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Abstract

The burgeoning clinical demand for patient-specific cardiacmodeling encounters

significant challenges. The current clinical cardiac models are either difficult to

manufacture or lack of detailed geometric structures and hence, often fail to

incorporate important patient-specific characteristics. Moreover, most 3D-

printable soft materials, such as Thermoplastic Poly-Urethane (TPU) or elastic

resins, exhibit insufficient flexibility and biocompatibility to accurately mimic

cardiac tissues, therefore limiting their ability to truly replicate patient-specific

cardiac conditions. To address these limitations, we propose an innovative

method for patient-specific cardiac substructure reconstruction based on the

integration of Artificial Intelligence (AI) and embedded 3D printing. First, by

combining medical imaging data (CT scan) with AI-driven high-precision 3D

reconstruction algorithms, the new method segments the patient-specific

cardiac structure into 10 substructures. The average Dice coefficient across the

ten substructures is 0.87. Second, it uses an embedded 3D printing technique

which utilizes silicone rubber matrix as supporting structure and uses diluted

catalyst ink to extrude onto the supporting matrix. Through precise regulation of

the matrix composition, material deposition rate and curing time, it can fabricate

high-fidelity, complex 3D patient-specific silicone heart models with the average

dimensional error less than 0.5 mm. The proposed method can substantially

reduce manual intervention and post-processing time. The fabricated models

provide valuable morphological insights for cardiovascular diagnosis and

treatment planning. It is believed that many clinic applications will follow.
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Impact statement

We propose a novel framework integrating artificial

intelligence (AI) and embedded 3D printing for personalized

cardiac substructure reconstruction through two primary

contributions: High-precision 3D reconstruction algorithm:

Utilizing medical imaging data (CT scans), we developed a

cardiac substructure segmentation framework incorporating

anatomical priors with correlated spatial-channel co-attention

mechanisms. This system enables automatic identification and

precise segmentation of cardiac substructures, significantly

enhancing image resolution and data fidelity during the 3D

printing preprocessing stage, thereby generating high-quality

3D printable files. Embedded 3D printing of silicone rubber

matrix: By precisely modulating the composition ratio of base

materials within the supporting matrix, we achieved on-demand

printing-curing synchronization. This innovative approach

effectively addresses the rheological challenges associated with

pre-cured silicone, enabling the fabrication of complex three-

dimensional cardiac models with exceptional anatomical fidelity.

This approach yields high-fidelity 3D silicone cardiac models

(dimensional error <0.5 mm), accurately replicating patient-

specific anatomy to support precise diagnosis and

treatment planning.

Introduction

Cardiovascular diseases (CVDs) represent 33% of worldwide

deaths (20.5 million/year), with persistently rising mortality rates

(WHF [1]). Effective treatment requires not only targeted

interventions but also personalized medical care. Developing

accurate human heart models is crucial for understanding

cardiac pathology and guiding diagnosis and treatment. The

heart is an intricately complex and multifunctional organ,

encompassing a sophisticated vascular network and atrial and

ventricular structures. Accurately replicating the complex

structures of the heart remains a significant challenge,

primarily manifested in three critical aspects. First, the initial

and most crucial step involves utilizing high-resolution medical

imaging technologies combined with advanced algorithms to

precisely capture the intricate details of cardiac structures.

Second, the selection of an appropriate 3D printing

technology is essential, as it must provide high resolution and

detail fidelity to ensure the accuracy of the models. Third,

identifying suitable printing materials that can mimic the

softness and elasticity of the heart while maintaining sufficient

strength and stability during the fabrication process is vital.

High-resolution imaging and advanced algorithms form the

foundation for precise cardiac modeling, with substructure

segmentation remaining a core research focus. While deep

learning has revolutionized this field through automated

feature extraction and nonlinear modeling [2–9], current

approaches still face significant challenges: (1) The U-Net

model proposed by Ronneberger et al. [10], a convolutional

neural network architecture for biomedical image

segmentation, achieved groundbreaking results in medical

image segmentation. However, U-Net-based frameworks [11,

12] and their variants (e.g., dense U-Net for multi-scale

features [13]): often struggle with cardiac substructures’ scale

variations and topological complexity. (2) Most methods neglect

inherent cardiac anatomy, reducing effectiveness. (3) Many

algorithms require high-performance hardware and extensive

labeled data, leading to poor performance on fine substructures.

