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Introduction

In the United States of America, more than two million people 
presently live with an amputation.1 This number increases 
annually by more than 185,000 and is expected to double 
by 2050.1 Of these, 67% are lower extremity amputations, 
and 17% are bilateral lower limb amputations (Amputee 
Coalition Organization). Although the level of phantom limb 
pain (PLP) may decrease or PLP may disappear, some stud-
ies report no change in its frequency or severity over time, 
resulting in many individuals suffering lifelong pain.2

PLP prevalence rates of residual limb pain vary widely, 
from 10% to 76%. However, PLP rates are reported as high  
as 90%.3 Up to 25% of these suffer severe chronic PLP,4 with 
30–40% of individuals finding their PLP moderately or 
severely limiting or bothersome.5 Making PLP one of the 
most challenging pain problems to resolve is that no treat-
ment provides long-term relief.6 Therefore, a better under-
standing of neurological changes following an amputation 
is needed to develop techniques to reverse these changes, 
leading to permanent PLP reduction/elimination.

PLP is considered a complex pain state believed to be 
caused by central nervous system (CNS)7 and peripheral 

nervous system (PNS)8 changes. While the mechanisms 
underlying PLP are unclear, they appear to involve hyper-
activated neurons that may or may not be associated with 
reorganized somatosensory processing pathways and neu-
ral circuits in the CNS. Current theories about what under-
lies PLP and approaches developed for its treatment are 
examined.

When considering how to reduce PLP, it is essential to 
consider whether some of its underlying causes are associ-
ated with non-painful phantom limb sensations (npPLSs). 
This is because, while both may be associated with the spon-
taneous electrical activity of large sensory fibers (touch) and 
small C (pain), they may differ in the relative ratios of which 
fibers are spontaneously electrically active.

Are there predictors of PLP development?

It has been suggested that preamputation pain and early 
PLP intensity are not good predictors of the development 
of chronic PLP.9 However, other studies find it a good pre-
dictor of half the variance in the incidence and severity of 
postamputation PLP.10 However, no evidence indicates that 
preamputation pain is a predictor of persistent PLP, although 
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Minireview

Impact statement

It is essential to develop novel techniques for reduc-
ing phantom limb pain (PLP) because the pain has 
a lifelong negative impact on more than two mil-
lion people in the United States of America alone. 
Studies aimed at understanding the causes of PLP 
and techniques that might reduce it are presented. 
New evidence is reviewed indicating that the appli-
cation of platelet-rich plasma (PRP) reduces/elimi-
nates chronic neuropathic pain, which suggests it 
may also reduce/eliminate PLP. These studies may 
help those working on PLP and pain, in general, 
considering new ways to develop novel techniques 
for suppressing pain.
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some differences associated with preamputation pain and 
PLP may be due to differences in patients, the cause of the 
limb loss, and other factors such as the patient’s psychologi-
cal state. For example, people with PLP are reported to have 
less anxiety and depression than those with other types of 
pain, such as lower back pain.10

Potential underlying causes of PLP

Cortical reorganization

One hypothesis is that PLP results from a combination of 
amputation-induced changes in nociceptive neurons, activ-
ity in both the PNS and CNS, a maladaptive cortical reorgan-
ization of brain and spinal cord neural circuits,11 impairment 
of intracortical inhibitory mechanisms, enhancement of 
the excitability of corticospinal neurons, and an imbalance 
between inhibitory and excitatory amino acids.12 It is also 
hypothesized that a higher level of PLP is associated with 
the increasing area of cortical reorganization.13

These hypotheses imply that PLP results from both top-
down and bottom-up causes. Top-down pain modulation is 
associated with painful sensations maintained by the CNS 
that are affected by memories, attention, and emotional 
state.14 Bottom-up pain mechanisms are associated with 
peripheral nerve injury triggering chronic aberrant inputs 
that induce changes in the CNS.15 Thus, peripheral nerve 
damage causes the loss of sensory nerve input to the CNS 
leading to changes in both the ascending and descending 
signals from the sensorimotor body representation. These 
changes result in reduced pain thresholds, supraspinal and 
central plasticity, and peripheral/spinal dysfunction.16 Thus, 
limb amputation results in the loss of cortical motor repre-
sentation of the missing limb, although the limb’s sensory 
representation does not disappear, which allows and causes 
patients to “feel” their phantom limbs.17

