and the development of cardiac arrhythmogenesis

[80]. Huang et al. investigated the role of FGF23 in activating

the INa-Late, resulting in calcium imbalance and increasing

PV arrhythmogenesis, and found that RAN-reduced

FGF23 enhanced beating rates, calcium fluctuations, and

mitochondrial ROS in PV cardiomyocytes [81].

In human atrial myocytes, RAN alone or when combined

with low-dose dronedarone prolonged APD, increased

cellular hyperpolarization, and decreased SR Ca (2+)

leakage [82]. RAN has been observed to possess a similar

effect to mexiletine in terms of action potential period

shortening, with less paradoxical action potential duration

prolongation in LQT3 mutant cells [83]. In the rabbit heart

model, RAN perfusion substantially decreased the number of

breakthrough-type excitations (BEs) in the ischemic border

zone (BZ) and mitigated ischemia-caused shortening of action

potentials in the BZ without influencing conduction velocity,

most likely because of IKr repression [84]. RAN also decreased

VT load and implanted cardioverter-defibrillator (ICD)

shocks in 11/12 individuals receiving drug-refractory

shocks [85]. RAN also proved to be effective, well-

tolerated, and safe in reducing ventricular arrhythmia

episodes and ICD interventions in patients with recurrent

antiarrhythmic drug-refractory events [86]. After analyzing a

group of AF patients on RAN, Black-Maier et al. discovered

that the medication is linked to decreased AF DF but not

altered organization index or fibrillatory wave amplitude [87].

RAN, a late I (Na) blocker, appeared to possess

antiarrhythmic effects, according to continuous ECG

monitoring of patients admitted for acute coronary

syndrome within the first week [88].

RAN was tested in patients having coronary artery disorder

and paroxysmal AF who used to have a double chamber

pacemaker able to detect AF. RAN 375 mg twice each day

compared with placebo shortened average AF duration and

mean AF length. There was no substantial variation in QTc.

The 500 mg and 750 mg arms combined showed a reduction in

AF recurrence with borderline statistical significance [89]. RAN

has also been demonstrated to result in a greater conversion rate

of AF to normal sinus rhythm when administered in

combination with amiodarone than amiodarone alone in

randomized clinical research including 121 patients [90].

Tsanaxidis et al. found that a single 1000 mg daily treatment

of RAN when given with amiodarone leads to a faster recovery to

sinus rhythm and a better sinus conversion rate than amiodarone

alone. The addition of RAN had no detrimental effect on left

ventricular activity [91]. The additive value of RAN to

amiodarone in AF has been confirmed by two meta-analyses.

The use of RAN accelerates the time for AF cardioversion. It also

helps avoid new-onset AF in people with disabilities rhythm of

sinus [92, 93].

The HARMONY study demonstrated that combining

moderate dosages of oral RAN with decreased doses of

dronedarone effectively ameliorated the AF burden in

individuals with paroxysmal AF and was tolerated

satisfactorily [94]. Many other small trials have found that

RAN decreases conversion time from atrial fibrillation to

sinus rhythm. It also increases heart function following

coronary artery bypass grafting (CABG) [95–98]. Another

clinical study explored the impact of RAN on AF in

postoperative atrial fibrillation (POAF). Patients having heart

valve and/or heart bypass surgery have been involved. The

addition of RAN to normal treatment markedly decreased the

frequency of POAF. There was no effect on the stay in the

intensive care facility or cardiovascular death, but the rate of

cardiovascular readmission decreased by 30 days [99].

In patients experiencing acute coronary syndrome without

ST-segment acceleration, RAN has been found to minimize the

rate of non-sustained ventricular tachycardias and atrial

fibrillation (AF) [100]. In another small study of eight patients

with long QT syndrome type 3 (LQTS3), RANwas demonstrated

to successfully decrease the QT period, hence reducing the

frequency of ventricular arrhythmias [101]. Figure 2 shows

the therapeutic efficacy of RAN in heart dysfunction. RAN

inhibits TNF-α, IL-1β, NF-κB, Caspase-3, Bax, ROS, and Ca2+

levels and activates Notch, AMPK, and miR-135b Bcl-2, resulting

in improved outcomes for cardiac arrhythmia, cardiac fibrosis,

cardiac injury, and myocardial infarction.