Despite multi-stage solutions [14–16] that decompose

segmentation into region-of-interest (ROI) localization and

refinement, significant gaps remain in precision and

robustness for clinical application.

Recent advances in 3D-printed cardiac models show promise

for improving cardiac care, yet challenges remain. While

integration of deep learning has enhanced segmentation

accuracy (e.g., coronary artery identification [17]) and

streamlined clinical workflows [18], current approaches often

lack comprehensive solutions. Three major limitations persist:

(1) manufacturing complexity and limited geometric fidelity

hinder high-precision applications [19–21]; (2) commercially

available soft materials (e.g., TPU, elastic resins); fail to

adequately replicate cardiac tissue properties; (3) conventional

3D printing struggles with soft materials due to flowability,

support requirements, and precision constraints.

In conclusion, the current limitations of existing models fail

to meet the essential requirements for personalized and accurate

replication of cardiac structures. To address these challenges, this

study focuses on two dimensions: (1) enhancing data accuracy

during the pre-processing stage of 3D printing to improve the

precision of cardiac substructure replication; (2) exploring the

optimal printing technologies and materials that can

simultaneously mimic the soft elasticity of cardiac tissue while

ensuring structural integrity during the manufacturing process.

We propose a new solution leveraging advanced imaging data

(e.g., CT scans) and high-precision 3D reconstruction algorithms

to automatically identify and segment cardiac substructures from

medical imaging data, thereby generating high-quality 3D

printable files. By harnessing the capabilities of embedded 3D

printing technology, we have engineered a specialized 3D

printing system for fabricating silicone rubber-based

constructs. This system enables the deposition of soft

materials within a temporary support matrix, which is

subsequently removed to yield intricate, patient-specific

structures. This methodology simultaneously addresses

challenges related to material flowability, support structure

requirements, and printing precision, thereby enabling the

production of highly customized cardiac models.

These patient-specific silicone cardiac models are designed

for direct clinical translation. As tangible, anatomically accurate

replicas, they facilitate the understanding of cardiac pathology,
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aid in diagnostic decision-making, and support preoperative

planning by allowing surgeons to visualize spatial anatomical

relationships, assess procedural feasibility, and simulate surgical

interventions (e.g., resection, implantation, or repair) prior to

actual surgery. Additionally, the models provide a realistic tactile

experience for training residents and fellows in cardiac anatomy and

interventional techniques, reducing reliance on cadavers and live

procedures. By bridging imaging, engineering, and clinical practice,

this platform can enhances training efficacy while offering support

for the development of personalized therapeutic strategies.

Methodology

To achieve precise reconstruction of the cardiac anatomical

structure, we propose an integrated framework for 3D

reconstruction of cardiac substructures, comprising two core

subsystems: a 3D reconstruction system for cardiac

substructures and an embedded 3D printing system for

silicone rubber-based constructs, as depicted in Figure 1. This

framework systematically addresses multiple critical stages,

including the 3D modeling of ten cardiac substructures

derived from medical CT images using advanced

reconstruction algorithms, the development of specialized 3D

reconstruction software, and the design and implementation of

optimized 3D printing materials and a robust printing platform.

Three-dimensional reconstruction system
for cardiac substructures

The three-dimensional (3D) reconstruction system for

cardiac substructures was developed based on a proprietary

algorithm specifically designed for cardiac imaging. This

integrated system streamlines the entire workflow from

cardiac computed tomography (CT) image acquisition to the

generation of stereolithography (STL) files suitable for 3D

printing applications, enabling automated and intelligent

reconstruction of cardiac substructures.

High-precision reconstruction algorithm for
cardiac substructures

Cardiac substructures present several technical challenges in

CT imaging, including heterogeneous grayscale intensities,

poorly defined boundaries, irregular morphological features,

and positional variability. Adjacent substructures often have

similar grayscale values, resulting in low contrast, while some

are connected via blood inflow pathways and differ significantly

in size. Moreover, cardiac morphology and spatial orientation

vary considerably across individuals, and even within the same

subject over time or across imaging planes (as illustrated in

Figure 2). Due to the inherent limitations of medical imaging

modalities and tissue-specific properties, images are susceptible

to artifacts such as noise and motion-induced distortions. These

intrinsic challenges pose significant difficulties for accurate

reconstruction of cardiac substructures.

The experimental data were acquired from the Third

Affiliated Hospital of Guangzhou Medical University, with

prior approval from the Institutional Review Board (IRB).