Top-down theory

The top-down theory for the origin of PLP postulates that it 
is triggered by the loss of cortical sensory input and by mala-
daptive cortical plasticity and remapping.18 This involves the 
deafferented cortical regions becoming innervated by axons 
of neurons from the adjacent primary somatosensory and 
motor cortex representing other body parts.19 This results 
in altering local neurons’ properties, the development of 
new neural circuits, and changes to the existing brain and 
spinal cord neural circuits.11 PLP is also proposed to result 
from the impairment of intracortical inhibitory mechanisms, 
enhancement of the excitability of corticospinal neurons, and 
an imbalance between inhibitory and excitatory amino acids 
(gamma-aminobutyric acid and glutamate).12 These changes 
are visible with neuroimaging,20 which shows afferent 
brain areas becoming larger.21 Due to these neural circuitry 
changes, when an individual makes imagined movements of 
the phantom extremity, brain activity is triggered in cortical 
regions corresponding to both the lost extremity and adja-
cent body parts. It is further postulated that the increasing 
size of the area of cortical reorganization is associated with 
a higher intensity of PLP.13 This is proposed to result from 
the impairment of intracortical inhibitory mechanisms, an 

enhancement in the excitability of corticospinal neurons, and 
an imbalance between inhibitory and excitatory amino acids 
(gamma-aminobutyric acid and glutamate).12

Chronic PLP is reported to correlate with the maintained 
representation of the missing hand in the primary senso-
rimotor missing hand cortex.22 Thus, amputees suffering 
from severe chronic PLP have greater electrical activity in 
the primary sensorimotor missing hand cortex during phan-
tom hand movements.22 However, the correlation between 
the chronic PLP and the missing hand representation is not 
explained by the experience of the chronic non-painful phan-
tom sensations or the compensatory usage of the residual 
arm.22 These results support a positive relationship between 
persistent peripheral inputs from the missing hand and 
chronic PLP.22

However, some studies find no statistical relation-
ship between the extent of cortical reorganization and the 
development of, or level of, PLP and phantom sensations.23 
Further, functional magnetic resonance imaging (fMRI) and 
functional diffusion tensor imaging find no significant rela-
tionship between pain and cortical reorganization because 
PLP develops even without changes in cortical representa-
tions.24 This apparent conflict may be best explained by the 
cortical representation of the missing limb and neighboring 
body parts normally overlapping, so invasion and preserva-
tion can coexist.25 Thus, apparent boundary changes may be 
due to the unmasking of existing innervation areas. These 
results also suggest that, despite the persistence of CNS reor-
ganization, it may be possible to eliminate PLP and that the 
development of PLP can be blocked or existing PLP can be 
reduced/eliminated by applying techniques to peripheral 
nerves only.24

Other observations raise questions about the origins of 
PLP. For example, what underlies the changes in PLP that 
occur immediately to several years after an amputation26 if 
it is a direct consequence of rapid cortical reorganization? 
How can complex regional pain syndrome (CRPS)27 and 
carpal tunnel syndrome28 be associated with somatosensory 
cortical reorganization but not result in site-associated pain, 
as seen with PLP? How is it that during the slow loss of 
innervation and limb due to leprosy, PLP onset appears more 
correlated with the loss of sensory-motor input than limb 
presence?29 Thus, although many studies suggest a correla-
tion between deafferentation, PLP, and cortical reorganiza-
tion, the evidence supporting this relationship is not strong.24 
Therefore, additional questions must be addressed: (1) What 
are the relative influences of peripheral versus central mech-
anisms on the development and maintenance of PLP? (2) Are 
cortical changes causally related to the development of PLP 
or merely associated with PLP? (3) Do CNS presentational 
changes induce perceptional changes to stimuli? In addition, 
these questions open the possibility that, despite the persis-
tence of CNS reorganization, the development of PLP can 
be prevented or existing PLP can be reduced/eliminated by 
applying techniques only to peripheral nerves or the brain.24

Bottom-up theory

The bottom-up theory of PLP involves several different 
arguments on how to reduce PLP. One is the observation 
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that increasing prosthesis ownership, but not the frequency 
of use, is associated with reduced PLP.30 The mechanism 
of action is not known. However, potential explanations 
for reduced PLP include (1) prosthesis-induced non-spe-
cific activation of sensory nerves in the extremity stump,31 
(2) greater confidence in walking and upper limb use, or 
(3) psychological changes, including self-confidence and 
reduced anxiety provided by the prosthesis, which induce 
CNS changes.