Cempaka Putri et al. [102] conducted a systematic review and

meta-analysis on the efficacy of using RAN to improve diastolic

performance and exercise capacity in heart failure with preserved

ejection fraction. It was established that RAN was significantly

efficacious in improving diastolic performance in heart failure

patients with preserved ejection fraction, with no significant

effect on blood pressure, heart rate, and ventricular

repolarization rate (shortening of the QT interval).
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Neuroprotective effects

Piano and colleagues investigated the protective effect of

RAN on microglia cells stimulated by LPS and found that RAN

counteracts the neurotoxic effect of LPS-activated microglia on

661W neuronal cells [103]. RAN dramatically enhanced cell

survival and growth in cultured astrocytes at any tested dose

while decreasing LDH loss, Smac/Diablo activity, and Caspase-

3 action, demonstrating a decreased rate of cell death [104].

Akgul and co-workers examined the beneficial effect of RAN

in a brain I/R model of rats and concluded that RAN helped in

cerebral recovery by increasing Bcl-2 and NA levels and

decreasing AChE, TNF-α, and ACP levels [105]. Kahlig and

team studied the antiepileptic action of RAN in hippocampus

neurons and discovered that at therapeutic doses, RAN lowered

the action potential firing rate of hippocampal neurons in

response to recurrent depolarizing current injections by

stabilizing the inactivated states of Na+ channels [106]. Peters

et al. investigated the possibility of RAN as an anticonvulsant and

found that RAN affected Nav1.2 channels, lowering macroscopic

currents and slowing the recovery of rapid and slow inactivation

of the Nav1.2 channel in hamster ovary cells stably expressing the

rat Nav1.2 channel [107].

In a rat model of DOX-induced neurotoxicity, RAN reduced

brain inflammation, improved BBB integrity, alleviated brain

mitochondrial dysfunction, inhibited apoptosis, and preserved

microglial structure and hippocampal plasticity [108]. Samir

et al. revealed that RAN has a unique neuroprotective

function against scopolamine-caused dementia in rats via

antioxidative, anti-inflammatory, and anti-apoptotic actions as

well as regulation of GFAP, BDNF, and Tau protein levels [109].

In diabetic neuropathy rats, RAN and pioglitazone have

separately altered evoked-pain activity, lowered sciatic TNF-α
and 1L-1β levels, decreased levels of Nav1.7 channels, and

enhanced expression of the spinal PPAR-γ gene [110].

Chandrashekhar and colleagues conducted an open-label

dose-ascending trial of RAN in 14 people with amyotrophic

lateral sclerosis, examining muscular cramp symptoms. It was

discovered that RAN improved cramp occurrence and severity,

which supports its study into muscular cramps [111]. Figure 3

shows promising therapeutic applications of RAN in

neuronal injury.

RAN primarily activates anti-apoptotic and neuronal

survival pathways such as Bcl-2. It also suppresses Caspase-3,

TNF-α, IL-1β, IL-6, ROS, and other factors that promote

neuronal death.

Renal protective effects

RAN substantially reduces renal ischemia-reperfusion

damage in rats, which was accomplished by modulating the

FIGURE 2
Therapeutic efficacy of ranolazine in heart dysfunction.
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inflammatory reactions via a noteworthy drop in renal tissue

level of HMG box1, IL-1ß, downregulation of the Notch2/

Hes1 signaling pathway, and anti-oxidant action [112].

According to Abbas and teammates, RAN dramatically

reduces renal ischemia-reperfusion damage in rats by

increasing Bcl2 protein levels, decreasing Bax and TNF-alpha

levels, and inhibiting the oxidative stress biomarker F2-

isoprostane and Notch2/Hes1 signaling cascade [113]. Nayaka

and Vaish revealed that RAN therapy dramatically lowered blood

glucose levels, preserved renal functions, and maintained near-

normal renal structure due to its glycemic management and anti-

inflammatory and anti-oxidative effects against STZ-caused

diabetic nephropathy in rats [114]. Ma and associates

investigated the protective effect of RAN in contrast-induced

acute renal injury (CI-ARI). Pre-treatment of RAN in CI-ARI

mice showed no effect on total blood pressure but significantly

enhanced renal perfusion, decreased contrast-associated

microcirculation disruption, accelerated renal capillary

thickness, and ameliorated renal vascular permeation [115].

Yusuf et al. investigated administering RAN as a preventative

for patients with low renal failure having PCI and discovered that

it might prevent the development of CIN [116].

Pain and inflammation

RAN inhibited DRG neuron hyperexcitability by

interfering with inactivated Na (+) channels, and these

activities could lead to its anti-allodynic action in animal

models of neuropathic pain [117]. Furthermore, at a dose

routinely employed in clinical settings, RAN was discovered to

be efficacious in preventing the fast firing of DRG neurons

with WT Nav1.7 channels, reducing neuropathic and

inflammatory pain [118].

