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MONet: cancer driver gene
identification algorithm based on
integrated analysis of
multi-omics data and network
models

Yingzan Ren†, Tiantian Zhang†, Jian Liu, Fubin Ma, Jiaxin Chen,
Ponian Li, Guodong Xiao, Chuanqi Sun and Yusen Zhang*

School of Mathematics and Statistics, Shandong University, Weihai, Shandong, China

Abstract

Cancer progression is orchestrated by the accrual of mutations in driver genes,

which endow malignant cells with a selective proliferative advantage.

Identifying cancer driver genes is crucial for elucidating the molecular

mechanisms of cancer, advancing targeted therapies, and uncovering novel

biomarkers. Based on integrated analysis of Multi-Omics data and Network

models, we present MONet, a novel cancer driver gene identification algorithm.

Our method utilizes two graph neural network algorithms on protein-protein

interaction (PPI) networks to extract feature vector representations for each

gene. These feature vectors are subsequently concatenated and fed into a

multi-layer perceptron model (MLP) to perform semi-supervised identification

of cancer driver genes. For each mutated gene, MONet assigns the probability

of being potential driver, with genes identified in at least two PPI networks

selected as candidate driver genes. When applied to pan-cancer datasets,

MONet demonstrated robustness across various PPI networks,

outperforming baseline models in terms of both the area under the receiver

operating characteristic curve and the area under the precision-recall curve.

Notably, MONet identified 37 novel driver genes that were missed by other

methods, including 29 genes such as APOBEC2, GDNF, and PRELP, which are

corroborated by existing literature, underscoring their critical roles in cancer

development and progression. Through theMONet framework, we successfully

identified known and novel candidate cancer driver genes, providing

biologically meaningful insights into cancer mechanisms.

KEYWORDS

pan-cancer, driver genes, multi-omics data, graph convolutional network, graph
attention network
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Impact statement

The mechanisms underlying cancer development are

complex, and identifying cancer driver genes is crucial for

cancer diagnosis and personalized treatment. Therefore, we

have developed a novel cancer driver gene identification

algorithm called MONet, based on the comprehensive analysis

of multi-omics data and network models. Our results

demonstrate that MONet identifies a substantial number of

confirmed and potential cancer driver genes with superior

performance and reveals new driver genes that other methods

have missed. Conducting biomedical experimental research on

the new driver genes discovered by MONet can aid precision

medicine and provide better treatment options for

cancer patients.

Introduction

The progression of cancer is driven by mutations in specific

genes, known as cancer driver genes, that confer growth

advantages to malignant cells [1–3]. Identifying these driver

genes is crucial for disease diagnosis and personalized

treatment, making it a primary objective of cancer genomics

research [4–6]. Large-scale collaborative efforts such as The

Cancer Genome Atlas (TCGA) [7] and the International

Cancer Genome Consortium (ICGC) [8] have amassed

unprecedented datasets, furnishing comprehensive resources

for cancer driver gene discovery. Over the past decade,

researchers have developed a multitude of computational

methods to identify potential cancer driver genes, often

grounded in experimental hypotheses. For instance,

frequency-based methods typically assume that driver genes

exhibit recurrent mutations at a higher frequency than non-

driver genes [9–11]. In contrast, network-based methods

hypothesize that cancer results from alterations in multiple

genes that interact closely and play key roles in cancer-related

biological pathways, rather than single-gene alterations [12].

These complementary approaches have collectively enriched

our understanding of the complex and multifactorial nature of

cancer. Computational methods based on gene mutation

frequency have been widely applied to identify cancer driver

genes. For example, Dees ND et al. developed MuSiC [9], an

integrated mutation analysis tool that combines standardized

sequence-based data with clinical data to infer relationships

between mutations, affected genes, and pathways. This allows

researchers to prioritize driver genes and distinguish significant

driver mutations from passenger mutations. Tamborero D et al.

proposed OncodriveCLUST [11], which uses silent mutations in

coding regions as a background mutation model to identify genes

with mutation frequencies significantly exceeding the

background rate in specific protein regions. Lawrence MS

et al. proposed the MutSigCV [10] algorithm, which is based

on the mutation frequency and lineage of specific patients. This

algorithm uses a background mutation model that incorporates

gene expression and replication timing information to adjust for

variations, thereby calculating the background mutation rate of

specific genes to improve the accuracy of identifying cancer-

related genes.

In recent years, through network analysis, researchers can

identify cancer driver genes, a process that is vital for

understanding the mechanisms and progression of cancer

[13]. Representative algorithms for driver gene identification

based on pathway and network analysis include the following.

Leiserson MD et al. proposed the HotNet2 [14] algorithm, which

is designed to identify mutated subnetworks within gene

interaction networks. HotNet2 considers the weights of

mutations within single protein networks, enhancing its ability

to identify and understand key roles within mutated

subnetworks. Cho A et al. introduced the MUFFINN [15]

algorithm, which integrates mutation information of

individual genes with that of neighboring genes in functional

networks to identify driver genes. Colaprico A et al. developed

the Moonlight [16] algorithm, designed to identify cancer driver

genes that act as dual-role players within the

transcriptome network.