One concept is that the development of PLP is evoked by 
pressure on the amputation stump inducing spontaneous 
ectopic electrical activity from axons associated with neu-
romas.32 However, PLP exists without neuromas.33 In this 
case, PLP is attributed to the spontaneous electrical activ-
ity of dorsal root ganglion (DRG) neurons, which exhibit 
more significant numbers of spontaneous action potentials 
than are induced by neuromas.34 The application of lido-
caine to amputees, either intrathecally or to the surface of 
DRG neurons, to block action potential conduction suggests 
the potential contribution of DRG neuron electrical activ-
ity to PLP.32 This was reported to induce rapid and revers-
ible PLP elimination and npPLSs.32 However, the validity 
of the results has been questioned, and the study has not 
been repeated. However, another study tested the efficacy 
of a single Botox injection or a combination of lidocaine/
methylprednisolone (Depo-medrol) into the most tender 
region of a residual limb or into neuromas. It found that 
both induced an immediate and long-lasting (6 months) 
reduction in residual limb pain but had no effect on PLP, 
with Botox inducing more pain suppression than lidocaine/
Depo-medrol35

Abnormal spontaneous ectopic electrical activity 
of hyperexcitability nociceptive neurons

Part of the bottom-up theory proposes that PLP results from 
excessive input to the cortex due to the ectopic electrical 
activity of axotomized primary afferent DRG neurons that 
innervate the limb.15 This electrical activity develops because 
nerve injury induces the abnormal accumulation of voltage-
gated sodium channels (Na(v) 1.8 and Na(v) 1.7) in DRG 
nociceptive neuron soma.36 Expression of these channels 
results in the neurons becoming abnormally hyperexcit-
able and exhibiting spontaneous ectopic electrical activity,37 
which is pronounced in the dorsal horn.38 This high level of 
spontaneous electrical activity is represented as nociceptive 
activity in the somatosensory cortex.

An additional change induced by axotomy is that DRG 
nociceptive neurons become excessively responsive to 
endogenous pain-producing substances, such as the pro-
inflammatory cytokine tumor necrosis factor (TNF)-α, 
interleukins (ILs), complement components, adenosine 
triphosphate (ATP), and chemokines. For example, TNF-
α, released from activated Schwann cells and glia, contrib-
utes to the pathogenesis of neuropathic pain39 by sensitizing 
primary afferent neurons by increasing their Na(v) channel 
currents.40 This raises the question of whether pain can be 
blocked by techniques that provide a long-term blockade of 
nociceptive neuron electrical activity.

Reducing PLP

Drug administration

The first technique applied to treat PLP is the administra-
tion of pharmacological agents aimed at treating the symp-
toms, not the causes of the pain. Pharmacological treatments 
involve drugs such as non-steroidal anti-inflammatory 
drugs (NSAIDs), tricyclic antidepressants, anticonvulsants, 
and antiepileptics, followed by weak opioids and strong 
opioids.41 However, it has been suggested that opioids may 
act by reducing activity in the somatosensory cortex and 
cortical reorganization.42 Antidepressants act primarily by 
inhibiting serotonin–norepinephrine uptake, sodium chan-
nel blockade, and N-methyl-d-aspartate (NMDA) receptor 
antagonism.43 Although effective for various neuropathic 
pain conditions, it is not very effective against PLP.44 Opioids 
(levorphanol, oxycodone, methadone, and morphine) (oral 
and intravenous) decrease pain without causing the loss 
of proprioception, touch, or consciousness and effectively 
reduce cortical reorganization, apparently disrupting one 
mechanism underlying PLP. However, they are associated 
with more side effects than tricyclic antidepressants and 
gabapentin.45

Although gabapentin is effective in adults,46 young adults, 
and children, its efficacy is variable.47 For pediatric amputation 
patients, the administration of gabapentin starting four days 
before an amputation results in lower postoperative PLP than 
in control patients.48 When effective, it has fewer side effects in 
adults than other opioids.49 However, although neuromodu-
lators such as gabapentin may reduce48 or have no effect on 
PLP,50 several meta-analyses found they did not provide a 
more significant benefit than other medical treatments.51

Other PLP treatments involve acetaminophen and 
NSAIDs, which are the most typically administrated medi-
cine.52 Although these drugs may provide analgesia, they 
are not effective for some patients, while some patients may 
develop tolerance or paradoxical pain, and others suffer 
adverse side effects that preclude their use. Therefore, phar-
macological agents prescribed to treat the pain associated 
with PLP provide only minimal to moderate benefits.46

Non-analgesic agents, such as botulinum neurotoxins 
(BoNTs), do not reduce PLP compared with lidocaine/meth-
ylprednisolone.46 NMDA receptor antagonists ketamine 
and dextromethorphan, but not memantine, have analgesic 
effects, but their adverse events are serious.46 A single appli-
cation of a capsaicin 8% patch reduces spontaneous amputa-
tion stump pain, PLP, and evoked stump pain.53 fMRI studies 
show that capsaicin-induced pain reduction is associated 
with the restoration of the normal innervation of the cerebral 
cortex.53

The PLP of some patients can be reduced by infusing the 
brachial plexus with mepivacaine combined with epineph-
rine.54 The prolonged infusion of a high concentration of 
local anesthetic (ropivacaine) solution onto the perineural 
nerve also provides long-acting (12 months) PLP relief.55 
While these results may suggest PLP is not solely of periph-
eral origin, it may be that spontaneous electrical activity is 
still occurring at locations not affected by the anesthetic or 
that different types or extents of PNS injury induce different 
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amounts of cortical reorganization, which are not affected by 
peripheral blocking of electrical activity.