RAN has been demonstrated to attenuate pain behavior in

animal models of acquired neurotic pain; however, the drug’s

effects on cold-induced pain were more potent than mechanical

allodynia, and the reduction in pain was only temporary, lasting

only 30–90 min based on oral or i.p delivery [119]. Casey et al.

assessed the analgesic efficacy of RAN in complete Freund’s

adjuvant-mediated inflammatory pain in rats. They found that

RAN exhibited a dose-dependent analgesic effect [120].

According to Gould et al. RAN at 30 mg/kg efficiently

ameliorated the painful mechanical allodynia related to

demyelination injury, which was induced by the

administration of doxorubicin [121].

FIGURE 3
Promising therapeutic applications of ranolazine in neuronal injury.
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Naveena and colleagues investigated the anti-inflammatory

efficacy of RAN in acute and sub-acute inflammation models in

rats and found that RAN substantially lowered paw oedema

volume and histological sections revealed a reduction in

granulation tissue development [122]. Lenz and coworkers

claimed that Na+ suppression by RAN resulted in lower

expression of adhesion molecules and pro-inflammatory

cytokines as well as reduced adherence of leukocytes to

activated endothelium in vitro and in vivo [123].

Antidiabetic activity

Jordá et al. found that RAN improved insulin consequences

in primary culture astrocytes by increasing anti-inflammatory

facilitators like PPAR-γ, decreasing pro-inflammatory agents like

COX-2, and boosting the action of Mn-SOD and components of

the AKT-eNOS and ERK signaling cascade [124]. Bashir and

colleagues investigated the antidiabetic efficacy of RAN against

STZ-caused diabetes in rats. It was observed that RAN improved

plasma fasting glucose levels and also exhibited a positive effect

on the lipid profile [125].

Non-clinical investigations showed that RAN reduced fasting

and non-fasting glucose levels and preserved pancreatic β-cells in
STZ-induced diabetic mice [126]. In animal models of diabetes,

RAN lowered postprandial and basal glucagon concentrations,

resulting in a drop in hyperglycemia, demonstrating that RAN’s

glucose-lowering actions might be achieved via the blocking of

sodium channels in pancreatic alpha cells [127]. Guerra-Ojeda

explored the potential beneficial effects of RN on insulin activity

in the rabbit aorta. They discovered that RAN improved vascular

sensitivity to insulin, reducing tissue resistance to the hormone

by raising the activities of p-eNOS/eNOS and pAKT/AKT [128].

Cassano et al. assessed the effects of RAN on glucose metabolism

and cognitive performance in a T2DM model of Wistar rats and

concluded that RAN improved glucose metabolism, enhanced

learning and long-term memory, and modified the pro-

inflammatory characteristics of diabetic mice [129]. Another

study revealed the protective impact of RAN on hippocampal

neurodegeneration and astrocyte activation in an STZ T2DM rat

model and found that RAN reduced T2DM-induced neuronal

injury and loss [130].

A post-hoc examination of the MERLIN-TIMI 36 trials

indicated a 0.64 percent drop in HbA1c in diabetic patients

who took RAN relative to those who did not. Fasting plasma

glucose was also notably decreased by an average of 25.7 mg/dL

[131]. Pettus et al. recently verified the MERLIN-TIMI 36 trial

results. They investigated the use of high-dose RAN for glycemic

control in addition to glimepiride background treatment (4 mg/

day) in type 2 diabetes patients with an average baseline HbA1c

level of 8.1% [132].

The CARISA research showed that RAN is effective at

reducing HbA1c levels in patients with unstable angina. In

this assay, HbA1c was not a given result, and further

stratification of results based on insulin or oral

antihyperglycemic use was not possible [133]. A later

randomized analysis of 465 T2D patients with an average

HbA1c~8 controlled by lifestyle alone at the start indicated

that RAN resulted in higher declines in HbA1c than placebo

at 24 weeks (mean difference = 0.56, p < 0.0001) [134]. In

addition to its anti-ischemic and antianginal properties, RAN

demonstrated the capacity to reduce HbA1c in individuals with

coronary artery disease and T2DM in two clinical investigations

[135]. In a group of patients with T2D and CCS, RAN, in

addition to usual anti-ischemic and glucose-lowering

medication, also showed effectiveness in restoring endothelial

function and glycemic status, as measured by Hb1Ac and short-

term GV indices [136].

Muscle disorder

When 10 µM RANwas applied for treating C2C12 myoblasts

throughout cell growth, transformation, and the development of

new myotubes, it increased the levels of myogenic regulator

factors (Myf5 and MyoD), suppressed cell progression factor,

decreased ROS, and preserved mitochondrial homeostasis [137].