Cardiac CT imaging data from 117 clinical cases were

collected for this study. Non-contrast CT scans were used in

this study. All included cases had normal cardiac anatomy, with

no significant pathological conditions or anatomical variants.

Cases were selected via random sampling from the institutional

database to ensure representativeness and minimize selection

bias. These cases include precise contour annotations of ten key

FIGURE 1
The integrated framework for 3D reconstruction of cardiac substructures.
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cardiac structures: the left and right atria (LA and RA), left and

right ventricles (LV and RV), superior and inferior vena cava

(SVC and IVC), pulmonary artery (PA), pulmonary vein (PV),

and ascending and descending aorta (AA and DA). The

annotation task was collaboratively performed by three

experienced radiologists, with two intermediate-level

FIGURE 2
CT slice sequence of cardiac substructures.

FIGURE 3
(a) Cardiac substructure segmentation framework integrating anatomical priors with collaborative spatial-channel attention mechanisms. (b)
Collaborative attention module.
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physicians performing the initial delineation, which was

subsequently reviewed and confirmed by a senior physician.

In addressing the challenges associated with reconstructing

substructures in cardiac CT images and the inherent limitations

of current deep learning segmentation models, our approach is

inspired by the meticulous delineation techniques employed by

medical professionals. We have developed a cardiac substructure

segmentation framework that synergistically combines

anatomical prior knowledge with a spatial-channel co-

attention mechanism (as depicted in Figure 3). This

architecture represents an advanced iteration of a

segmentation framework predicated on anatomical structure

priors, as delineated in the seminal work [22]. This

framework employs a sequential two-step segmentation

process, utilizing a coarse-to-fine cascade network. The initial

step involves coarse segmentation (Large substructure

segmentation network LS-Net, depicted on the left side of

Figure 3a) of more readily identifiable substructures (such as

the quartet of atrial and ventricular formations), followed by fine

segmentation (Small substructure segmentation network SS-Net,

illustrated on the right side of Figure 3a) of more complex

substructures (such as the quartet of atrial and ventricular

formations). To augment the segmentation accuracy of small-

scale substructures, the outcomes of the coarse segmentation are

utilized as prior information, which, in conjunction with the

original image, constitutes the model’s input. The anatomical

knowledge pertaining to large-scale substructures is embedded

within the fine segmentation network to guide and refine the

training of small-scale substructures. At the interface between the

encoder and decoder in the fine segmentation network, a spatial-

channel co-attention module is strategically designed to

adaptively compute the region of interest based on the

channel and spatial distribution information of the features

themselves (illustrated in pink block in Figure 3a, with

detailed architecture shown in Figure 3b). This module

adeptly extracts spatial and channel data from feature maps

across diverse scales, assimilates long-range dependencies

among features of varying magnitudes, and computes the

weighting of target features across multiple dimensions.

Consequently, it captures the long-range dependencies and

multi-scale global contextual information of cardiac CT

images, enabling the segmentation network to assimilate both

local and global information at each feature scale, thereby

achieving efficient and precise segmentation of cardiac

substructures. Segmentation performance was quantitatively

assessed using the Dice similarity coefficient (DSC) [10],

which is commonly used metrics in medical image

segmentation tasks.

Software system based on cardiac substructure
reconstruction algorithm

Building upon the aforementioned cardiac substructure

segmentation algorithm, we have further developed a software

system that facilitates the process from uploading cardiac CT

imaging cases to outputting STL format files compatible with 3D

printing systems, comprising the following functional modules:

(1) a multi-modal image import module supporting standard

formats (e.g., DICOM, NIFTI) with metadata extraction; (2) an

intelligent preprocessing module integrating image

normalization, hybrid denoising, and multi-modal registration

algorithms; (3) a cardiac substructure segmentation module

employing deep learning for automated segmentation of ten

anatomical structures; (4) a 3D visualization module providing

multiplanar reconstruction and volume rendering capabilities;

(5) a data export module supporting parameter-adjustable STL

file generation; (6) a security module implementing RBAC-based

access control and data security compliance with clinical privacy

standards; (7) a system monitoring module with comprehensive

logging and exception handling mechanisms; and (8) a user

interface module featuring a clinically optimized GUI design.

