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Abstract

Follicular dendritic cell secreted protein (FDCSP) is highly expressed in various cancers

and has been implicated in tumormigration and invasion, yet its role in triple-negative

breast cancer (TNBC) remains poorly understood. Our findings revealed that FDCSP

expression was significantly elevated in TNBC compared to normal breast tissue,

whereas its expression was significantly reduced in non-TNBC. In TNBC, high FDCSP

expressionwasassociatedwith an increasedmutation rateof TP53and influenced the

infiltration of B cells and macrophages. Single-cell transcriptome analysis

demonstrated that FDCSP was predominantly highly expressed in basal cells but

exhibited low expression in luminal epithelial cells. This observation was further

corroborated by spatial transcriptome (ST) analysis. Immunohistochemistry (IHC)

assay also confirmed the distinct expression patterns of FDCSP. Cell-cell

interaction and receptor-ligand pair analyses indicated that macrophages could

interact with the receptor epidermal growth factor receptor (EGFR) in FDCSP

highly expressed basal cells by secreting transforming growth factor-β1 (TGF-β1).
Then, the co-localization of FDCSP and EGFR in TNBC basal cells was verified by IHC

and immunofluorescence (IF) assay. Additionally, we discovered that FDCSP

possesses strong predictive capabilities for distinguishing between responders and

non-responders to Immune checkpoint blockade (ICB) treatment. Finally, leveraging

the CARE database, we identified 14 potential FDCSP-related target drugs. These

findings highlight the unique expression pattern of FDCSP in breast cancer, revealing

FDCSP as a promising target for therapeutic strategies in TNBC.
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Impact statement

This study aimed to identify key factors driving malignant progression in TNBC. To

achieve this, we employed a multi-omics approach to comprehensively analyze the

difference between TNBC and non-TNBC. Our findings revealed that FDCSP

expression was significantly elevated in TNBC compared to normal breast tissue,
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whereas its expression was significantly reduced in non-TNBC.

FDCSP was predominantly highly expressed in basal cells of

TNBC and this observation was corroborated by spatial

transcriptome analysis. Furthermore, macrophages could

interact with the receptor EGFR in FDCSP highly

expressed basal cells by secreting TGF-β1. FDCSP also

demonstrates robust predictive value in discriminating

between responders and non-responders to immune

checkpoint blockade therapy. Based on these findings, our

study highlights the potential of FDCSP as a therapeutic

target and provides novel insights into targeted FDCSP-

based strategies for breast cancer treatment.

Introduction

According to GLOBOCAN 2022, breast cancer (BC) remains

the most frequently diagnosed cancer and the leading cause of

cancer-related mortality among women [1]. Breast cancer is

classified into distinct subtypes based on the expression of

estrogen receptor (ER), progesterone receptor (PR), and

human epidermal growth factor receptor 2 (HER2). These

subtypes include triple-negative breast cancer (TNBC),

luminal (ER/PR-positive), and HER2-overexpressing breast

cancer [2]. TNBC accounts for 15–20% of all breast cancer

cases and is more prevalent among younger women under the

age of 40. Compared to other subtypes, TNBC is associated with a

mortality rate of up to 40%, a distant metastasis rate of 46%, and a

recurrence rate of up to 25% within 5 years of diagnosis [3, 4].

Due to the absence of targetable receptors, both endocrine

therapy and conventional targeted therapies are ineffective in

treating TNBC. Although advancements have been made in

conventional chemotherapy and neoadjuvant immunotherapy,

a subset of patients continues to exhibit poor treatment responses

and a high risk of recurrence or metastasis [5, 6].

The occurrence and progression of breast cancer are

influenced by numerous factors, among which the tumor

microenvironment (TME) plays a pivotal role. As the “soil”

for cancer cell growth, the TME’s critical importance has been

well-documented in numerous studies. The TME comprises

tumor cells, stromal cells, infiltrating immune cells,

endothelial cells, the extracellular matrix, and a variety of

signaling molecules. The composition and dynamics of the

TME significantly impact breast cancer progression [7],

metastasis [8], anti-tumor immune responses [9], and

therapeutic outcomes [10]. Therefore, an in-depth study of

TME in breast cancer, especially TNBC, is necessary to

improve the prognosis of patients.

GRAPHICAL ABSTRACT
This study outlines its core methodology as follows. Initially, transcriptome data related to breast cancer were collected from public datasets,
including TCGA and GEO, for differential expression analysis. FDCSP was identified as the key gene, based on which multi-omics analyses were
conducted. These included function analysis, single-cell transcriptomic profiling, ST analysis, cell-cell interaction assessment, and ligand-receptor
pair identification. In addition, the efficacy of ICB treatment and targeted drugs for FDCSP were predicted. Concurrently, IHC and IF assays were
employed to validate the findings. In summary, this integrative approach enables a comprehensive understanding of the distinct role of FDCSP in
TNBC from multiple analytical perspectives.
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Follicular dendritic cell secreted protein (FDCSP), also

known as c4orf7, is a small secreted protein originally

identified in follicular dendritic cells (FDCs). FDCSP is a

unique secreted peptide with a distinct expression pattern in

the immune system and exhibits specific binding affinity to

activated B cells. FDCSP also has been reported to be highly

expressed in several cancers, including ovarian cancer [11], head

and neck squamous carcinoma (HNSC) [12], renal cell

carcinoma (RCC) [13], and lung adenocarcinoma [14]. It has

been proposed as a prognostic marker for HNSC and RCC and is

thought to promote tumor metastasis by enhancing the

migration and invasion of cancer cells [11]. Despite its

established role in other malignancies, the expression and

functional significance of FDCSP in breast cancer remain

poorly understood and underexplored.