Tomczyk and colleagues evaluated the positive effects of RAN on

skeletal muscle function and metabolism in dyslipidemic rats.

They learned that RAN-mediated suppression of FFA oxidation

in ApoE/LDLR −/− mice resulted in reduced exercise

performance and total adenine nucleotide pool [138].

Torcinaro et al. explored the efficacy of RAN in preventing

skeletal muscle dysfunctions associated with aging and

discovered that RAN administration dramatically enhanced

the muscular strength of elderly mice via up-regulating

antioxidant and mitochondrial genes, and by increasing

NADH-dehydrogenase function [139]. Novak and

collaborators revealed that RAN improved muscle functioning

compared to mexiletine without major side effects in a mouse

model of myotonia congenita [140]. An open treatment study

with RAN at a dose of 2 × 500 mg in 13 patients with chloride

channel myotonia showed a significantly reduced EMG

myotonia, and according to patient reports, significantly

reduced muscle stiffness, and, to a lesser extent, a reduction in

muscle weakness and reduced myotonia in clinical tests [141].

Lorusso et al. recently investigated the efficacy of RAN in an

open-label trial of 10 patients having paramyotonia congenita

and concluded that RAN dramatically reduced both subjective

symptoms and clinical myotonia [142]. A phase 2 study is

underway to assess the efficacy of RAN in MC, paramyotonia

congenita, and Type 1 myotonic dystrophy. Patients with the

above conditions were randomized to receive RAN 500 mg

twice daily for 2 weeks followed by 1000 mg two times daily for

2 more weeks, compared to placebo. Primary outcomes are

quality of life measurements for health and neuromuscular
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disease, and EMG to assess for changes in muscle potentials and

performance. It is a phase 2 trial to mainly assess the safety

profile of the drug in these neuromuscular conditions

(NCT02251457).

Pulmonary hypertension

Lee and colleagues investigated the preventive function of

RAN against monocrotaline-caused PAH in rat models and

found that RAN attenuated ventricular hypertrophy, B-type

natriuretic peptide values, fibrosis activation, and

cardiovascular mortality [143]. Rocchetti et al. have

established that RAN inhibited constitutive elevation of the

late sodium current, thereby delaying the development of

myocardial remodeling in an experimental rat model of PAH

induced by monocrotaline [144]. Teixeira-Fonseca et al. proved

that RAN attenuated right ventricular hypertrophy while

improving P wavelength and QT period in a monocrotaline-

caused PH rat model [145]. In an in vivo study, acute treatment of

RAN dramatically decreased isoproterenol-caused ventricular

tachycardia/ventricular fibrillation and related cardiovascular

mortality in rats with pre-existing pulmonary arterial

hypertension (PAH) and heart remodeling [146].

Furthermore, a pilot experiment at a single center revealed

that 8 of the 11 recruited patients completed all the research

exams. The WHO FC, RV function, and exercise tolerance

findings revealed improvement without any changes to the

invasive hemodynamic measures, and the RV size in PAH

patients was decreased after 3 months of RAN medication [147].

A recent double-blind, randomized, placebo-controlled RAN

trial (n = 9 RAN, n = 6 placebo) revealed that RAN therapy

enhanced RV ejection fraction but not 6-min wall distance

(6MWD), N-terminal pro-brain natriuretic peptide, or

quality-of-life expectancy measures in patients having

precapillary pulmonary hypertension [148]. Finch and

colleagues observed that the approved antianginal drug RAN

improved cardiopulmonary hemodynamics, functional status,

and exercise tolerance in both short-term and long-term

(average time on drug approximately 2 years) plans in a

cohort of patients with PH-HFpEF [149]. A Phase Ib

investigation including 12 PAH patients showed no statistical

significance in terms of adverse events between the control and

RAN groups after a 12-week follow-up period. This outcome

demonstrated the safety of the RAN therapy but did not

accomplish the therapeutic aim, partly because the study

medication did not reach a therapeutic serum level [150].

Peripheral arterial disease

An animal model demonstrated that injecting RAN into the

femoral artery causes a long-lasting dilatation of the artery,

equivalent to that produced by nitroglycerin. This outcome

might be attributed to α1-adrenergic receptor inhibition, which

does not affect heart rate and systemic blood pressure [151]. In a

pilot research study including 45 patients with irregular claudication,

RAN 1000mg BID elicited an improvement in peak walking time in

comparison with placebo. Though RAN did not ameliorate the

ankle-brachial index at rest, patients with extremely irregular

claudication had approximately 40 percent improvement in

walking time relative to placebo compared to cilostazol [152].