Embedded 3D printing system with
silicone rubber matrix

The selection of appropriate 3D printing technology and

materials is crucial for manufacturing heart models through 3D

printing. These materials must be able to replicate the softness

and elasticity of the heart while maintaining sufficient strength

and stability during the fabrication process. Silicone rubber is

considered particularly suitable for this application due to its

exceptional elasticity, excellent thermal and chemical stability.

Room temperature vulcanizing (RTV) silicone, in particular,

offers ease of handling and can be chemically modified to

achieve specific mechanical, optical, or electrical properties.

These modified silicone rubbers have been widely used in

fields such as soft robotics, flexible sensors, biomedical

devices, and wearable technologies [23–25]. Based on these

advantageous properties, we selected silicone rubber as the

primary material for 3D printing cardiac substructures. The

silicone rubber used in this study is an electrical insulator

with very low electrical conductivity (typically on the order of

10−12 to 10−15 S/cm). This property ensures the models are

electrically non-conductive, which is relevant for safety

considerations in potential applications involving electrical

stimulation or near electronic medical devices.

Conventional 3D printing techniques encounter substantial

limitations when processing soft materials, particularly in the

fabrication of complex geometric structures. These limitations

include issues with material rheology, the necessity for support

structures, and compromised printing precision. Embedded 3D

printing technology [26] enables researchers to circumvent the

limitations of traditional 3D printing techniques when

processing soft materials, demonstrating great potential in the

fabrication of complex structures and soft material-based

products. However, the printing materials typically used in
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embedded 3D printing, such as silicone and hydrogels, exhibit

high fluidity and moldability. The most challenging aspect of the

printing process involves precise control of the support matrix’s

curing parameters, particularly in terms of temporal and

proportional adjustments. Silicone-based 3D printing of

cardiac models faces two limitations. First, material supply is

limited by reservoir capacity, typically less than 100 mL in most

studies, necessitating frequent refilling during large-scale

printing and continuous operator supervision to prevent print

failure. Second, the printable time window is constrained, as most

extrusion-based methods require pre-mixing of commercial two-

part room-temperature vulcanizing (RTV) silicone, and printing

must be completed before gelation. Even with curing inhibitors,

the ink remains workable for only a few hours, making prolonged

printing of large-volume models difficult. Furthermore, precise

control of nozzle extrusion is challenging; high print speeds may

lead to surface heterogeneity, compromising print quality, and

most soft materials require extended curing times on the

build platform.

To address these technical challenges, we have developed a

silicone-embedded 3D printing system [27]. This system

employs an advanced silicone printing methodology wherein

diluted catalyst ink is continuously and uniformly extruded into a

silicone polymer-containing support matrix. Through precise

adjustment of the fundamental material ratios in the support

matrix, we have successfully fabricated three-dimensional

silicone cardiac models with complex features and high

dimensional fidelity, as illustrated in the schematic diagram of

the printing working principle (Figure 4) [27].

In comparison to conventional manufacturing

methodologies, the advanced printing technology elucidated

herein facilitates the versatile modulation of the mechanical

properties of silicone rubber in response to diverse application

demands. This is achieved through the precise calibration of the

constituent ratios within the supporting matrix, obviating the

necessity for molds or ancillary support structures. Diverging

from the direct deposition of pre-cured silicone compounds, our

innovative printing paradigm refines the procedural workflow by

segregating the crosslinking agent from the catalyst. The

methodology entails the incorporation of the crosslinking

agent within the supporting matrix, whilst the catalyst is

embedded within the printing ink.

During the extrusion process, the diluted catalyst-laden ink is

dispensed into the supporting matrix, which is replete with the

foundational silicone rubber precursors. This instigates a

localized crosslinking and solidification of the adjacent matrix,

thereby enabling a bespoke printing-curing sequence that

augments material cohesion. Owing to the superlative catalytic

efficacy, a minuscule quantity of the catalyst suffices to induce the

solidification of the proximate supporting matrix. Empirical

printing assays have corroborated that an ink extrusion rate of

4% engenders optimal fusion between successive printing

trajectories. Consequently, the volumetric ratio of the resultant

printed construct to the consumed ink approximates 25:1,

indicative of an exemplary ink utilization efficiency. This

innovation ameliorates the constraints imposed by finite ink

reservoir capacities and protracted printing durations. The

architectural schematics of the silicone-embedded 3D printing

system are delineated in Figure 5.

Experiments and results

Experimental dataset and environment

The experimental data used in this study were provided by

the Third Affiliated Hospital of Guangzhou Medical University.