In current cancer research, methods that integrate multi-

omics data and biological network analysis are widely used for

cancer driver gene identification. These methods not only

enhance our understanding of cancer development

mechanisms but also provide new strategies and

approaches for personalized treatment. Therefore,

combining multi-omics data integration with biological

network analysis is becoming an inevitable trend in

exploring cancer complexity. EMOGI [17] is an

interpretable machine learning method based on graph

convolutional networks (GCN) that integrates genomics,

epigenomics, and transcriptomics data as gene features and

combines them with PPI networks to learn more abstract gene

features. MTGCN [18] is a multi-task learning framework

based on GCN that optimizes both node classification and

edge link prediction tasks by learning node embedding

features. These methods have shown promising results,

confirming the effectiveness of combining multi-omics data

with network models for cancer driver gene identification.

Nevertheless, despite the efficacy of graph neural network-

based methods, their predictive performance in cancer driver

gene identification can be limited by the inherent complexity of

biological networks. To address this, we propose MONet, which

integrates both graph convolutional networks and graph

attention networks to enhance the representational power of

gene features through the concatenation of feature vectors.

Additionally, we selected six independent PPI networks for

model training, ensuring that the predicted candidate driver

genes are comprehensive and accurate. Through MONet, we

identified 376 candidate driver genes, 184 of which are known
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driver genes recorded by multiple benchmarks. Among

remaining 192 predicted genes, most of them are supported

by other datasets or corroborative studies, highlighting the

potential of MONet in cancer driver gene identification.

Materials and methods

Multi-omics data and PPI networks

We utilized the same multi-omics data and PPI networks as

EMOGI to predict cancer driver genes. For the sake of

completeness, we briefly introduce these data.

Our method employed four types of multi-omics data:

somatic mutation (SM), copy number variation (CNV), gene

expression (GE), and DNAmethylation (DNAm). We integrated

these four types of multi-omics data from 16 cancer types: BLCA,

BRCA, CESC, COAD, ESCA, HNSC, KIRC, KIRP, LIHC, LUAD,

LUSC, PRAD, READ, STAD, THCA, and UCEC. After

normalizing these datasets, we concatenated them to form a

feature matrix, where rows represent genes and columns

represent features.

We collected protein-protein interactions from CPDB

[19], STRING-db [20], MultinetI [21], IRefIndex [22], and

PCNet [23]. Depending on the network, we only considered

high-confidence interactions. For CPDB, interactions with a

score higher than 0.5 are retained. For STRING-db,

interactions with a score higher than 0.85 are kept.

Multinet and the older version of IRefIndex (v.9.0) were

collected from the HotNet2 GitHub repository. For the

newer version of IRefIndex (v.15.0), only interactions

between human proteins were considered. PCNet was

used without further processing and serves as a

consensus network.

Benchmark datasets

In the absence of a recognized “gold standard” dataset

containing both positive and negative driver gene

annotations, it is challenging to accurately assess the

performance of previous prediction tools [24, 25]. To

comprehensively evaluate our method, we utilized three

commonly used datasets as benchmark datasets, and their

union was used as the source of positive samples. For ease of

comparison, the datasets were used in the same versions as

EMOGI. These datasets include CGC [6], NCG [26], and

DigSEE [27]. The CGC database manually curates a list of

723 common genes causally implicated in cancer. The NCG

database contains a curated list of expert-selected and

candidate cancer genes, with the included genes being

proven or predicted to be drivers of cancer. In the selection

of positive samples, only confirmed cancer driver genes were

used. DigSEE was employed to search for genes related to

cancer in the PubMed database, restricted to the 16 cancer

types, and a set of 85 highly confident cancer genes was

identified using DNA methylation and gene expression

as evidence.

Negative samples represent genes least likely to be associated

with cancer. To generate a list of negative samples, potential

cancer-related genes were recursively removed from all genes,

including those present in the NCG database, genes related to

cancer pathways in the KEGG [28]database, genes in the OMIM

[29] disease database, genes predicted to be cancer-related in

MutSigdb [30], and genes whose expression is correlated with

cancer genes [31].

Since the proposed algorithm is trained using different PPI

networks, only positive and negative samples contained within

the underlying PPI networks were used for training. Table 1

presents the total number of genes included in the PPI networks

used, along with the counts of positive samples, negative samples,

and unlabeled genes.

Overview of MONet

Figure 1 illustrates the main workflow of MONet. Firstly,

the graph structure constructed from the PPI network is fed

into two graph neural network algorithms, GCN and GAT, to

learn the feature vector representations of each gene, resulting

in two feature matrices: the GCN-Feature matrix and the

GAT-Feature matrix. Next, the feature vectors obtained

from the two matrices are concatenated together gene-wise,

forming a new feature vector for each gene, termed as the

Graph Enhanced feature. Subsequently, the new feature

vectors are inputted into a multilayer perceptron (MLP)

model to perform semi-supervised cancer driver gene

identification tasks, comprehensively learning the node

features. This process yields the probability of each gene

being predicted as a cancer driver gene, and genes are

ranked based on these probabilities. Finally, the top

300 candidate genes from each of the six PPI networks are

TABLE 1 The total number of genes included in the PPI networks,
along with the counts of positive samples, negative samples, and
unlabeled genes.