Visual feedback training

Mirror therapy, also called graded motor imagery (GMI), is a 
non-pharmacological technique for attempting to reduce an 
amputee’s complex pain and perceptions. It involves train-
ing the brain not to focus on pain by using real or imagined 
imagery. The underlying concept is that imagining the miss-
ing painful part of one’s body gives the illusion that it is 
moving and thus effectively makes it pain-free by training 
the brain to stop creating pain.

Although studies find that mirror therapy significantly 
reduces PLP, the level of evidence is insufficient to rely on its 
efficacy in reducing pain.51 In addition, any apparent effect 
decreases when a patient has a telescoped limb,56 although 
virtual reality training appears effective with telescoping 
limbs.57 However, the efficacy of mirror therapy appears to 
be increased when followed by augmented reality mirror 
therapy or sensory-motor exercises of the intact limb with-
out a mirror, followed by self-delivered exercises.56 Another 
study found that the efficacy of mirror therapy increases 
when combined with transcranial direct current stimulation 
(tDCS).58 Similarly, the intensity of PLP is reduced by 32% 
by applying multimodal sensory-motor training of phantom 
limb movements involving visual and tactile feedback elic-
ited by evoked stump muscle activity.59

GMI is suggested to be more effective in reducing PLP than 
physical therapy.60 In one study asking the opinion of PLP 
pain experts, more than 50% suggested that in clinical prac-
tice, cognitive behavioral therapy and virtual reality training 
are effective in reducing PLP despite the lack of scientific evi-
dence to support their ranking.61 This raises the question of 
whether the efficacy of mirror therapy depends on other fac-
tors associated with the patient, such as stress or depression.

Brain stimulation to alter CNS neural circuits

The findings indicate that amputations and the develop-
ment of PLP are associated with PNS and CNS changes. This 
has led to different types of non-invasive neuromodulatory 
treatments. These aim to re-alter the CNS neural reorganiza-
tion to reduce PLP62 or activate descending inhibitory path-
ways to the thalamus, which would modulate the ascending 
nociceptive signals leading to reduced PLP.63 An alternative 
action might be to induce the release of endogenous opi-
oids,64 increase or decrease neurotransmitter release, and 
block the receptors for opioids and neurotransmitters at the 
stimulation sites in the spinal cord, brainstem, and brain.65

Pulsed radiofrequency ablation (PRFA) is a variation of 
con ventional continuous radiofrequency (CRF). It provides 
80% relief from PLP for at least six months.66 The advantage 
of PRFA is that it avoids the danger of destroying tissue and 
other negative and painful consequences associated with CRF.

Repetitive transcranial magnetic stimulation (rTMS), 
tDCS, and PRFA are alternative stimulatory techniques. 
The pain relief provided by rTMS-induced brain stimula-
tion is reported to be transient67 and prolonged.63 Studies 
also show that the reliability and degree of pain relief are 
increased based on the stimulation site, such as by applying 

high-frequency rTMS over the contralateral motor cortex 
(M1) and applying low-frequency rTMS over the unaffected 
hemisphere.68

Further, although the efficacy of rTMS is improved by 
optimizing the frequency of rTMS stimulation,69 additional 
studies are required to determine the best frequency param-
eters for applying rTMS.63 Nevertheless, the efficacy of TMS 
is variable, partly due to patient variability in terms of sensi-
tivity to stimulation,70 and the influence of stimulation is not 
consistently better than controls.71

A single session of tDCS significantly reduces PLP, with 
the effect lasting at least one week.72 The pain relief is asso-
ciated with reduced S1/M1 activity in the cortical region 
representing the missing appendage.72 However, multiple 
stimulation sessions promote greater and long-lasting PLP 
reduction, while sustained stimulation induces sustained 
PLP relief.73 These data support the hypothesis that PLP is 
associated with increased S1/M1 activity and that reduced 
PLP after electrical stimulation is significantly correlated 
with reduced S1/M1 activity in the missing hand cortex, 
and in turn, that increased S1/M1 cortical activity underlies 
PLP.22 Further, this supports the hypothesis that electrical 
stimulation of this region leads to the restoration of intracor-
tical inhibitory processes74 or indirectly affects pain-modu-
lating structures such as the thalamus.75