The dataset comprises 117 cardiac CT image samples, all

acquired using a Siemens SOMATOM Force third-generation

dual-source dual-energy spiral CT scanner. The constructed

dataset has dimensions of 117 × 130 × 512 × 512, where

117 represents the number of cases, 130 denotes the number

of slices per case, and 512 × 512 corresponds to the size of each

slice. The cases were randomly divided into training, validation,

and test sets in a ratio of 6:2:2.

The hardware environment for the experiments included an

Intel® Xeon® E5-2678 v3 CPU and an NVIDIA GTX-1080Ti

GPU with 11 GB of memory. The operating system was Ubuntu

18.04, and the programming language used was Python 3.7. All

programs were implemented under the Pytorch open-

source framework.

Experimental results of 3D reconstruction
algorithm for cardiac substructures

In this chapter, the segmentation accuracy was quantitatively

evaluated using the Dice coefficient [10], which is calculated as:

FIGURE 4
Printing principle.
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Dice X,Y( ) � 2 G ∩ P| |
G| | ∪ P| | (1)

where G and P denote the manually segmented mask and the

prediction mask, respectively, using binary tags. Dice calculates

the ratio of twice the intersection of the two masks to their union,

which reflects the similarity between the target region of

segmentation and the annotated target region. The higher the

similarity, the better the segmentation effect. Dice ranges from

0 to 1, where 1 represents the best segmentation, and 0 represents

the worst segmentation.

To evaluate the impact of our method on segmentation

performance, we compared the baseline U-Net, a two-stage

U-Net, incorporating anatomical priors into a cascaded

framework (AP), and our proposed framework that

synergistically combines anatomical prior knowledge with a

spatial-channel co-attention mechanism (AP+Attention).

Results are shown in Figure 6 (The mean values calculated

across all subjects in the independent test set). U-Net achieved

reasonable Dice scores on large, high-contrast

structures—including the four cardiac chambers (LA, RA, LV,

RV) and three major arteries (AA, DA, PA)—but failed to

segment small veins (SVC, IVC, PV), resulting in severe

under-segmentation. The two-stage U-Net improved venous

segmentation by grouping structures according to size,

yielding visibly better delineation of SVC, IVC, and PV. The

AP model further enhanced performance, with DSC increasing

to 0.806 (SVC), 0.801 (IVC), and 0.797 (PV), demonstrating the

benefit of anatomical prior integration in improving shape

consistency and boundary accuracy. Our proposed

FIGURE 5
Silicone embedded 3D printing system.

FIGURE 6
Ablation study:DSC comparison results.
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AP+Attention framework achieved the highest DSC across all

substructures. It showed the most significant gains in the most

challenging small vessels—SVC (0.824), IVC (0.828), PV

(0.813)—and attained state-of-the-art performance on the

aorta (AA: 0.917, DA: 0.923). These results highlight the

effectiveness of attention mechanisms in refining feature

representation and enhancing segmentation accuracy,

particularly for fine-grained cardiac structures.

To validate the performance of the proposed method, we

conducted a comparative analysis with several prominent deep

learning methods in the field of segmentation, including Attention

U-Net [28], 3D U-Net [29], and nnU-Net [30]. The comparison is

graphically illustrated in Figure 7. As evident from the comparative

outcomes depicted in the figures, our method yielded modest yet

consistent improvements in the traditional segmentation of

cardiac chambers, specifically in RA, LV, LA and RV. Notably,

our approach demonstrated a significant advantage in the

segmentation of PA, DA and AA. Most strikingly, our method

excelled in the challenging categories of SVC, IVC and PV, which

are characterized by small sizes and low sample counts.

Particularly for PV, neither 3D U-Net nor nnU-Net achieved a

Dice score exceeding 0.6, indicating inadequate segmentation. This

highlights the superior capability of our method to achieve

accurate and comprehensive segmentation of these structures.

Experimental design for embedded
3D printing

The experimental platform for this study is illustrated in

Figure 8, which is an XYZ frame 3D printing system using

silicone as the support matrix and equipped with a motor-

lead screw fluid extrusion mechanism.

The specific steps of the printing process are as follows:

1. Export the 3D model in STL format from the software system

based on the heart substructure reconstruction algorithm

described in Section Software system based on cardiac

substructure reconstruction algorithm (as shown in Figure 9).