The aim of this study was to explore the expression patterns

and functional role of FDCSP in TNBC. Through comprehensive

analysis of breast cancer datasets, we discovered that FDCSP is

specifically and highly expressed in TNBC epithelial cells, while

its expression is nearly absent in non-TNBC epithelial cells

compared to normal breast tissue. Further investigation

revealed that FDCSP is associated with the TP53 mutation

rate and macrophage infiltration. Specifically, macrophages

were found to interact with the epidermal growth factor

receptor (EGFR) on high-FDCSP basal cells in TNBC by

secreting transforming growth factor-β1 (TGF-β1).
Furthermore, FDCSP demonstrates robust predictive value in

discriminating between responders and non-responders to

immune checkpoint blockade (ICB) therapy. Based on these

findings, our study highlights the potential of FDCSP as a

therapeutic target and provides novel insights into targeted

FDCSP-based strategies for breast cancer treatment.

Materials and methods

Data collection

The samples used in this study were obtained from publicly

available datasets. RNA sequencing (RNA-seq) data for breast

cancer were retrieved from The Cancer Genome Atlas (TCGA)

database1 and the Gene Expression Omnibus (GEO) database,2

including datasets GSE76275, and GSE21653. For single-cell

RNA sequencing (scRNA-seq) analysis, raw data from the

GSE161529 dataset were downloaded from GEO. Spatial

transcriptomic (ST) data were obtained from 10X Genomics3

and a publicly available study [15].

Identification of differentially
expressed genes

RNA-seq data from the TCGA-BRCA cohort and

GSE76275 dataset were used for differential expression

analysis. Principal Component Analysis (PCA) was employed

to assess data distribution and identify potential batch effects.

Differential gene expression analysis was performed using the R

package limma, with adjustments for multiple hypothesis testing

using the Benjamini-Hochberg false discovery rate (FDR)

method. Genes with an adjusted P-value <0.05 and a fold

change >1 or <−1 were classified as differentially expressed

genes (DEGs) and selected for further analysis. Visualization

of gene expression patterns was achieved using volcano plots and

box plots generated with the ggplot2 R package. Venn diagrams

were created using the Jvenn online tool.4 Gene expression

heatmaps were constructed using the pheatmap R package.

Functional enrichment analyses, including Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG), were conducted using the clusterProfiler R package.

GO and KEGG terms with an adjusted P-value <0.05 were

considered statistically significant, and results were visualized

using ggplot2. Protein-protein interaction (PPI) networks were

analyzed using the STRING database5 and visualized using

Cytoscape software. Receiver operating characteristic (ROC)

curves and the area under the curve (AUC) were generated

using the pROC R package. False positive rate (FPR) as the

horizontal axis, true positive rate (TPR) as the vertical axis, CI

represents the confidence interval. The expression levels of

FDCSP and EGFR were visualized using the

ggplot2 R package. Statistical significance was determined

using the log-rank test and Wilcoxon test, with a

P-value <0.05 considered statistically significant. Cancer Cell

Line Encyclopedia (CCLE) was used to analyze gene

expression in different cell lines.

Somatic genemutation landscape analysis

The R package maftools was used to analyze somatic

mutation profiles in TNBC and non-TNBC patients. Somatic

genes with mutation frequencies higher than 2 were screened.

Genes with significantly higher mutation frequencies in each

molecular subtype were then further identified using a Fisher’s

exact test with a threshold of P < 0.05. Waterfall plots were then

used to visualize the mutation status of the top 10 somatic genes

in each molecular subtype.

1 https://www.cancer.gov/ccg/research/genome-sequencing/tcga

2 https://www.ncbi.nlm.nih.gov/gds

3 https://www.10xgenomics.com/datasets

4 http://www.bioinformatics.com.cn/static/others/jvenn/index.html

5 https://cn.string-db.org/
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Immune cell infiltration analysis

To assess the proportions of immune cell populations within

breast tissue samples, we uploaded formatted gene expression

data to the CIBERSORT web portal. The analysis utilized the

LM22 gene signature, a well-validated panel designed to

sensitively and specifically distinguish 22 human

hematopoietic cell phenotypes. CIBERSORT employs a

deconvolution algorithm based on linear support vector

regression, generating a P-value for each sample to evaluate

the confidence of the deconvolution results. A

P-value <0.05 was considered statistically significant and

indicative of reliable quantification. The proportions of

different immune cell populations were visualized using

stacked bar charts.

Single-cell RNA-seq data processing and
quality control

The scRNA-seq data from the GSE161529 dataset were

reanalyzed. Data processing was performed using the Read10X

function from the R package Seurat (version 4.1.0). After merging

data from all samples, cells with fewer than 400 or more than

4,000 expressed genes, as well as those with mitochondrial gene

expression exceeding 5%, were excluded. Following filtration, the

global scale normalization method LogNormalize was applied to

ensure equal total gene expression levels across cells, with a scale

factor set to 10,000. The FindVariableFeatures function was then

used to identify the top 2,000 variable genes for downstream

analysis. To mitigate batch effects between samples, the

ScaleData, RunPCA, and Harmony functions were applied

sequentially. Cell clustering was performed using

FindNeighbors (dimensions 1–20) and FindClusters

(resolution = 1.0). Unsupervised cluster analysis and

visualization were conducted using uniform manifold

approximation and projection (UMAP). Cell clusters were

annotated based on known cell type marker genes using the

FindAllMarkers function, with parameters set as follows:

min.pct = 0.1, logfc.threshold = 0.25. Statistical significance

was determined using the non-parametric Wilcoxon rank sum

test with Bonferroni correction. The proportions of different cell

clusters were visualized using stacked bar graphs generated with

the ggplot2 R package.

Spatial transcriptomic analysis

Data processing and visualization were performed using the

R package Seurat. Specifically, we applied SCTransform for data

normalization, RunPCA for dimensionality reduction,

FindNeighbors and FindClusters for clustering ST spots, and

RunUMAP for data visualization. The spatial distribution of gene

expression levels was visualized using SpatialDimPlot and

SpatialFeaturePlot. To integrate scRNA-seq data with ST data,

we used FindTransferAnchors to identify anchor points between

the datasets and TransferData to transfer cell type annotations

from scRNA-seq to ST data.