Although studies report that electrical brain stimula-
tion that activates descending inhibitory pathways induces 
significant short-term PLP suppression,63 there is limited 
high-quality evidence supporting this efficacy.76 A more 
effective approach appears to be applying brain stimulation 
to increase the electrical activity of the limb’s S1/M1 corti-
cal region of the amputated part while the patient performs 
phantom hand movements.22 This induces significantly 
long-lasting PLP reduction72 by restoring intracortical inhibi-
tory processes74 or by indirectly acting on pain-modulating 
structures, such as the thalamus.75 The technique’s efficacy 
may be improved by better localization of the stimulation 
site, applying high-frequency rTMS over the contralateral 
motor cortex (M1), applying low-frequency rTMS over the 
unaffected hemisphere,68 and optimizing the stimulation 
rTMS frequency.69 However, a more effective way to reduce 
PLP is by modulating DRG neuron electrical activity77 and 
radiofrequency stimulation.78

While these results are very promising, many questions 
must still be addressed. For example, why are combined tDCS 
and mirror therapy reported not to improve outcomes79 but to 
induce strong, long-lasting effects?80 It is also essential to deter-
mine how the outcomes are influenced by the stimulus inten-
sity81 and how the efficacy of stimulation in reducing PLP may 
be altered depending on an individual’s psychological status, 
such as when they are suffering from depression and anxiety.63 
The interpretation of these data is further complicated by the 
findings of an fMRI study showing that PLP intensity is not 
associated with postamputation significantly increased S1/
M1 activity or shifted motor cortex representation.82

Peripheral nerve electrical stimulation as  
a substitute for lost sensory input

PLP and the high levels of mental and physical fatigue suf-
fered by amputees using a prosthesis and their reduced 
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confidence and speed of walking are considered to result 
from the lack of sensory information about motion and inter-
actions with the ground results.83 One hypothesis is that 
somatosensory feedback through a prosthesis may reduce 
PLP while increasing the functionality of the limb with a 
prosthesis. Prostheses have been tested that provide elec-
trocutaneous feedback to a patient’s thigh whenever the foot 
and toes of the prosthesis touch the ground. This results in 
reduced PLP after two weeks of training and is associated 
with increased functional use of the prosthesis, including 
walking longer distances, more stable walking, improved 
posture, and increased patient satisfaction with prosthesis 
use.84 It has also been found that electrical stimulation of the 
tibial nerve via intraneural stimulation electrodes85 provides 
tactile information to amputees. This stimulation increases 
walking speed and self-reported confidence while simulta-
neously decreasing mental and physical fatigue.86

While biomimetic electrical stimulation frequency modu-
lation is perceived as a more natural sensation, amplitude 
modulation results in better task performance,87 and combin-
ing frequency and amplitude neuromodulation improves 
functional accuracy and gross manual dexterity while simul-
taneously reducing the development of phantom limb sen-
sations, such as telescoping.87 This is important because, 
clinically, telescoping limbs are negatively associated with 
positive clinical outcomes following PLP interventions that 
benefit amputees with non-telescoped limbs.88 However, 
efforts are still necessary to identify an encoding strategy 
that elicits natural and effective perceptions for prosthesis 
control.

Transcutaneous electrical nerve stimulation (TENS) is 
another technique tested for its ability to reduce PLP and 
reverse the loss of afferent input to the cortex. TENS,89 direct 
stimulation of the nerve stumps of the limb manifesting 
PLP,90 reduces the pain levels, although long-term pain relief 
has not been achieved.

TENS potentially acts by blocking the direct or indirect 
activation of afferent C fibers. It may also act by reversing/
modifying amputation-induced CNS remapping.91 In con-
trast to the limited effect of cortical stimulation in reduc-
ing pain, it is more effective to modulate DRG neurons’ 
electrical activity by electrically stimulating them directly.77 
Selective radiofrequency stimulation of individual DRG neu-
rons results in 60–90% pain relief in areas innervated by the 
stimulated neurons.78 However, a meta-analysis indicates 
that the evidence from most studies is of very low quality 
and does not provide confidence for the efficacy of TENS.92

These data indicate that peripheral nerve electrical activ-
ity underlies some component of PLP.34 However, blocking 
peripheral nerve activity does not reduce PLP in all patients.54 
This indicates that some of the origins of PLP may involve 
issues associated with amputation-induced CNS changes.

Surgical removal of neuromas

Neuromas are a major PNS trigger for the development of 
PLP.93 Symptomatic neuromas are associated with 4.2% of 
patients with chronic PLP.94 The development of painful neu-
romas in amputees results in the reduced use of prosthetics 
and the increased administration of pharmacotherapies lead-
ing to unacceptable side effects of tricyclic antidepressants 

and long-term narcotics, psycho-social impairment, and the 
diagnosis of stigmatizing chronic pain.95 To avoid these con-
sequences and to reduce chronic neuropathic pain, surgery 
is extensively used to remove painful neuromas.96 However, 
although the pain is reduced in 30–50% of patients, persis-
tent pain returns to 42% within one year, which may be less 
intense, at its original level, or more severe than before the 
resection.97 Neuroma reoccurrence is associated with rede-
veloping symptomatic and asymptomatic neuromas.98