2. Use slicing software such as Ultimaker Cura or IdeaMaker to

convert the STL format model into G-code, which the 3D

printing system can understand and execute, and then send it

to the 3D printing system (as shown in Figure 10).

G-code is a crucial part of the printing system, as it directly

determines the structure and quality of the printed object. The

designed 3D model is imported into the slicing software in STL

format. First, the position, size, and orientation of the model are

adjusted to achieve the optimal printing direction. The slicing

software then layers the model based on the set printing

parameters and uses built-in slicing algorithms to plan the

printing path and control the speed for each layer, ultimately

generating the G-code instruction file. The printer interprets

these instructions and constructs the 3D object layer by layer

along a specific path and speed.

The slicing software contains numerous parameters, with the

most critical printing parameters including printing speed, layer

height, line width, extrusion rate, infill density, and infill pattern.

Only a combination of printing parameters that match the

material and structural characteristics can achieve the best

printing quality. For different printing materials and

processes, parameter optimization experiments are necessary

FIGURE 7
Comparison of DSC results with other methods.
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FIGURE 8
Silicone embedded 3D printing experimental platform.

FIGURE 9
3D model in STL format.
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to improve printing quality. Through experimental testing, the

printing parameters for this study are set as follows: layer height

0.4mm, line width 0.3mm, infill density 100%, extrusion rate 4%,

printing speed 15 mm/s, and infill pattern: concentric circles.

After processing the model with the slicing software to obtain

the G-code for layer-by-layer printing, additional lines of G-code

are added before and after the start and end of the G-code

generated by the slicing software. These lines control the lifting of

the printing platform, aiming to lower the platform to a position

where the needle tip does not overlap with the matrix container

in the Z-axis direction. This prevents the needle from colliding

with the container during the homing process, which could

damage the system.

3. Preparation of Printing Materials: Prepare the support matrix

and printing ink.

The main materials used for the support matrix include

high-viscosity vinyl silicone oil MP5000, hydrogen-

containing silicone oil MH180, hydrogen-containing

silicone oil MDH50, and fumed silica A380. Among these,

MP5000 and MH180 are the primary reactants,

MDH50 adjusts the crosslinking density of the network to

modify the mechanical properties of the printed silicone

rubber material, and A380 acts as a rheological modifier to

regulate the rheological properties of the support matrix. The

printing ink is a platinum catalyst diluted with vinyl silicone

oil MP450. Additionally, to enhance the visualization of the

printing paths, a small amount of color paste or fluorescent

powder in different colors is mixed into the ink for different

substructures of the heart.

The support matrix is poured into a container, degassed, and

then placed on the printing platform. The printing ink is loaded

into the reservoir of the material supply system, ready

for printing.

4. After all materials have been printed, heat is applied to

accelerate curing. The printed structures are placed in a

heating chamber at 70 °C to speed up the curing process,

and they are removed after approximately 2 h. The printing

results are shown in Figure 11.

3D printing results

The printed cardiac substructures were assembled by a

radiologist using a minimal amount of adhesive (silicone

adhesive J-527S) to precisely align and bond the components,

ensuring tight junctions without significant material

buildup. The adhesive cures rapidly at room temperature,

forming a strong and durable connection. Anatomical

landmarks were carefully referenced during alignment to

maintain spatial relationships and overall morphological

accuracy. The 3D heart model is shown in Figure 12. The

measurement results of the pre-printed digital model and

post-printed physical model are presented in Table 1, with

comparative data illustrated in Figure 13. The data were

derived from a single, representative patient-specific 3D-

printed cardiac model. To assess fidelity, each anatomical

landmark was measured by the physicians. The values

reported are the means of these measurements, with the ±

indicating the standard deviation (SD), reflecting variability

due to measurement technique and minor surface

irregularities. All SDs for the physical measurements were less

than 0.5 mm, indicating measurement consistency, while the

mean absolute differences (MADs) ranging from 0.15 to 0.46mm

demonstrate dimensional accuracy within clinically

acceptable limits.

Discussion

In this study, we developed a comprehensive 3D

reconstruction framework for cardiac substructures, enabling

the precise replication of patient-specific cardiac anatomy and

the creation of highly personalized heart models. This framework

integrates two subsystems: a 3D reconstruction system for

cardiac substructures and an embedded 3D printing system

FIGURE 10
Conversion of STL format model to G-Code format model.
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FIGURE 11
3D models of printed cardiac substructures.