Cell–cell interaction analysis

CellPhoneDB, a publicly available repository of ligands,

receptors, and their interactions, was used to analyze cell-cell

communication. To quantify interaction frequencies between cell

subsets, we employed the pheatmap function within the

pheatmap R package. This analysis was conducted using the

raw count matrix extracted from the Seurat object and a

corresponding cell type annotation file. Additionally, the

ktplots R package was utilized to predict and visualize the

potential interaction strength between ligand-receptor pairs

based on their average expression levels. Only statistically

significant ligand-receptor pairs (P-values <0.01) were

included for visualization.

The correlation between FDCSP and EGFR was analyzed

using Gene Expression Profiling Interactive Analysis (GEPIA).6

Spearman correlation analysis was performed to calculate the

P-value for the comparison.

Predicting the immunotherapy response
in the FDCSP subgroup

We employed the tumor immune dysfunction and exclusion

(TIDE) method to evaluate the response probability of

individuals to immunotherapy in TCGA-BRCA. The

Wilcoxon test was used to compare the differences of TIDE-

related scores among different FDCSP subgroups

(P-values <0.05), and Chi-square test was used to compare

the differences of therapeutic outcomes among different

FDCSP subgroups.

Computational analysis of
resistance (CARE)

CARE7 [16] is a computational tool designed for large-scale

extrapolation of response biomarkers and drug combinations for

targeted therapies, utilizing compound screening data. A positive

CARE score indicates higher gene expression associated with

drug sensitivity, while a negative CARE score suggests drug

6 http://gepia2.cancer-pku.cn/#index

7 http://care.dfci.harvard.edu/
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resistance. We analyzed drugs targeting FDCSP using three

databases: Cancer Cell Line Encyclopedia (CCLE), the Cancer

Therapeutics Response Portal (CTRP), and the Cancer Genome

Project (CGP). Drugs with a positive CARE score and a

P-value <0.05 were identified as potential therapeutic candidates.

Estimation of candidate drug for high-
FDCSP patients

To further analyze the interactions between the identified

drugs and FDCSP, we first obtained the structures of Quizartinib,

from the PubChem database. The protein structures of the

FDCSP was obtained from the AlphaFold and then docked

using AutoDock. The higher scoring docking conformation

was retained. If the molecular docking energy is less

than −1.2 kcal/mol, we think the docking result is feasible.

Immunohistochemistry (IHC) assay

Human breast tumor specimens and normal breast tissues

were fixed with 4% paraformaldehyde for more than 48 h and

paraffin embedded. The tissues were sectioned to 4 mm thickness

for hematoxylin and eosin (H&E) and IHC. Tissue sections were

first deparaffinized, hydrated in xylene and different

concentrations of ethanol, and then placed in 3% hydrogen

peroxide methanol to block endogenous peroxidase.

Subsequently, tissues were antigenically repaired with citrate

buffer (0.01 M, pH 6.0) and blocked with 10% (v/v) normal

target serum for 30 min at room temperature. Tissues were

incubated with FDCSP antibody (Solarbio, K107164P) overnight

at 4 °C in a humidified environment, followed by incubation of

the secondary antibody for 30 min at room temperature. Finally,

tissues were incubated with 3,3-diaminobenzidine restained with

hematoxylin, and then dehydrated in different concentrations of

alcohol. Finally, the sections were covered with cover slips and

observed under light microscope. FDCSP antibody were diluted

by 1:400.

Immunofluorescence (IF) assay

Tissue sections were deparaffinized, hydrated, and then

permeabilized in 0.5% Triton X-100 for 10 min. The sections

were blocked with 10% normal goat serum for 30 min, and then

incubated with primary antibody in a humid chamber at 4 °C

overnight. Using the TSA Fluorescent Triple Staining Kit

(AFIHC024), HRP secondary antibody corresponding to the

species of the primary antibody was added for 50 min under

room temperature and light protection, TYR-520 fluorescent dye

was added for 15 min, and washed three times with PBS. The

above steps were repeated with 10% normal goat serum, and

another primary and secondary antibody were added. TYR-570

fluorescent dye was added for 15 min and washed 3 times with

PBS.DNA was restained with 4,6-diamidino-2-phenylindole

(DAPI) in PBS for 10 min. Fluorescence was observed using

an OLYMPUS, IX83-FV3000-OSR confocal microscope.

Code availability

No algorithm or software was generated for this study. The

code for reproducing major figure is available on GitHub.8 Any

additional information required to reanalyze the data reported in

this article is available from the lead contact upon request.

Results

Identification of differentially expressed
genes related to TNBC

To identify genes differentially expressed in TNBC, we

categorized the TCGA-BRCA dataset into TNBC, non-TNBC,

and normal breast tissue groups for differential expression

analysis. PCA revealed significant inter-group differences and

minimal intra-group variability, confirming the suitability of the

samples for comparative analysis (Figure 1A). Using the Limma

package, we identified DEGs between TNBC and normal tissue,

and between non-TNBC and normal tissue (adjusted

P-value <0.05, |log2FC| > 1). Volcano plots visualized these

results (Figures 1B,C). Compared to normal breast tissue,

TNBC exhibited 1599 upregulated genes and

1659 downregulated genes, while non-TNBC showed

1291 upregulated genes and 1508 downregulated genes.

Venn diagram analysis identified 29 genes (G1) upregulated

in TNBC but downregulated in non-TNBC (Figure 1D), and

37 genes (G2) downregulated in TNBC but upregulated in non-

TNBC (Figure 1E). These two gene sets were selected for further

investigation. GO analysis revealed that G1 genes were associated

with intermediate filament organization and structural

constituents of the cytoskeleton, while G2 genes were linked

to mammary gland epithelial cell proliferation, complement

binding, and transcription coactivator binding (Figure 1F).