PPI Number Positive Negative Unlabeled

CPDB 13,627 796 2,187 10,644

STRING 13,179 783 2,415 9,981

Multinet 14,398 790 3,709 9,899

IRefIndex 17,013 836 4,056 12,121

IRefIndex (2015) 12,129 785 1,971 9,373

PCNet 19,781 859 3,921 15,001
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selected, and genes that appear in at least two networks are

considered as candidate driver genes.

GCN layer and GAT layer

GCN algorithm can preserve the structural information of

the graph. Therefore, we first use the GCN algorithm on the

graph structure constructed from the PPI network to learn the

feature vector representation of each gene.

GCN learns node features through the following steps. First,

the initial graph structure data G � (V, E) is mapped to a new

space fG → f*. Taking a single-layer forward propagation graph

convolutional neural network as an example, the feature of the

i-th layer neural network is represented by wi. When computing

the nodes vi in the graph, the output Hl+1 of each layer of the

network can be represented by a nonlinear function f(•, •) as

Hl+1 � f(Hl, A), where A is the adjacency matrix. The graph

convolutional neural network structure is realized through a

nonlinear activation function σ(•), and its layer-wise

propagation rule is given in Equation 1.

f Hl+1, A( ) � σ ~D
−1
2 ~A ~D

−1
2HlWl( ) (1)

where ~A � A + I represents the adjacency matrix of graph G, I

represents the identity matrix, ~D � ∑ ~Aij represents the degree

matrix of the adjacency matrix ~A, and Wl represents the weight

matrix of the convolutional neural network at layer l.

The GCN algorithm relies on two input matrices: the

adjacency matrix of the network and the feature matrix

composed of the features of each node. This allows GCN to

preserve the structural information of the graph, fully

exploiting the latent information in the PPI network,

thereby enhancing the classification performance for genes.

FIGURE 1
Overview of MONet. First, the graph structures of the PPI networks are learned using GCN and GAT to obtain feature vector representations for
each gene. Then, these feature vectors from the two matrices are concatenated together to form a new feature vector. Subsequently, the new
feature vectors are input into an MLP for the driver gene identification task. Finally, the top 300 candidate genes are selected from each of the 6 PPI
networks, and genes appearing in at least two networks are designated as candidate driver genes. The multi-omics data include Mutation
Features (MF), DNA Methylation Features (METH), Gene Expression Features (GE), and Copy Number Alteration Features (CNA).
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However, during the learning process, GCN assigns equal

importance to all nodes within the same neighborhood. In

practical applications, we need an algorithm that can more

intelligently discern the importance of neighboring nodes,

which is where GAT excels.

In MONet, we used the GAT method with integrated multi-

head attention mechanism. In GAT, for a single graph attention

layer, the input consists of a set of node features:

h � h1
→
, h2
→
, ..., hN

�→{ }, hi→∈ RF, where N is the number of nodes

and F represents the dimensionality of each node’s feature vector.

This layer generates a new set of node features (with feature

dimension F’): h’ � h1
′

→
, h2

′
→
, ..., h′N

�→{ }, h′i→∈ RF′. The attention layer

propagation mechanism employed in this study is based on

Equations 2–5.

eij � a Whi
→
,Whj

→( ) (2)

eij � LeakyReLU �aT Whi
→ ‖ Whj

→[ ]( ) (3)

αij � softmaxj eij( ) � exp eij( )∑
k∈Ni

exp eik( ) (4)

h′i
→

� σ
1
K
∑K
K�1

∑
j∈Ni

αkijW
khj
→⎛⎝ ⎞⎠ (5)

where eij represents the importance of node j to node i,W and �a

are trainable parameters, K represents the number of attention

heads, and ‖ denotes the concatenation operation.

Enhancing the GAT method through the integration of the

multi-head attention mechanism brings several significant

advantages. Firstly, introducing multiple attention heads allows

for parallel processing of different aspects of the graph, thus

improving computational efficiency. Each head focuses on

learning different features, achieving a comprehensive

representation of the graph’s complex structure. Additionally, the

multi-head mechanism enhances the model’s robustness and

generalization ability by integrating diverse attention

distributions. Even in the presence of noise or errors in

individual heads, collective insights from multiple heads ensure

the model’s resilience. Lastly, and most importantly, introducing

multi-head attention mechanism can enhance the expressive power

of the attention layers.

Enhanced feature

By applying both the GCN layer and the GAT layer, the

original gene feature vectors are transformed, resulting in two

new feature matrices: the GCN-Feature matrix and the GAT-

Feature matrix, where the rows represent genes and the columns

represent new features. To fully leverage the gene feature vector

representations learned by GCN and GAT, MONet innovatively

concatenates these learned feature vectors into a single new

feature vector, thereby enhancing the gene features. This new

feature vector is termed the Graph Enhanced feature.