Blocking neuroma formation—conduits

Clinically onset of PLP can be delayed,99 and neuropathic 
pain in rats is significantly reduced100 if, at the time of ampu-
tation, the exposed nerve stumps are secured in an empty 
collagen tube or the nerve is secured inside an epineurial 
graft.101 However, as with all other techniques, these wraps 
provide only temporary pain relief due to slowing neuroma 
reformation and pain redevelopment.99

Targeted muscle reinnervation

One approach increasingly used to reduce or delay the for-
mation of painful neuromas is implanting nerve stumps into 
various tissue target tissues. The most effective target is a 
denervated muscle, a technique called targeted muscle rein-
nervation (TMR)102 or regenerative peripheral nerve inter-
face (RPNI).103 The concept is that the axons will reinnervate 
muscle fibers leading to the cessation of pain. The initial 
applications of TMR involved implanting nerve stumps into 
intact and innervated muscles. However, such applications 
have poor reliability and limited efficacy because most of the 
target muscle fibers are innervated and incapable of being 
innervated.104 Significantly more successful pain reduc-
tion is achieved by implanting the nerve into a denervated 
muscle97 because the muscle fibers can be reinnervated.104 
However, TMR is significantly more effective in reducing 
pain, even for amputees, when the denervated muscle target 
is vascularized.105

The efficacy of TMR in reducing the incidence of platelet-
rich plasma (PRP) development102 and the level of PLP103 is 
significantly greater when applied at the time of amputation 
than when delayed. However, TMR applied three weeks 
after a nerve injury when PLP has already developed is effec-
tive in reducing PLP.106 TMR is more effective than neuro-
modulator medications in reducing PLP.107 Thus, it appears 
that TMR is effective by providing axons a target to innervate 
and, in effect, restoring physiological continuity and func-
tion97 while preventing neuroma formation108 and prevent-
ing cortical reorganization.109 However, it is still cautioned 
that because some PLP is of central origin, TMR may not be 
as reliable as desired.105

Pro-inflammatory mediators and the reduction  
of PLP

All patients with chronic PLP, CRPS, and chronic neuro-
pathic pain have elevated levels of pro-inflammatory medi-
ators and low levels of anti-inflammatory mediators.110,111 
This suggests that PLP is associated with a chronic pro-
inflammatory environment.110 This concept is supported by 
the observation that following peripheral nerve injury in 
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various animal models, there is a proliferation of microglia 
in DRG and the dorsal horn, and the sensitization of spinal 
cord dorsal horn neurons.112 Those microglia release the pro-
inflammatory cytokines IL-1 and TNF, and there is the devel-
opment of inflammation and increased levels of neuropathic 
pain.36 This, in turn, suggests that, conversely, by administer-
ing steroids and NSAIDs, it should be possible to eliminate 
chronic inflammation and reduce pain.113 However, they are 
no more effective than an anesthetic nerve blockade,114 and 
their efficacy is short-lived.115 Further, a recent clinical study 
found that the administration of anti-inflammatory drugs 
prolongs, rather than shortens, the process of pain elimina-
tion and that pain is more rapidly resolved by promoting 
inflammation.116

Chronic inflammation stimulates neutrophil production 
and increases neutrophil numbers in the blood.117 Focal 
injury-induced inflammation induces macrophage recruit-
ment,118 where the macrophages release the chemokine 
IL-8,119 which, in turn, recruits the up-regulated circulating 
neutrophils.120 These neutrophils are critical for modulat-
ing and resolving inflammation, wound healing, and tissue 
repair.121 Their up-regulating pro-inflammatory gene expres-
sion enhances inflammation, which reduces pain.116 This role 
is confirmed by a study showing that the development of 
chronic pain is prevented by neutrophil activation causing 
an acute inflammatory response.116

Part of the influence of neutrophils is by releasing TGF-β.122 
This can exert a potent anti-inflammatory influence by trans-
forming a wound site from a pro- to an anti-inflammatory 
site.123 This can be by the short-term action of TGF-β1 activat-
ing RhoA, while long-term exposure inactivates RhoA. This is 
because brief TGF-β1 treatment stimulates macrophage inva-
sion and the induction of further inflammation, while longer 
exposure suppresses inflammation by inhibiting lipopolysac-
charide (LPS)-induced macrophage chemotaxis124 and thereby 
preventing their release of the pro-inflammatory mediators 
TNF-α, IL-1α, and IL-1β,125 thereby reducing the induction of 
inflammation.124 Thus, physiologically, enhancing inflamma-
tion leads to an ultimate reduction in inflammation.