KEGG pathway enrichment analysis indicated that the DEGs

were involved in multiple signaling pathways. Specifically,

G1 genes were enriched in the estrogen, Wnt, and Ras

signaling pathways, whereas G2 genes were enriched in

pathways related to Staphylococcus aureus infection and

complement and coagulation cascades (Figure 1G). A heatmap

visualized the expression patterns of these 66 DEGs across the

8 https://github.com/XinYaLu9696/TNBC/tree/main
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FIGURE 1
Differential analysis of TNBC and non-TNBC based on TCGA Data. (A) PCA of TNBC, non-TNBC and normal breast tissue samples from TCGA-
BRCA cohort. (B) Volcano plot illustrating DEGs identified in TCGA data by comparing TNBC to normal tissue. (Blue: down-regulated DEGs; Red: up-
regulated DEGs; Grey: unchanged genes; Adjusted P-value <0.05 and |log2FC| > 1). (C) Volcano plot illustrating DEGs identified by comparing non-
TNBC to normal tissue. (D) Venn diagram showing the overlap of DEGs up-regulated in TNBC versus normal tissue, but down-regulated in non-

(Continued )
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samples (Figure 1H). PPI networks for G1 and G2 were

constructed to analyze their interactions using STRING

analysis (Supplementary Figures S1A,B).

Of course, we also directly analyzed the differential genes

between TNBC and non-TNBC groups in the TCGA-BRCA

cohort and the GEO dataset, visualizing the results using volcano

plots (Supplementary Figures S1C,D). In the TCGA-BRCA

cohort, 3287 DEGs were identified, while the

GSE76275 cohort yielded 315 DEGs. Venn diagram analysis

revealed 108 co-upregulated DEGs and 148 co-downregulated

DEGs shared between the two datasets (Supplementary Figures

S1E,F). GO analysis demonstrated that the co-upregulated genes

were primarily involved in epidermis development and

intermediate filament organization. Conversely, the co-

downregulated genes were associated with negative regulation

of platelet-derived growth factor receptor (PDGFR) signaling

pathway and monooxygenase activity (Supplementary Figure

S1G). KEGG analysis indicated that the co-upregulated DEGs

were enriched in the estrogen andWnt signaling pathways, while

the co-downregulated DEGs were linked to the peroxisome

proliferator-activated receptor (PPAR) signaling pathway and

cytochrome P450 metabolism (Supplementary Figure S1H).

Based on these two screening methods, we identified FDCSP

as a gene common to both the G1 gene set and the co-upregulated

DEGs. Consequently, we selected FDCSP for further

investigation. Analysis of the TCGA-BRCA dataset revealed

that FDCSP expression was significantly upregulated in TNBC

compared to normal tissues, while it was downregulated in non-

TNBC, with a notable difference between the two groups

(Figure 1I). ROC curve analysis demonstrated that FDCSP

could effectively distinguish TNBC from non-TNBC, with an

AUC of 0.766 (Figure 1J). To validate these findings, we further

analyzed FDCSP expression in the GSE76275 and

GSE21653 datasets, which yielded consistent results

(Figures 1K,L).

The role of FDCSP in TNBC

Using TCGA data, we examined the relationship between

FDCSP expression levels and TNM staging in breast cancer. Our

analysis revealed that FDCSP expression showed statistically

significant differences (P < 0.05) only between T2 and

T4 stages in non-TNBC cases. Notably, no significant

variations in FDCSP expression were observed across different

TNM stages in TNBC patients (Supplementary Figures S2A–F).

To elucidate the role of FDCSP in TNBC, we stratified TNBC

samples in TCGA based on FDCSP expression levels. Samples

were divided into high and low FDCSP expression groups

according to the median expression of the FDCSP gene.

Differential gene expression analysis between these two groups

was then performed (Figure 2A). GO analysis of DEGs in the

high-FDCSP group revealed associations with biological

processes, including positive regulation of cytokine production

and adaptive immune response (Figure 2B). KEGG analysis

indicated that DEGs in the high-FDCSP group were enriched

in pathways such as the NF-κB signaling pathway, cytokine-

cytokine receptor interaction, cell adhesion molecules, and

transcriptional dysregulation in cancer (Figure 2C).

Then, we further investigated the top ten genes with the

highest mutation rates in both the high and low FDCSP

expression groups in TCGA. TP53, the most frequently

mutated gene in breast cancer, showed a markedly higher

mutation rate (88%) in the high-FDCSP group compared to

the low-FDCSP group (Chi-square test: P < 0.05). In addition to

TP53, ANKRD30A, BRCA1, and CACNA1B were among the top

ten mutated genes in the high-FDCSP group, whereas

MUC16 and PIK3CA were prominent in the low- FDCSP

group (Figures 2D,E). These results suggest a potential link

between FDCSP expression and somatic mutations in TNBC.

Considering the close association of FDCSP with the immune

system, we examined the relationship between FDCSP expression

and immune cell infiltration in TNBC. Immune infiltration

profiles were generated for both the high and low FDCSP

expression groups (Figures 2F,G), and differences in immune

cell composition were compared (Figure 2H). Notably, high

FDCSP expression was associated with increased memory

B cell, M1 macrophage infiltration, and decreased

M2 macrophage infiltration (Figure 2H). However, when we

compared the infiltration between M1 macrophage and

M2 macrophage in high FDCSP expression groups, we found

that there was no difference between the two. This indicates that

FDCSP high expression promotes M1 macrophage infiltration,

but M2macrophages are still present in tumors with FDCSP high

expression (Figure 2I).

A high-FDCSP basal subset is identified
in TNBC

The TME is critical in the initiation, progression, invasion,

and metastasis of TNBC, significantly impacting patient

FIGURE 1 (Continued)
TNBC versus normal tissue. (E) Venn diagram showing the overlap of DEGs down-regulated in TNBC versus normal tissue, but up-regulated in
non-TNBC versus normal tissue. (F) GO functional enrichment analysis of gene lists G1 and G2. (G) KEGG pathway enrichment analysis of gene lists
G1 and G2. (H) Heatmap showing the expression levels of DEGs in G1 and G2. (I) Expression of FDCSP in the TCGA-BRCA cohort. (J) ROC curve for
FDCSP as a diagnostic marker. (K) Relative expression of FDCSP in GSE76275. (L) Relative expression of FDCSP in GSE21653. P values were
determined using Wilcox tests in (I), (K) and (L). P value <0.05 was considered statistically significant (*P < 0.05, **P < 0.01, ***P < 0.001).
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FIGURE 2
Functional differences between high and low FDCSP expression groups in TNBC. (A) Volcano plot illustrating DEGs in TNBC identified by
comparing the high-FDCSP expression group to the low-FDCSP expression group. (B) GO analysis of DEGs from the high-FDCSP group and the
low-FDCSP group. (C) KEGG analysis of DEGs. (D)Oncoplots showing mutated genes in the high-FDCSP expression group. (E)Oncoplots showing
mutated genes in the low-FDCSP expression group. (F) Proportions of immune cells in high-FDCSP expression TNBC samples. (G) Proportions