GCN and GAT are two distinct types of graph neural

network algorithms, each employing different methods for

information aggregation. GCN aggregates information from

neighboring nodes based on the graph’s Laplacian spectrum

(or adjacency matrix), making it well-suited for capturing

global structural features of the graph, particularly excelling in

learning global relationships based on the graph topology. In

contrast, GAT utilizes a self-attention mechanism to dynamically

assign weights to each neighboring node, enabling it to flexibly

capture the importance of local neighbors and highlight critical

interactions between nodes. Therefore, GCN focuses more on

learning global structures, while GAT emphasizes the importance

of local interactions between nodes. By concatenating the feature

vectors learned by both algorithms, the Graph Enhanced feature

integrates the strengths of both methods, providing a more

comprehensive description of gene characteristics. Our

subsequent comparisons reveal that the feature vectors learned

by GCN and GAT may possess complementary properties. By

combining these features, we can address the limitations of

features learned by each algorithm individually, thereby

enhancing the overall feature representation. MONet achieved

better results compared to using GCN and GAT alone.

Identification and screening of
driver genes

MLP is an artificial neural network composed of multiple

layers of perceptrons or neurons. Each layer is fully connected to

the next. A basic perceptron model includes three components:

input values, weights and biases, and an activation function. Each

perceptron receives a set of inputs, multiplies these inputs by the

corresponding weights, and then adds a bias. This result is passed

through an activation function to produce an output value. The

training of an MLP typically involves the backpropagation

algorithm and gradient descent optimization. In MONet, the

integrated gene feature vectors, referred to as Graph Enhanced

features, are input into an MLP to perform a semi-supervised

cancer driver gene identification task. This process fully learns

the node features, ultimately producing a probability for each

gene being a cancer driver gene. The genes are then ranked based

on these probability values.

Selecting candidate driver genes that appear in multiple PPI

networks helps to reduce the influence of randomness and noise

from individual networks. Additionally, by screening across

different networks and choosing genes with high occurrence

frequency as candidate driver genes, the consistency and

reproducibility of the results are increased, thereby enhancing

the credibility of the study. Consequently, we applied the MONet

to the graph structures constructed from the six PPI networks
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used in this study, resulting in six sets of gene rankings. We

selected the top 300 genes from each ranking as candidate genes

and included those that appeared in at least two sets as candidate

driver genes for further analysis.

Results

Evaluation metrics

We evaluated the performance of MONet using common

evaluation metrics, including accuracy, the area under the

receiver operating characteristic curve (AUROC), the area

under the precision-recall curve (AUPR), the F1 Score, and

the Matthews Correlation Coefficient (MCC). AUROC

represents the area under the receiver operating

characteristic (ROC) curve, which is an important indicator

for measuring classification performance. By computing the

true positive rate (TPR) and false positive rate (FPR) and

generating the ROC curve, we calculated the area under it.

The precision-recall (PR) curve illustrates the relationship

between precision and recall at different thresholds, and the

area under it represents the AUPR value. The F1 Score and

MCC are particularly well-suited for imbalanced datasets. The

F1 Score evaluates a model’s ability to predict positive samples

by combining precision and recall into a single metric. MCC

provides a comprehensive assessment of a model’s predictive

performance by incorporating all elements of the confusion

matrix, including true positives (TP), true negatives (TN), false

positives (FP), and false negatives (FN). These evaluation

metrics comprehensively assess the classification

performance and predictive capability of the model. Several

indicators are introduced below.

Accuracy � TP + TN

TP + FP + TN + FN
(6)

ROC curve according to the following equation:

TPR � TP

TP + FN

FPR � FP

TP + FP

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (7)

PR curve according to the following equation:

Precision � TP

TP + FP

Recall � TP

TP + FN

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (8)

F1 Score � 2 · Precision · Recall
Precision + Recall

(9)

MCC � TP · TN − FP · FN�������������������������������������
TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )√ (10)

where True Negative (TN), True Positive (TP), False Negative

(FN), and False Positive (FP), respectively, are in Equations 6–10.

Model training

In this study, we used a binary cross-entropy loss function

L � −(cylogσ(x) + (1 − y)log(1 − σ(x))). Due to the

imbalance between positive and negative samples in the

training data, we applied a weight c to the positive samples in

the loss function. For instance, in the CPDB network, there are

796 positive samples and 2,187 negative samples. Since the

negative samples are approximately three times the number of

positive samples, we assigned a weight of 3 to the positive samples

in the loss function (c = 3). When training MONet, we first

divided the labeled samples, i.e., the total of positive and negative

samples, into 75% for the training set and 25% for the test set. We

employed ten-fold cross-validation to train the model and

calculated the average results of the test sets from the ten

folds to evaluate the model’s performance.

For the graph structure constructed from the CPDB network,

after tuning the parameters, we found that in GCN, the number of

hidden layers is 2, with dimensions of 300 and 100, respectively.

The dimension of the GCN output layer is set to 16. In GAT, there

is one hidden layer with a dimension of 100, incorporating a multi-

head attention mechanism, with 5 heads in the hidden layer and

1 head in the output layer. The output layer of the GAT has a

dimension of 16. We concatenated the output vectors from GCN

andGAT to form a 32-dimensional vector, whichwas then fed into

an MLP. The MLP has one hidden layer with a dimension of 16.

Finally, the MLP outputs the probability that each node is

predicted to be positive, which corresponds to the probability

of each gene being a cancer driver gene.We ranked the genes based

on these probability values to identify candidate cancer driver

genes. During training, we used the Adam optimizer with a

learning rate of 0.001, a weight decay rate of 0.0005, and a

dropout rate of 0.5. We set the epochs to 2000 and used the

validation set loss as the criterion for early stopping.