FIGURE 12
3D models of cardiac substructures.
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utilizing a silicone rubber matrix. The workflow encompasses the

entire process, from uploading cardiac CT imaging data to

generating STL files compatible with 3D printing systems,

followed by embedded 3D printing with silicone rubber. This

approach achieves automated and intelligent 3D reconstruction

of cardiac substructures, addressing two critical challenges in the

field: (1) enhancing data accuracy during the pre-processing

phase through a novel cardiac substructure reconstruction

algorithm that incorporates anatomical prior knowledge and a

collaborative spatial-channel attention mechanism, and (2)

enabling high-fidelity fabrication of complex 3D silicone heart

models without the need for molds or support structures by

optimizing the composition of the support matrix.

Accurate segmentation of cardiac substructures in CT

remains challenging due to large variations in size, shape,

intensity, and spatial location—e.g., the left ventricle is

approximately ten times larger in volume than the superior

vena cava. Conventional end-to-end models underperform on

small, low-contrast structures like the SVC, IVC, and PV,

especially with limited training data. To address this, we

propose a two-stage framework integrating anatomical priors

with a spatial-channel co-attention mechanism. The first stage

segments large substructures (e.g., ventricles, atria), whose

outputs are fused with the original image to guide the second-

stage refinement network. This grouped strategy improves small-

structure accuracy, increasing Dice scores for SVC, IVC, and PV

by 20%–30%. By embedding spatial, morphological, and scale

TABLE 1 The measurement results of the digital model before printing and the physical model after printing.

Substructures Measurement Pre-printed
digital

model (mm)

Post-printed
physical

model (mm)

Mean absolute
difference (mm)

LA The maximum transverse diameter, measured at the level of
the middle of the atrium, perpendicular to the interatrial
septum

35.75 ± 0.22 35.41 ± 0.37 0.35

RA The maximum transverse diameter, measured at the level of
the middle of the atrium, from the lateral wall to the interatrial
septum

33.15 ± 0.18 33.0 ± 0.26 0.15

LV The short-axis diameter, measured at the level of the papillary
muscles in the short-axis view, from the interventricular
septum to the lateral wall

45.63 ± 0.22 45.21 ± 0.20 0.42

RV The short-axis diameter, measured at the basal short-axis
view, from the free wall to the interventricular septum

36.15 ± 0.19 36.38 ± 0.18 0.23

SVC Diameter, measured at a transverse Section Introduction cm
above the entrance of the right atrium

18.38 ± 0.18 17.92 ± 0.45 0.46

IVC Diameter, measured at the transverse section at the level of the
diaphragm

21.5 ± 0.14 21.78 ± 0.32 0.28

PA Diameter, measured at a transverse Section Introduction cm
above the valve level

24.95 ± 0.19 24.54 ± 0.40 0.41

PV Diameter, measured at the transverse section at the junction
of the left atrium (at the thickest point of the left superior
pulmonary vein)

12.2 ± 0.14 11.82 ± 0.37 0.38

AA Diameter, measured perpendicular to the direction of
blood flow

30.48 ± 0.22 30.32 ± 0.21 0.16

DA Diameter, measured at the transverse section above the
diaphragm

20.33 ± 0.19 20.5 ± 0.24 0.17

FIGURE 13
Comparison of pre-printed and post-printed models.
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priors from larger substructures, boundary delineation and shape

consistency are enhanced, raising DSC to 0.806 (SVC), 0.801

(IVC), and 0.797 (PV). A spatial-channel collaborative attention

module at the encoder-decoder interface further improves

feature discrimination by fusing channel and spatial attention,

strengthening global-local fusion and suppressing background

noise—critical for resolving small, blurred vessels. As shown in

Figure 6, the full model achieves peak performance on the most

challenging targets: DSC = 0.824 (SVC), 0.828 (IVC), 0.813 (PV),

and 0.917/0.923 (AA/DA). Compared to mainstream models

(Figure 7), our method elevates Dice scores for small

substructures from <0.35 to >0.82, demonstrating accuracy in

handling scale disparity and low contrast for comprehensive

cardiac segmentation.