(Continued )
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prognosis. To investigate FDCSP expression within the breast

cancer microenvironment, we analyzed the scRNA-seq dataset

GSE161529, which comprises normal breast tissue, ER+ breast

cancer, HER2+ breast cancer, and TNBC samples. All cell

populations were categorized into three primary types based on

established genetic markers: epithelial cells (high EPCAM, CD24,

SOX4, and KRT18), stromal cells (high COL1A1, MLY9, DCN,

and ACTA2), and immune cells (PTPRC (CD45), CD27, CD3D,

CD79A, and LYZ) (Figures 3A,B). The proportions of these cell

types varied across the four sample groups and fibroblasts are least

prevalent in TNBC (Figure 3C; Supplementary Figure S3A).

FDCSP was expressed in all three cell types, with the highest

levels observed in epithelial cells (Figure 3G). In normal breast tissue,

FDCSP expression was primarily detected in epithelial and stromal

cells. In contrast, in TNBC, FDCSP expression was predominantly

localized to epithelial cells (Supplementary Figure S3B). Therefore,

we further clustered and annotated epithelial cells based on FDCSP

expression levels. Epithelial cells predominantly from normal tissue

were classified as normal epithelial cells (NEs) based on their distinct

distribution patterns (Figure 3F). The remaining epithelial cell

clusters were categorized as luminal (high KRT19, KRT18 and

KRT8) or basal cells (high KRT17, KRT14, KRT5, MYL9 and

MYLK) using established markers (Figures 3D,E). FDCSP

exhibited moderate expression in NEs. Luminal cells showed low

FDCSP expression, whereas basal cells, which were the predominant

epithelial cell type in TNBC, displayed elevated FDCSP expression in

most cases (Figure 3F; Supplementary Figure S3C). Figure 3H

illustrated the distribution of FDCSP expression across epithelial

cell subtypes. Given the diverse functional roles of different epithelial

cells within the TME, KEGG analysis was performed based on the

DEGs of different epithelial cell mentioned above to elucidate their

potential contributions (Figure 3I). Notably, basal cells with high

FDCSP expression were functionally enriched in pathways related to

cellular senescence and the p53 signaling pathway. This finding is

consistent with our previous observation that breast cancer patients

with high FDCSP expression exhibited an increased TP53 mutation

rate, suggesting a potential link between FDCSP and dysregulation

of the p53 signaling pathway.

The validation of high-FDCSP basal
subpopulation

To further validate FDCSP expression in BRCA, we analyzed the

expression of cell lines from CCLE databases, which showed a low

expression of FDCSP in non-TNBC cell lines, while a high expression

in TNBC cell lines (Supplementary Table S1). ST enables the

visualization and quantitative analysis of the transcriptome with

spatial resolution within tissue sections, overcoming the

limitations of scRNA-seq, which lacks spatial information. We

obtained ST data for TNBC and non-TNBC samples from the

10x Genomics website and previous studies [15]. Based on H&E

staining (Figures 4A,E), unbiased clustering, and marker gene

expression (Figures 4B,F), we categorized the tumor tissue into

two distinct regions: the epithelial region, characterized by high

expression of KRT19, KRT18, and CD24, and the immune-

stromal region, marked by high expression of COL1A1, COL3A1,

IL32, C1QA, and other related genes (Figures 4C,G). In TNBC,

regions with high FDCSP expression predominantly overlapped with

the distribution of epithelial cells (Figure 4H). In contrast, FDCSP

expression was rarely observed in non-TNBC samples (Figure 4D).

Subsequently, we evaluated the expression level of FDCSP in clinical

TNBC and non-TNBC tissue samples using IHC staining. The results

demonstrated that the staining intensity of FDCSP in TNBC tissues

was significantly greater than that observed in non-TNBC tissues

(Figures 4I,J; Supplementary Figure S2G). These findings are

consistent with our previous scRNA-seq results, further validating

the specific association of FDCSP with TNBC epithelial cells.

Cell-cell interactions in the breast cancer
microenvironment

Given the critical role of the TME in tumor progression and

therapeutic response, we conducted a CellPhoneDB-based cell

interaction analysis to evaluate interactions between epithelial

cells and other cell types. The analysis revealed that interactions

between epithelial cells and immune cells were predominant in

the TME (Figure 5A). To further characterize these interactions,

we performed dimensionality reduction, clustering, and

annotation of immune cells. Based on marker gene

expression, immune cells were classified into B cells, dendritic

cells (DCs), T/natural killer (NK) cells, mast cells, and

macrophages (Macs) (Supplementary Figures S4A–C).

We then examined the interactions between these immune cell

types and different epithelial cell populations (Figures 5B–E). The

results demonstrated that, in breast cancer tissues, macrophages

exhibited the highest number of interactions with other cell types.

Notably, in TNBC, the interaction between high-FDCSP basal cells

and macrophages was the most frequent, suggesting that these two

cell types play a central role in cellular communication within the

TNBC microenvironment.

FIGURE 2 (Continued)
of immune cells in low-FDCSP expression TNBC samples. (H) Violin plot illustrating differences in immune cell infiltration between the high-
FDCSP expression group and the low-FDCSP expression group. (I) Box plot illustrating differences between M1 and M2 macrophage infiltration in
TNBC. P-values were determined using Wilcoxon tests. NS.: no significance.
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FIGURE 3
Expression pattern of FDCSP at single cell level in breast cancer. (A) UMAP representations of all scRNA-seq data from GSE161529, include
including samples from normal breast tissue, ER+, HER2+ breast cancer and TNBC. (B)Dot plot showing the average expression of knownmarkers in
indicated clusters. (C) Bar plot showing the percentage of each cell subtypes. Colors correspond to those used in panel (A). (D)UMAP representation

(Continued )
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Macrophages interact with high-FDCSP
basal cells via TGFβ1-EGFR

Considering that it is not possible to further subdivide

macrophages into M1 and M2 types (Supplementary Figures

S4D–H; Supplementary Table S2), we used all macrophage data

for our study. Further analyses were conducted to characterize

the interactions between macrophages and high-FDCSP/low-

FDCSP basal cells in TNBC and between macrophages and

low-FDCSP luminal cells in ER+ and HER2+ breast cancer.