Performance on PPI network

To demonstrate the necessity of using multiple PPI networks,

we conducted tests with varying numbers of PPI networks. The

results showed that when using a single PPI network, only a small

proportion of the top 300 genes predicted by MONet were

confirmed as known driver genes in the reference dataset.

Moreover, the performance varied significantly across different

networks, with the proportion of known driver genes reaching

38.7% for IRefIndex but 50.3% for STRING (Figure 2A),

indicating suboptimal overall performance. When multiple

PPI networks were used, and genes appearing in at least two

networks were selected as candidate driver genes, the proportion

of known driver genes identified was higher than that achieved

with a single network (Supplementary File S1). This

demonstrates that integrating multiple networks is more

advantageous for identifying driver genes.
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Figure 2B shows the trend in the number of known driver

genes identified by MONet when using 2–6 PPI networks, with

results for 2–5 networks represented as averages. It can be

observed that as the number of PPI networks increased, the

number of identified known driver genes also grew. This may be

attributed to the inclusion of additional protein-protein

interaction pathways from newly added networks, which are

potentially associated with driver gene functionality. However,

the growth rate gradually diminished, suggesting that increasing

the number of PPI networks does not always lead to continuous

performance improvement. Since MONet’s performance is

highly dependent on the quality of PPI networks, it is

significantly influenced by the accuracy and reliability of the

network data. With the ongoing advancements in medical

experiments, the diversity and quantity of PPI networks are

continuously expanding. Given MONet’s strong performance,

we believe it can be applied to a broader range of PPI network

structures, providing robust support for driver gene research.

To evaluate the capability of the proposed MONet method in

predicting cancer driver genes, we employ five performance

metrics: accuracy (ACC), AUROC, AUPR, F1 Score and

MCC. In our study, we train MONet method on six different

PPI networks and evaluate its performance on each network. By

training and evaluating on multiple networks, we can

comprehensively understand MONet’s generalization ability

and robustness. The performance metrics for MONet on each

PPI network are summarized in Table 2. These metrics will help

us thoroughly assess MONet’s effectiveness in predicting cancer

driver genes and provide a critical reference for further

experimental results.

Observing the table, it can be seen that on CPDB, MONet

performs well in terms of AUROC (0.8864) and AUPR (0.7781),

though its ACC (0.7909) is slightly lower compared to other

networks. On STRING, MONet demonstrates robust

performance, particularly excelling in AUPR (0.8069) and

achieving high AUROC (0.9119) and ACC (0.8125) values. Its

F1 Score (0.6862) and MCC (0.5774) reflect good alignment

between predictions and true labels. On Multinet, MONet

achieves exceptional performance, with one of the highest

AUROC (0.9360) values and strong AUPR (0.7825). The

F1 Score (0.6830) and MCC (0.6172) highlight its ability to

make balanced predictions. IRefIndex and IRefIndex (2015)

show relatively better performance in AUPR compared to

other metrics. PCNet emerges as the top-performing network,

with the highest ACC (0.9067), AUROC (0.9379), and MCC

(0.6456), along with a strong F1 Score (0.6942), reflecting its

robust and balanced predictions. Overall, our MONet algorithm

performs well on all six PPI networks.

Ablation experiment

MONet employed multi-omics data for predicting driver

genes. To examine whether the inclusion of multi-omics

features improves model performance, we conducted ablation

experiments. Specifically, we individually inputted single omics

FIGURE 2
Impact of different PPI networks on MONet performance. (A) Proportion of known driver genes among the predicted driver genes identified
using a single PPI network. (B) Trend in the number of known driver genes identified when using 2–6 PPI networks, with the results for 2–5 networks
represented as the average.

TABLE 2 Performance of MONet on each PPI network. ACC, AUROC,
AUPR, F1 score, and MCC values across six PPI networks.

PPI ACC AUROC AUPR F1 score MCC

CPDB 0.7909 0.8864 0.7781 0.6750 0.5445

STRING 0.8125 0.9119 0.8069 0.6862 0.5774

Multinet 0.8622 0.9360 0.7825 0.6830 0.6172

IRefIndex 0.8618 0.9053 0.7076 0.6258 0.5432

IRefIndex
(2015)

0.8058 0.8805 0.7525 0.7035 0.5740

PCNet 0.9067 0.9379 0.7700 0.6942 0.6456
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type features (namely, Mutation Features (MF), DNA

Methylation Features (METH), Gene Expression Features

(GE), and Copy Number Alteration Features (CNA)) into the

model, as well as combined features of two omics types (namely,

MF + METH, MF + GE, MF + CNA, METH + GE, METH +

CNA, GE + CNA), combined features of three omics types

(namely, MF + METH + GE, MF + METH + CNA, MF + GE

+ CNA, METH + GE + CNA), and all omics type features. The

experimental results are presented in Table 3.