Hepatoprotective effects

Saed and his colleagues assessed the efficacy of RAN in

attenuating obesity-induced NAFLD and hyperglycemia and

concluded that RAN therapy enhanced glucose tolerance and

lowered hepatic triacylglycerol levels in obese mice through

increasing the activity of mRNA, which plays a role in

modulating lipogenesis [153]. Al Batran stated that in a mouse

model of nonalcoholic fatty liver disease, RAN significantly

improved glucose oxidation via increasing PDH function [154].

Pzolat and colleagues investigated the preventive effects of RAN

against MTX-induced liver injury in rats and found that RAN could

attenuate MTX toxicity by reducing MDA and MPO values,

enhancing SOD, CAT, and GSH levels, and improving

mononuclear inflammation, vascular congestion, and fibrosis [155].

Testicular injury

Bilge et al. evaluated the protective effect of RAN in a testis

torsion rat model induced by I/R and demonstrated that RAN

protected against testicular damage by reducing MDA levels and

improving histopathological scores [156].

Other activities

A recent study revealed that prolonged RAN treatment

enhanced energy metabolism by enhancing muscle ATP content

and slowing muscular strength reduction in a mouse model of

amyotrophic lateral sclerosis (ALS) [157]. Marchio et al. studied the

impact of RAN on vascular function and adrenergic response in

human saphenous veins. They observed that RAN reduced

adrenergic vasoconstriction by acting as an α1 antagonist and

enhancing the huge conductance Ca2+activated K+ channel [158].

Molecular mechanisms of non-
cardiac effects of Ranolazine

The non-cardiac effects of RAN have been associated with

various molecular mechanisms. These include ion channel (late
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sodium and calcium) modulation, adrenergic receptor

antagonism, and metabolic effects, which collectively result in

improved cellular ion homeostasis, reduced oxidative stress, and

mild vasodilation in non-cardiac tissues [159]. RAN selectively

inhibits the late phase of the inward sodium current and elicits a

mild blocking effect on L-type calcium channels. The impacts of

these effects include a reduction in intracellular sodium,

consequent decrease in calcium overload via the

sodium–calcium exchanger (stabilization of cellular ion

homeostasis and reduction of cellular stress in tissues), and

weak vasodilatory properties with consequences on vascular

smooth muscle tone and peripheral circulation [159, 160].

RAN elicits antagonistic action at alpha-1 and beta-1

adrenergic receptors present in vascular, nervous, and other

tissues. This antagonistic action contributes to the modulation

of vascular tone and sympathetic nervous system effects, devoid

of significant changes in heart rate or blood pressure [160].

RAN invokes inhibition of delayed rectifier potassium

current, which, beyond cardiac tissue, could influence

electrophysiological properties in other excitable tissues [160].

RAN partially inhibits fatty acid oxidation at higher

concentrations, leading to alteration of metabolic processes in

non-cardiac tissues; this may lead to improvement of cellular

energy efficiency under stress conditions [161].

Conclusion

RAN is a well-known selective INa,L inhibitor and the most

commonly utilized antianginal agent. This amazing substance is

mostly used to treat chronic angina (chest pain). RAN is an add-on

medicine for the relief of symptoms of individuals suffering from

stable angina pectoris and those who are poorly controlled or

intolerant to first-line antianginal therapy. However, an exciting

surge of interest is rising around the possibility of RAN being

repurposed for a varied array of health conditions. This review

article investigates RAN’s varied pharmacological actions, shedding

light on its prospective possibilities outside the field of antianginal

drugs. The review demonstrates its promise in treating an

astounding variety of illnesses, from anticancer activity and

neuroprotection to renal and liver protection, renal antidiabetic

advantages, and anti-inflammatory capabilities.

The repurposing of RAN offers clinical promise in various

health conditions, including pulmonary hypertension,

arrhythmia, heart failure, metabolic disease, and oncology, in

view of its unique ion channel modulation, metabolic effects, and

anti-inflammatory properties. These benefits of RAN, coupled

with its safety profile, offer translational opportunities for diverse

therapeutic benefits.

Future perspective

RAN exhibits pleiotropic properties, demonstrating

several mechanisms of action and protective benefits

against various disease models already established. Given

that inflammation and oxidative stress are the fundamental

contributors to almost all human diseases, medications that

might impede these processes are expected to be beneficial in

various medical conditions. The review focuses on the many

pharmacological properties of RAN, as it has been

demonstrated to produce these effects.
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