The results revealed that, in TNBC, macrophages could

interact with EGFR on high-FDCSP basal cells by secreting

TGF-β1 (Figure 6A). This specific interaction was not

observed in low-FDCSP basal cells or low-FDCSP luminal

cells from ER+ and HER2+ breast cancer samples (Figures

6B–D). TGF-β is known to transactivate EGFR and promote

FIGURE 4
Spatial expression patterns of FDCSP in TNBC and non-TNBC. (A) H&E stained image of non-TNBC tissue. (B) Unbiased clustering of ST spots,
identifying epithelial cells and immune-stroma cells in non-TNBC tissue. (C) Dot plot showing the expression of marker genes in epithelial cells and
immune-stroma cells. (D) Spatial distribution of FDCSP gene expression in non-TNBC tissue. (E) H&E stained image of TNBC tissue. (F) Unbiased
clustering of ST spots, identifying epithelial cells and immune-stroma cells in TNBC tissue. (G)Dot plot showing the expression of marker genes
in epithelial cells and immune-stroma cells. (H) Spatial distribution of FDCSP gene expression in TNBC tissue. (I) IHC staining showing the expression
of FDCSP in TNBC tissues. (J) IHC staining showing the expression of FDCSP in non-TNBC tissues.

FIGURE 3 (Continued)
showing the composition of epithelial subtypes. (E) Dot plot showing the expression of marker genes for each epithelial subtype. (F) Bar plot
showing the percentage of each epithelial subtype. Colors correspond to those used in panel (E). (G) Feature plot showing FDCSP expression in all
scRNA-seq data fromGSE161529. (H) Feature plot showing FDCSP expression in epithelial subtypes. (I) KEGG analysis of different epithelial subtypes.
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breast cancer migration and invasion through the Smad3 and

ERK/Sp1 signaling pathways. Therefore, we sought to explore the

potential connection between FDCSP and EGFR. EGFR

expression was significantly higher in TNBC compared to non-

TNBC (Supplementary Figure S5A) and was detected in both NEs

and basal cells of TNBC (Supplementary Figure S5B). Co-

localization analysis demonstrated that EGFR and FDCSP were

co-expressed in epithelial cells (Supplementary Figure S5C), and

their expression levels were positively correlated (Supplementary

Figure S5D). This finding was further validated at the tissue level of

TNBC through IF and IHC staining (Figures 6E,F).

The role of FDCSP in immunotherapy
response and target drug prediction

We employed TIDE to estimate immunotherapy efficacy in

high and low FDCSP subgroups (Figure 7A). Lower TIDE scores,

FIGURE 5
Interaction between epithelial and immune cells. (A) The mutual interactions among the main TME components in normal, ER+, HER2+ and
TNBC samples. (B) Heatmap showing the number of cell-cell interactions between immune subtypes and epithelial subtypes in normal samples, as
predicted by CellphoneDB. (C) Heatmap showing the number of cell-cell interactions between immune subtypes and epithelial subtypes in ER+
samples, as predicted by CellphoneDB. (D) Heatmap showing the number of cell-cell interactions between immune subtypes and epithelial
subtypes in HER2+ samples, as predicted by CellphoneDB. (E)Heatmap showing the number of cell-cell interactions between immune subtypes and
epithelial subtypes in TNBC samples, as predicted by CellphoneDB.
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FIGURE 6
Interaction between FDCSP-positive epithelial cells and macrophages. (A) Ligand-receptor pairs involved in mutual interactions between
macrophages and basal cells with high FDCSP expression in TNBC. (B) Ligand-receptor pairs involved in mutual interactions between macrophages
and basal cells with low FDCSP expression in TNBC. (C) Ligand-receptor pairs involved in mutual interactions between macrophages and luminal

(Continued )
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suggesting a reduced likelihood of immune evasion, were

observed in the low-FDCSP group, indicating a potentially

greater benefit from immunotherapy in this subgroup

(Figure 7B). Chi-square tests also found that the low-FDCSP

group benefited more from ICB treatment (Figure 7C). This

suggests that FDCSP could serve as a valuable biomarker for

identifying patients who may benefit from ICB treatment.

Additionally, we utilized the CARE database to explore the

relationship between FDCSP expression and drug efficacy

(Figure 7D; Supplementary Table S3). Among the drugs

analyzed, six from the CGP and eight from the CCLE were

evaluated. Positive CARE scores were observed for four and five

drugs, respectively, indicating that these drugs are likely to be

more effective in patients with high FDCSP expression. To

further analyze the drugs identified, we performed molecular

docking of the FDCSP with the most likely effective drug. The

docking models of FDCSP with Quizartinib are shown in

Figure 7E, where the binding energy = −9.08 kj/mol.

Existing study have found that therapy-induced senescence

TNBC cells (MDA-MB-231, Hs578T) remained sensitive to

Quizartinib [17]. Our molecular docking results indicate that

the binding energy is far less than −2.5 kj/mol, suggesting that

Quizartinib can treat triple-negative breast cancer by targeting

FDCSP specifically.

Discussion

TNBC is a particularly aggressive subtype of breast cancer,

associated with a poorer prognosis and higher mortality rate

compared to non-TNBC. This subtype is defined by the absence

of ER, PR, and HER2 expression, which limits the efficacy of

endocrine therapies and HER2-targeted treatments [18].

Consequently, the identification of novel therapeutic targets

and the development of effective treatment strategies for

TNBC are critically important. In this study, we aimed to

identify key genes that differentiate TNBC from non-TNBC.