Table 3 displays the performance comparison of MONet and

its variants in pan-cancer driver gene prediction. Firstly, we

observed that when various omics features were individually

applied to the model, multi-omics exhibited the best model

performance. Specifically, the combination of multi-omics

features achieved the highest scores in terms of ACC,

AUROC, and AUPR, with values of 0.7909, 0.8864, and

0.7781, respectively. This indicates that integrating multiple

omics data can better predict genes and improve model

performance. Next, we further compared the performance of

single omics features. Among single omics features, GE

performed the best in terms of AUROC, reaching 0.8711,

while CNA performed the worst in terms of ACC and AUPR,

with values of 0.7145 and 0.8055, respectively. This may reflect

the importance of gene expression data in gene prediction, and

the relatively weaker predictive ability of copy number alteration

features compared to other omics data. Subsequently, we

analyzed the combination effects of various omics type

features. We observed that the MF + METH combination

exhibited the best comprehensive performance in terms of

ACC, AUROC, and AUPR, with values of 0.7855, 0.8790, and

0.7689, respectively. However, the MF + METH + CNA

combination achieved the highest score in terms of AUPR,

reaching 0.7610, indicating that adding copy number

alteration features can improve the performance of gene

prediction models in certain scenarios.

Overall, integrating multiple omics data can significantly

improve the performance of gene prediction models, and the

combination of different omics features may have varying

degrees of impact on model performance.

Comparison with other methods

To further evaluate the performance of MONet, we selected

four evaluationmetrics, AUROC, AUPR, F1 Score andMCC. For

comparison, we chose four other algorithms to compare their

performance with MONet, including the EMOGI, MTGCN,

GCN, and GAT. The EMOGI and MTGCN method are both

graph neural network algorithms based on the integration of

multi-omics data, where EMOGI is based on GCN and predicts

cancer driver genes using multi-omics data, while MTGCN, also

based on GCN, is a multitask learning framework that

simultaneously optimizes node prediction and link prediction

tasks. The GCN and GAT algorithms apply the integrated multi-

omics data to GCN and GAT models, respectively, as in our

study. Using the experimental data from our study, we applied

the five algorithms to the CPDB network, and for the other four

algorithms, we followed the default parameter settings of their

original algorithms. For the results obtained with different

algorithms, we plotted ROC curves (Figure 3A) and PR curves

(Figure 3B) to compare their AUROC and AUPR values.

Additionally, bar charts were created to visualize the F1 Score

(Figure 3C) and MCC (Figure 3D) of the different methods.

Observing Figure 3, we find that MONet outperforms the

other four baseline methods on the CPDB network. The AUROC

of MONet reaches 0.8864, which is 0.0243 higher than the

relatively effective MTGCN algorithm and 0.0315 higher than

the least effective GCN. Comparing the area under the PR curves,

the advantage of MONet becomes more prominent, reaching

0.7781, surpassing the other four algorithms. MONet

outperforms other algorithms in terms of F1 Score (0.675)

and MCC (0.5445), demonstrating its superior ability to

balance precision and recall as well as to handle data

imbalance effectively. Compared to other methods, MONet

exhibits more balanced overall performance, making it a

reliable and effective tool for cancer driver gene identification.

Furthermore, comparing MONet, GCN, and GAT, it is evident

that MONet significantly outperforms GCN and GAT. This

improvement stems from the complementary nature of the

TABLE 3 The performance comparison of MONet and its variants in
driver gene prediction. Themulti-omics features includeMutation
Features (MF), DNA Methylation Features (METH), Gene Expression
Features (GE), and Copy Number Alteration Features (CNA).

Features ACC AUROC AUPR

MF 0.7708 0.8601 0.7497

METH 0.7547 0.8563 0.7242

GE 0.7480 0.8711 0.7351

CNA 0.7145 0.8055 0.6438

MF + METH 0.7855 0.8790 0.7689

MF + GE 0.7373 0.8300 0.6767

MF + CNA 0.7601 0.8639 0.7546

METH + GE 0.7761 0.8774 0.7430

METH + CNA 0.7399 0.8476 0.7098

GE + CNA 0.7668 0.8697 0.7399

MF + METH + GE 0.7601 0.8666 0.7352

MF + METH + CNA 0.7480 0.8717 0.7610

MF + GE + CNA 0.7413 0.8683 0.7537

METH + GE + CNA 0.7688 0.8714 0.7453

Multi-omics 0.7909 0.8864 0.7781
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new features derived from MONet’s concatenation, which

effectively integrates the global graph information captured by

GCN with the local neighborhood relationships emphasized by

GAT. This finding also validates the effectiveness of the ensemble

approach in the task of pan-cancer driver gene prediction.

Identifying novel cancer driver genes

Database comparison
The identification of cancer driver genes is crucial for

elucidating the mechanisms of tumorigenesis and cancer

progression. Here, we present the capability of MONet in

identifying novel cancer driver genes. Among the

376 candidate cancer driver genes identified by integrating six

PPI networks, 184 genes were validated against benchmark

datasets, accounting for approximately 49%. This indicates

that MONet has a high predictive accuracy and that the

selection of candidate driver genes is reasonable. In other

words, these 184 genes are known cancer driver genes, while

the remaining 192 genes are predicted cancer driver genes

identified by MONet. Next, we compared the remaining

192 newly predicted cancer driver genes with three

independent cancer gene sets, specifically from NCG, OncoKB

[32], and ONGene [33], ensuring no overlap with the known

cancer gene sets used for training MONet. Additionally, we

analyzed the newly predicted cancer driver genes using

CancerMine [34], a database that employs text mining and

regular updates to collect information on driver factors,

oncogenes, and tumor suppressors. The comparison results

are illustrated in Figure 4A.