A similar reduction in inflammation can also be induced 
by administering anti-inflammatory cytokines such as IL-4, 
IL-10, IL-11, IL-13, and TGF-β.126 The application of IL-10 
and TGF-β to an inflammation-associated pain site reduces 
the inflammation and produces immediate pain relief.127 
IL-10 and TGF-β are uniquely suited for this role because 
they down-regulate the expression and production of pro-
inflammatory mediators, including IL-1β, IL-2, IL-12, IL18, 
interferon (IFN)-γ, and TNF-α.128 In addition, they reduce 
inflammation by blocking the receptors for the pro-inflam-
matory cytokines IL-1, IL-6, IL-8, IL18, TNF-α, chemotac-
tic cytokines motif ligand (CCL): CCL2, CCL3, CCL7, and 
chemokine (C-X-C motif) ligand 10.129 IL-10 also reduces 
inflammation by up-regulating the release of endogenous 
anti-inflammatory cytokines130 while inducing the expres-
sion and release of the anti-inflammatory mediator IL-1 
receptor agonist 6 (IL-1ra6), which blocks IL-1β-mediated 
pain.131 Thus, eliminating chronic inflammation may 
facilitate eliminating chronic neuropathic pain.132 As men-
tioned previously, administering IL-10 and IL-4 blocks PLP 
by down-regulating the synthesis of the Na(v) channels, 

which silences chronically electrically active nociceptive.133 
However, pain suppression is not long-lasting because IL-10 
has a short half-life.127

Inflammation-associated pain can also be rapidly reduced 
by applying IL-10 to an inflammatory site.127 This reduces 
pain by up-regulating the expression of both the IL-1ra 
and TNF-α receptors, which decreases the availability of 
pro-inflammatory cytokine proteins,134 and by blocking 
adenosine-induced neutrophil release of oxygen radicals.135 
However, an alternative approach in rats is intrathecal 
administration of viral gene therapy of plasmid DNA encod-
ing for IL-10.136 This continuous administration of IL-10, and 
continuous suppression of the pro-inflammatory mediators 
IL-1 and TNF, reduces rat pain behavior,137 although the relief 
is only short-lived.138 However, non-viral IL-10-induced 
gene therapy provides long-term relief.139 Unfortunately, 
such gene therapy cannot presently be applied clinically, 
although its application may eventually be useful. Thus, 
IL-10 intrathecal infusion reduces pain136 by exerting inter-
related anti-inflammatory and analgesic influences.140

PRP

As mentioned, clinically99 and in a rat model,100 PLP is tem-
porarily reduced by securing nerve stumps in an empty col-
lagen conduit or wrapping the nerve stump in an epineurial 
graft.101 This raises the question of whether this pain reduc-
tion can be made complete and permanent by elaborating 
on these techniques by adding multiple factors to conduits.

While applying IL-10 and gene therapy to induce IL-10 
production reduces pain, the efficacy is short-lived. However, 
this reduction becomes long-term when LI-10 is combined 
with other factors. Thus, the analgesic influences of IL-10 and 
IL-4 are greater than biologics, which inhibit only single pro-
inflammatory mediators. This is because both IL-4 and IL-10 
block the production and release of multiple pro-inflamma-
tory mediators, including chemokines, proteases, cytokines, 
and reactive oxygen species (ROS). The increased efficacy is 
by them acting through different mechanisms, with IL-4 inhib-
iting glial cell proliferation141 and increasing the degradation 
of pro-inflammatory cytokine mRNA, while IL-10 primarily 
inhibits transcription.142 Further, although IL-4 and IL-10 sepa-
rately reduce pain, each exerts only limited analgesia,143 and 
when combined, the increased level of analgesia is not of clini-
cal significance.144 This is partly because they are relatively 
small proteins that are cleared rapidly. However, when IL-10 
and IL-4 are combined into a single IL4-10 fusion protein, a 
larger molecule is created, which has a longer time of bioactiv-
ity.143 Thus, in two animal models, multiple intrathecal injec-
tions of IL4-10 result in the complete and permanent reduction 
of persistent inflammatory hyperalgesia.143 Although the IL-4-
10 fusion protein has not been tested clinically, these data sug-
gest that combining IL-10 with other factors should induce a 
significant and possibly permanent reduction/elimination in 
chronic neuropathic pain.