Analysis of the TCGA-BRCA cohort revealed 29 DEGs that were

upregulated in TNBC and downregulated in non-TNBC, relative

to normal mammary tissue. ROC curve analysis indicated that

FDCSP exhibits strong potential for distinguishing TNBC from

non-TNBC. This differential expression was subsequently

validated in two independent datasets, GSE76275 and

GSE21653. Based on these findings, we selected FDCSP for

further investigation.

The human FDCSP gene, located on chromosome 4, encodes

a secreted protein expressed in FDCs, periodontal ligaments, and

conjunctival epithelium [19, 20]. FDCSP exhibits a unique

expression pattern within the immune system and

preferentially binds to activated B cells. It may play a role in

autoimmune conditions by modulating B cell immune responses

[21]. Previous studies have shown that FDCSP overexpression

reduces the expression of osteogenic genes in human periodontal

ligament cells (hPDLCs) while increasing the expression of

osteoclast-related genes, thereby promoting osteoclastogenesis

[22]. FDCSP also influences periodontal ligament (PDL) cell

proliferation and acts as a phenotypic stabilizer of fibroblasts by

inhibiting their differentiation into mineralized tissue-forming

cells [23]. Transcription of the FDCSP gene is stimulated by pro-

inflammatory cytokines, including TNF-α, IL-1β, and IL-6,

which target the FDCSP gene promoter [24–26]. In patients

with immunoglobulin A nephropathy (IgAN), FDCSP

expression is significantly reduced in the tonsils and

negatively correlated with increased IgA production [27].

FDCSP may regulate germinal center B cells, control IgA

production in B cells [28], and participate in the modulation

of IgA production in IgAN tonsils. Due to these

immunomodulatory functions, FDCSP is considered a

promising candidate for therapeutic targeting [29].

FDCSP is abnormally overexpressed in several malignant

tumors, including HPV+ HNSC [12], epithelial ovarian cancer

(EOC) [11], endometrial cancer, lung adenocarcinoma [14], and

RCC [13]. In contrast, it is nearly absent in equivalent benign

lesions or normal tissues. Studies have demonstrated that FDCSP

promotes the invasion andmetastasis of ovarian cancer cells [11].

In vitro, FDCSP enhances the migration and aggressiveness of

EOC cells and reduces intercellular adhesion by phosphorylating

Akt at S473 and downregulating E-cadherin. Additionally,

silencing FDCSP has been shown to induce cytoskeletal

reorganization. These findings position FDCSP as a promising

candidate for anti-tumor targeting. However, the role of FDCSP

in breast cancer, particularly TNBC, remains unexplored.

Therefore, we employed bioinformatics approaches to

investigate the biological functions and potential regulatory

mechanisms of FDCSP in TNBC.

In our study, TNBC samples were stratified into high- and

low-expression groups based on FDCSP expression levels for

differential analysis. GO and KEGG pathway analyses revealed

that DEGs in the high-FDCSP group were associated with

adaptive immunity, the NF-κB signaling pathway, and the

FIGURE 6 (Continued)
cells with low FDCSP expression in ER+ breast cancer. (D) Ligand-receptor pairs involved in mutual interactions between macrophages and
luminal cells with low FDCSP expression in HER2+ breast cancer. (E) IHC staining showing the co-expression of EGFR and FDCSP in TNBC tissues. (F)
IF assay showing the co-expression of EGFR and FDCSP within the same TNBC tissue sections.
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positive regulation of cytokine production. Somatic gene

mutation landscape analysis indicated an increased

TP53 mutation rate in the high-FDCSP group. Immune

infiltration analysis demonstrated elevated infiltration of

B cells and M1 macrophages in the high-FDCSP

group. Furthermore, single-cell transcriptomic analysis was

performed to annotate and cluster breast cancer cells. The

results showed that FDCSP was predominantly expressed in

basal cells of TNBC tumors and exhibiting high expression,

while it was rarely detected in non-TNBC epithelial cells. ST

data analysis confirmed that FDCSP+ cells were highly expressed

within the epithelial cell distribution range in TNBC but were

scarce in non-TNBC, aligning with previous findings.

The TME is a complex ecosystem comprising multiple

interacting cell populations. Previous studies have emphasized

the critical role of the TME in key cancer-related processes,

including tumor progression, treatment resistance, angiogenesis,

and metastasis [30–32]. Mechanistically, the TME influences

cancer cells through dynamic and intricate pathways that

regulate cancer-associated signaling [33], such as ligand-

receptor interactions, cytokine/metabolite signaling, and

extracellular matrix (ECM) remodeling [34–38]. To further

elucidate the TME in TNBC, we employed CellPhoneDB to

quantitatively analyze cell-cell interactions. Our analysis

revealed that interactions between epithelial cells and immune

cells were the most prominent in TNBC. Further investigation

demonstrated that basal cells exhibiting high FDCSP expression

displayed the most significant communication with macrophages,

strongly suggesting a close interaction between these cell types.

Macrophages, key cellular components of the TME, influence

cancer progression and outcomes in diverse ways owing to their

phenotypic plasticity [39, 40]. Tumor-associated macrophages

(TAMs) can promote inflammation and exert anti-tumor effects.

Conversely, they can also support tumor progression by

facilitating angiogenesis [41, 42], promoting metastasis [43,

44], and suppressing T cell function [45, 46]. In breast cancer,

TAM infiltration is associated with a poorer prognosis [47]. Our

findings regarding the extensive crosstalk between high-FDCSP

basal cells andmacrophages offer potential novel insights into the

mechanisms underlying TNBC malignancy.