The study results indicate that among the remaining

192 newly predicted cancer driver genes, over 58% have at

least one piece of evidence suggesting their potential as cancer

FIGURE 3
Comparison of MONet with other methods. (A) ROC curves and AUROC values of MONet, EMOGI, MTGCN, GAT, and GCN. (B) PR curves and
AUPR values of MONet, EMOGI, MTGCN, GAT, and GCN. (C) F1 Scores of MONet, EMOGI, MTGCN, GAT, and GCN. (D) MCC values of MONet,
EMOGI, MTGCN, GAT, and GCN.
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driver genes. Specifically, 3 genes are supported by all three

datasets (NCG, OncoKB, and ONGene), 33 genes are supported

by two datasets, 76 genes are supported by one dataset, and the

remaining 80 genes are considered new potential cancer driver

genes. Analysis based on the CancerMine database shows that

among these 80 new genes, 61 are implicated in one or more

aspects related to driver factors, oncogenes, or tumor

suppressors.

Ultimately, only 29 genes are not included in the four selected

reference sets of candidate cancer driver genes. Overall,

approximately 85% (163/192) of the newly predicted cancer

driver genes have at least one piece of evidence supporting

their potential as cancer driver genes.

Comparative analysis
Similar to MONet, we applied EMOGI, MTGCN, GCN, and

GAT to six PPI networks, selecting genes that ranked in the top

300 across at least two of the PPI networks for discussion. Our

results revealed that MONet predicted 37 novel driver genes that

did not overlap with those identified by other methods,

demonstrating MONet’s unique ability to uncover new driver

genes missed by other approaches (Figure 4B). Among these

novel driver genes, 29 have been supported by existing literature,

indicating their association with cancer progression

(Supplementary File S2). Among them, APOBEC2 may be

associated with nucleotide alterations in cancer-related gene

transcripts, potentially promoting carcinogenesis [35]. GDNF

is considered a growth factor that plays a crucial role in the

nervous system, affecting cell survival and differentiation.

Evidence suggests that GDNF can promote the survival and

spread of already occurring cancer cells in specific environments,

such as the leptomeninges [36]. Furthermore, PRELP is linked to

the onset, progression, and metastasis of colorectal cancer,

suggesting it may act as a promoter in cancer progression and

could be a potential therapeutic target or prognostic marker [37].

KEGG and GO enrichment analysis
Using the R package clusterProfiler (v4.10.0) [38], we found

that 181 KEGG pathways were significantly enriched (p < 0.05,

q < 0.05) among the cancer driver genes identified by MONet

(Supplementary File S3). The top 30 most significant pathways

are considered known or potentially related to cancer

(Figure 5A). For instance, pathways such as proteoglycans in

cancer (p.adjust = 2.04 × 10−42), human papillomavirus infection

(p.adjust = 3.66 × 10−28), prostate cancer (p.adjust = 1.86 × 10−25),

breast cancer (p.adjust = 9.30 × 10−24), and microRNAs in cancer

(p.adjust = 2.49 × 10−20) are well-known cancer pathways.

Additionally, the PI3K-Akt signaling pathway (p.adjust =

3.89 × 10−39) plays a crucial role in regulating cell growth,

survival, and metastasis, making it an attractive therapeutic

target in cancer due to the frequent deregulation of PI3K

pathway signaling [39]. The MAPK signaling pathway

(p.adjust = 1.88 × 10−22) is significant in regulating

cancer resistance and suggests that targeting this pathway

could be a potential therapeutic strategy for cancer

treatment [40].

Next, we mapped the 376 candidate driver genes identified by

MONet to GO terms (Supplementary File S4), including

biological processes (BP), cellular components (CC), and

molecular functions (MF). Our charts display the top 30 GO

terms (Figure 5B). Overall, these terms are associated with

processes such as cell death, cell differentiation, cell

FIGURE 4
The analysis of cancer driver genes predicted by MONet. (A) Among the cancer driver genes predicted by MONet, 49% are already known
cancer driver genes. For the newly predicted cancer driver genes, most have multiple sources of evidence supporting their potential as driver genes,
including candidate cancer genes from NCG, manually curated cancer genes from OncoKB, and literature-curated cancer genes from ONGene.
Specifically, 3 genes are supported by all three datasets, 33 genes are supported by two datasets, 76 genes are supported by one dataset, and
80 genes are newly identified by MONet. Based on the analysis from the CancerMine database, among these 80 newly identified genes, 61 genes are
implicated in one or more aspects related to driver factors, oncogenes, or tumor suppressors. (B) Venn diagram showing the overlap between
MONet and other methods. Thirty-seven genes were uniquely predicted by MONet.
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proliferation, cell activation, and immune system functions, all of

which play critical roles in cancer development.

Analysis of 29 newly predicted candidate
driver genes

For the 29 candidate driver genes newly predicted byMONet,

we conducted a search on the PubMed website1 and found that

22 of these genes are closely related to the processes of cancer

occurrence, development, and treatment. For instance, For

example, LNX1 has been identified as a negative regulator of

cancer stem-like cells (CSCs), playing a significant role in

regulating the stemness of colorectal cancer cells [41].