Clinically testing the efficacy of multiple factors, such as 
cytokines, is extremely difficult due to the Food and Drug 
Administration (FDA) regulations. However, a readily avail-
able source of a complex physiological cocktail of potentially 
effective factors is platelets, which appear to contain and 



Kuffler  Reducing Phantom Limb Pain  567

release all the factors required to trigger all the cellular and 
molecular changes necessary for inducing long-term pain 
elimination.145 Thus, PRP-released factors should induce 
a permanent transition of nerve injury sites from chronic 
pro-inflammatory to permanent anti-inflammatory.146 This 
hypothesis is supported by clinical studies showing that 
chronic neuropathic pain is reduced by injecting PRP under 
a nerve perineurium,147 directly into a digital nerve,148 and 
when applied to the median nerve at the proximal edge of 
the carpal tunnel.149

A case study reported that inserting the stump of a nerve 
evoking chronic neuropathic pain into a PRP-filled collagen 
tube eliminates the pain permanently (Figures 1 and 2).150  
The pain began to decrease rapidly during the first two 
weeks, was eliminated within two months, and did not 
return during 1–12 years of follow-up.151 Although these data 
do not directly address whether the application of PRP to 
nerve stumps of amputees might prevent the development 
of or the reduction/elimination of existing PLP, they suggest 
it will be effective and should be tested.

What underlies the efficacy of PRP?

The efficacy of PRP is ascribed to platelet releasing the major 
anti-inflammatory cytokines, including IL-4, IL-10, IL-11, 
IL-13, and TGF-β1152; hepatocyte growth factor (HGF); and 
the anti-inflammatory mediator IL-1ra6.153 Platelet-released 
HGF exerts an anti-inflammatory action by preventing 

monocyte-like cell chemotaxis, such as of inflammatory  
T cells and macrophages, and suppressing the expression of 
both regulated upon activation, normal T cell expressed and 
secreted and monocyte chemoattractant protein.154

The high concentration of platelets released TGF-β1155 
which inhibits monocyte TNF-α expression and release156 
while promoting further TGF-β1 expression.157 It also sup-
presses pro-inflammatory cytokine production by inhibiting 
macrophage and Th1 cell activity by blocking the actions 
of IL-1, IL-2, IL-6, and TNF-α.133 TGF-β1 also reduces pain 
by exerting a prolonged anti-inflammatory effect on micro-
glia/macrophages,158 inhibiting the production of microglia 
ROS during their activation or reactivation159 and activating 
antioxidant response elements (AREs).160 In addition, plate-
let-released factors convert macrophages from a pro- to an 
anti-inflammatory phenotype146 while blocking macrophage 
production of NO,152 which is involved in the final common 
neuropathic pain pathway.161

Platelet-released IL-10 reduces inflammation and pain by 
down-regulating the expression of genes for pro-inflamma-
tory cytokines,128 blocking the receptors for the pro-inflam-
matory cytokines,129 up-regulating the release of endogenous 
anti-inflammatory cytokines,130 and inducing the expression 
and release of the anti-inflammatory mediator IL-1ra6.131 
However, its efficacy is short-lived.127 While in rats, short-
term pain relief is induced by the viral induction of IL-10,138 
long-term pain reduction is achieved by intrathecal admin-
istration of non-viral IL-10-induced gene therapy,139 which 
reduces the expression of the pro-inflammatory mediators 
IL-1 and TNF.137 While promising, such gene therapy is not 
yet permitted clinically. However, although the analgesic 
efficacy of IL-10 alone is generally short-lived, long-term 
pain reduction/elimination may be possible when it acts 
synergistically with other factors. Thus, platelets provide 
a potentially ideal physiological cocktail of such factors.162

While the application of PRP induces the long-term tran-
sition of chronic pro-inflammatory sites to permanent anti-
inflammatory sites,133 platelet-released factors also trigger all 
the cellular and molecular changes required to induce that 
wound healing and long-term pain elimination.145 These 
capabilities suggest that applying PRP may induce long-term 
reduction/elimination of PLP via the synergistic actions of 
platelet-released factors.145 Although studies are required to test 
the efficacy of PRP in reducing/eliminating PLP, the long-term 
pain relief provided by PRP suggests it is via the sequential/
simultaneous actions of multiple platelet-released factors.145

Conclusions

Following amputations, up to 90% of amputees suffer chronic 
PLP. Although various techniques induce a short-term PLP 

Figure 1. Technique applied to a patient one year after nerve trauma suffering 
from chronic excruciating neuropathic pain. (A) Refreshed central nerve stump 
laid on a collagen sheet. (B) Sewing the collagen sheet into a closed-ended 
tube. (C) Completed closed-ended collagen tube filled with autologous PRP.

Figure 2. Repair of a nerve evoking chronic neuropathic pain with a 16-cm 
nerve gap. The gap was bridged with a sensory nerve graft within a PRP-filled 
collagen tube. The pain was permanently eliminated.
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reduction, none induce a long-term effect, and therefore, 
novel effective techniques are required. This review dis-
cusses the efficacies and limitations of techniques presently 
used to reduce PLP. It concludes with a discussion of studies 
showing that novel application techniques of PRP can induce 
the permanent reduction/elimination of chronic neuropathic 
pain and may induce similar influences on PLP.
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