FIGURE 7
Predictive value of FDCSP in breast cancer immunotherapy and targeted drug response. (A) TIDE scores in TCGA TNBC patients. (B) TIDE scores
in different FDCSP subgroups. P-values were determined using Wilcoxon tests. *: P < 0.05. (C) The effect of ICB treatment in different FDCSP
subgroups. P-values were determined using Chi-square test. (D) CARE analysis of FDCSP in the CCLE, CTRP, and CGP databases. (E) 3D docking
model of FDCSP and Quizartinib compound molecule prediction.
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Additionally, ligand-receptor pair analysis indicated that

macrophages secrete TGF-β1, which interacts with the highly

expressed EGFR on high-FDCSP basal cells. TGF-β signaling

exhibits a dual role in cancer, demonstrating both tumor-

suppressive and tumor-promoting effects depending on the

specific context [48]. In early-stage breast cancer, TGF-β can

act as a potent inhibitor of proliferation and inducer of apoptosis

[49]. However, in advanced stages, it often promotes cancer

aggressiveness. Many of these functions are mediated through

the Smad signaling pathway [50–52]. The EGF/EGFR signaling

pathway is a well-established driver of tumorigenesis [53].

Dysregulation of EGFR signaling has been observed in various

cancers, including breast cancer [54], colon cancer [55], and lung

cancer [56]. Overexpression of EGFR is not only associated with

cancer progression but also correlates with a poorer prognosis in

cancer patients [57, 58]. The interplay between EGF and TGF-β
signaling exemplifies oncogenic cooperation and context-

dependent regulation. In breast cancer, TGF-β expression is

positively correlated with EGFR expression. TGF-β
transactivates EGFR and promotes breast cancer migration

and invasion through the Smad3 and ERK/Sp1 signaling

pathways [59]. The downstream signaling pathways of EGFR

play a crucial role in regulating cell cycle progression and the

survival of mammary epithelial cells.

TNBC exhibits a significant propensity for metastasis, and

patients who do not respond to chemotherapy typically

experience a poor prognosis [60]. Immunotherapy, including

the use of immune checkpoint inhibitors (ICIs) targeting

molecules such as cytotoxic T-lymphocyte-associated antigen

4 (CTLA-4), programmed cell death protein 1 (PD-1), its ligand

(PD-L1), and lymphocyte activation gene 3 (LAG-3), has shown

improved efficacy and precision in targeting cancer cells

[61–63]. However, only a subset of TNBC patients responds

favorably to this treatment [64, 65]. Therefore, the

identification of biomarkers capable of predicting treatment

response is of substantial clinical importance for selecting

patients most likely to benefit from ICIs. Through the

application of TIDE, we demonstrated that the FDCSP

effectively discriminates between responders and non-

responders to ICB treatment. These findings suggest that

FDCSP could serve as a novel candidate biomarker for

predicting immunotherapy response.

Conclusion

In conclusion, we conducted comprehensive profiling of both

non-TNBC and TNBC tissues, employing an integrated multi-

omics approach. Our investigation led to the identification of a

unique FDCSP gene in TNBC, the characterization of its TNBC-

specific FDCSP high expressed basal cells, and the elucidation of

critical cellular interactions of FDCSP high expressed basal cells

within the tumor microenvironment. These findings provide

novel mechanistic insights into the molecular and cellular

processes driving the malignant progression of TNBC, offering

potential targets for therapeutic intervention and early detection

strategies.
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SUPPLEMENTARY FIGURE S1
Common DEGs associated with TNBC identified in TCGA and GEO. (A)
PPI network for G1, generated using STRING. (B) PPI network for G2,
generated using STRING. (C) Volcano plot illustrating DEGs identified in
TCGA data by comparing TNBC to non-TNBC. (D) Volcano plot
illustrating DEGs identified in GSE76275 data by comparing TNBC to
non-TNBC. (E) Venn diagram showing the overlap of up-regulated
DEGs. (F) Venn diagram showing the overlap of down-regulated DEGs.
(G) GO analysis of co-up-regulated DEGs and co-down-regulated
DEGs. (H) KEGG analysis of co-up-regulated DEGs and co-down-
regulated DEGs.

SUPPLEMENTARY FIGURE S2
Correlation between FDCSP expression level and TNM stage of breast
cancer. (A) Box plot showing the expression levels of FDCSP in T1-4
stages of TNBC (T describing the size of the tumor and any spread of
cancer into nearby tissue). (B) Expression levels of FDCSP in N1-4 stages
of TNBC (N describing the spread of cancer to nearby lymph nodes). (C)

Expression levels of FDCSP in M0 and M1 stages of TNBC (M describing
the metastasis). (D) Expression levels of FDCSP in T1-4 stages of non-
TNBC. (E) Expression levels of FDCSP in N1-4 stages of non-TNBC. (F)
Expression levels of FDCSP in M0 and M1 stages of non-TNBC. (G) IHC
staining showing the expression of FDCSP in Norma tissues. P-values
were determined using Wilcoxon tests. *: P < 0.05.

SUPPLEMENTARY FIGURE S3
Distribution of single cells across different breast cancer subtypes. (A)
UMAP representation of scRNA-seq data from different groups,
including samples fromnormal breast tissue, ER+, HER2+ breast cancer
and TNBC. (B) Feature plot showing FDCSP expression of all scRNA-seq
data from different groups. (C) UMAP representation showing the
composition of epithelial subtypes in different groups.

SUPPLEMENTARY FIGURE S4
Distribution of immune cell subtypes. (A) UMAP representation showing
the composition of immune subtypes. (B) Dot plot showing the
expression of marker genes for each immune subtype. (C) Bar plot
showing the percentage of each cell subtype. Colors correspond to those
used in panel (A). (D) UMAP representation showing the composition of
macrophage subtypes. (E) Feature plot showing TGF-β1 expression in
all macrophage subtypes. (F) Feature plot showing the expression of
M1 signature gene sets in all macrophage subtypes. (G) Feature plot
showing the expression of M2 signature gene sets in all macrophage
subtypes. (H) Dot plots showing the average expression of known
markers in indicated clusters.

SUPPLEMENTARY FIGURE S5
Expression pattern of EGFR in breast cancer. (A) EGFR expression in
TCGA. P-values were determined using the Wilcox tests (***P < 0.001).
(B) Feature plot showing EGFR expression in epithelial subtypes. (C)
Feature plot illustrating FDCSP (red) and EGFR (green) expression in
epithelial subtypes. (D) Correlation of FDCSP and EGFR expression. A
P-value <0.05 was considered statistically significant.
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