Material selection is critical for achieving biomimetic fidelity in

3D-printed cardiac models. In this study, we selected silicone

rubber as the primary printing material due to its superior

mechanical properties and biocompatibility, enabling realistic

cardiac simulation. Compared to common alternatives, silicone

offers distinct advantages: thermoplastics such as polylactic acid

(PLA) are accessible and suitable for rapid prototyping of basic

anatomical structures [31], but lack the softness; thermoplastic

polyurethane (TPU) improves flexibility for soft-tissue simulation

[32], yet its mechanical behavior may deviate from the nonlinear

elasticity of heart muscle; photopolymer resins enable high-

resolution printing with excellent surface finish, making them

ideal for detailed anatomical models in preoperative planning and

education [33], although many commercial formulations do not

meet medical-grade standards; while cell-laden bioinks hold

promise for tissue engineering [34], they remain challenging for

fabricating structurally robust and dimensionally stable models for

surgical training. In contrast, silicone exhibits exceptional

elasticity, tunable mechanical properties, and high thermal and

chemical stability, closely mimicking the viscoelastic behavior of

native cardiac tissue, with proven safety for clinical handling and

repeated use [35]. Furthermore, advances in embedded 3D

printing enable the precise fabrication of complex, multi-

chambered cardiac models with silicone, overcoming limitations

of traditional molding or layer-based rigid printing.

Silicone-based cardiac printing faces two limitations: (1)

limited reservoir capacity (typically <100 mL), necessitating

frequent material refilling and continuous supervision to

prevent print failure during large-scale fabrication; and (2)

constrained working time, as most extrusion-based methods

require pre-mixing two-part RTV silicone, with printing

completed before gelation. Even with inhibitors, ink usability

lasts only a few hours, limiting prolonged printing of large

constructs. This study presents an advanced embedded 3D

printing method in which a diluted catalytic ink is extruded

into a silicone polymer-laden support matrix. This approach

enables mold-free, support-free fabrication of complex 3D

cardiac models with high fidelity. By tuning the composition

of the support matrix, the mechanical properties of the printed

silicone can be precisely tailored to specific applications. Unlike

conventional methods that deposit pre-mixed silicone, our

system decouples the crosslinking agent (in the matrix) from

the catalyst (in the ink). During printing, localized curing is

triggered upon ink deposition, enabling on-demand, layer-by-

layer solidification. This strategy enhances material integration

and overcomes limitations in ink reservoir capacity and working

time, facilitating extended, uninterrupted printing of large-scale,

anatomically accurate cardiac structures.

This study has several limitations. First, although the

segmentation algorithm integrating anatomical priors and

attention fusion demonstrates promising performance, its

accuracy for small or low-contrast structures could be further

improved; future work will explore advanced techniques to

enhance segmentation of challenging substructures. Second, we

plan to evaluate the adaptability of our method to other biomedical

imaging modalities, such as MRI and ultrasound, to assess its

robustness and generalizability. Despite these limitations, our

integrated framework holds significant potential for

personalized clinical applications. The cardiac models enable

preoperative planning for heart diseases, allowing surgeons to

visualize anatomical relationships and simulate procedures,

while also serving as an auxiliary platform for surgical training.

The modular design facilitates extension to biomimetic modeling

of other soft tissues—such as liver and kidney—by adapting the

algorithm and tuning material mechanics, with applications in

oncologic surgery planning. Future efforts will focus on

incorporating micro-sensors for dynamic functional simulation,

developing biodegradable or bioactive silicones, and automating

the entire pipeline to reduce turnaround time and enhance clinical

translation, ultimately supporting surgical innovation, patient-

physician communication and medical education.

Conclusion

To address limitations in manufacturing complexity,

geometric fidelity, and personalization of existing cardiac

models, this study presents an innovative approach integrating

artificial intelligence (AI) and embedded 3D printing for

reconstructing patient-specific cardiac substructures. The

proposed framework leverages medical imaging data (e.g., CT

scans) and advanced 3D reconstruction algorithms to

automatically segment and model cardiac anatomy,

significantly enhancing image resolution and accuracy during

preprocessing and generating high-quality 3D printable files.

Furthermore, an embedded 3D printing technique based on a

silicone rubber matrix enables on-demand printing and curing

through precise modulation of the support matrix composition,

facilitating the fabrication of highly complex, high-fidelity

silicone heart models. These models accurately replicate

patient-specific cardiac anatomy, providing valuable

morphological insights for diagnosis and treatment. The
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framework shows strong potential for personalized preoperative

planning and training, with a modular design adaptable to other

soft tissues for broader biomedical applications. Future efforts

will focus on improving printing precision and efficiency to

enhance clinical translation, ultimately supporting surgical

innovation, patient-physician communication, and

medical education.
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