Overexpression of SNW1 has been confirmed to be associated

with poor prognosis in various types of cancers, with

upregulation observed in a subset of prostate cancer samples

[42]. COL4A4 is downregulated in lung adenocarcinoma and is

associated with various tumor microenvironment (TME)

parameters, immune therapy response, and drug resistance

[43]. Previous reports have also indicated differential

expression of COL4A4 in other tumors, correlating with

prognosis, tumor stemness, immune checkpoint gene

expression, and TME parameters. NID2, when demethylated

or overexpressed in lung cancer cells, leads to decreased cell

viability, proliferation, migration, and invasion, suggesting its

role in promoting cancer development [44]. Silencing

PTGER3 by siRNA in ovarian cancer cells is associated with

FIGURE 5
GO and KEGG enrichment analysis of 376 candidate driver genes. (A) Top 30 significantly enriched KEGG pathways. The horizontal axis
represents the ratio of genes in each enriched KEGG pathway, and the vertical axis represents significantly enriched pathways. (B) Top 10 significantly
enriched GO terms in biological processes (BP), cellular components (CC), and molecular functions (MF).

1 https://pubmed.ncbi.nlm.nih.gov/
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decreased cell growth, reduced invasiveness, cell cycle arrest, and

increased apoptosis, indicating PTGER3 as a potential

therapeutic target for chemotherapy-resistant ovarian cancer

with high levels of expression of certain oncogenic proteins

[45]. Additionally, genes like ACTA1 [46], COL4A3 [47],

A2M [48], ADRB2 [49], MYOC [50], among others, are

closely associated with cancer biomarkers, candidate

prognostic factors, and therapeutic targets.

Gene Expression Profiling Interactive Analysis 2 (GEPIA2)

[51] is an updated version of GEPIA used for analyzing RNA

sequencing data. It includes expression data from 9,736 tumor

samples and 8,575 normal samples obtained from The Cancer

FIGURE 6
Survival analysis. (A) Survival analysis of 29 genes using GEPIA2 reveals that low expression of KNG1, ACTN2, VCAM1, MYDN, COL6A2, and
ACTC1 is significantly associated with poor overall survival (OS), indicating that they are cancer risk factors (P < 0.05, HR > 1, group cutoff = median).
(B) The heatmap displays the logarithmic scale (log10) of hazard ratios for different genes. Red and blue blocks represent higher and lower risks,
respectively. Rectangles with borders indicate significant adverse and favorable outcomes in the prognostic analysis.
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Genome Atlas (TCGA) and the Genotype-Tissue Expression

(GTEx) project. In this study, GEPIA2 was employed to

conduct survival analysis on 29 candidate cancer driver genes,

with cancer types limited to 16 pan-cancer datasets. The survival

analysis using GEPIA2 revealed that low expression of six genes,

namely KNG1, ACTN2, VCAM1, MYDN, COL6A2, and

ACTC1, was significantly associated with poor overall survival

(OS) and represented cancer risk factors (P < 0.05, HR > 1, group

cutoff = median, (Figure 6A).

GEPIA2 conducts survival analysis based on gene or isoform

expression levels. For a given list of cancer types, it provides a

heatmap displaying survival analysis results for multiple cancer

types. We restrict the six genes obtained just now to individual

cancers and plot a heatmap to observe the relationship between

these genes and the corresponding cancers (Figure 6B).

Specifically, red squares indicate higher risk. We can observe

that most gene blocks in the figure are red. Additionally, in

certain cancers, high gene expression is associated with shorter

survival time (P < 0.05, HR > 1), as indicated by the red-bordered

blocks in the heatmap. We can observe many such squares in the

figure. These findings suggest that these genes are likely

associated with cancer. To explore the relevance of these

genes to cancer, we conducted a literature search. Previous

studies have indicated that the loss of ACTN1 inhibits cancer

cell proliferation, invasion, and migration, while ACTN1 itself

can promote tumor growth and metastasis [52]. COL6A2 has

been identified as a central gene in risk prediction models for

BLCA, with qRT-PCR results showing downregulation [53]. In

KIRC, high expression of COL6A2 in patients correlates with

poorer survival and may be associated with adverse outcomes

and distant metastases [54]. COL6A2 has also been identified as

one of the genes in classifiers distinguishing LUSC from other

cancer types [55]. Based on these findings, we speculate that the

aforementioned genes could serve as potential biomarkers for

their corresponding cancers, aiding in auxiliary diagnosis and

prognosis assessment, or could become candidate targets for

targeted therapy, thus contributing to the development of new

personalized treatment strategies.

Analysis of gene-drug target associations

The improvement in cancer survival rates is primarily driven

by advancements in early diagnosis and novel drug treatments

[56]. Therefore, identifying the molecular targets of each drug

and discovering new drug targets in cancer are crucial for

enhancing cancer treatment efficacy.

The Drug-Gene Interaction Database (DGIdb v5.0.6, 2) [57]

integrates reported literature on drug-gene interactions and

includes data from four sources: Gene Sources, Drug Sources,

Interaction Sources, and Potentially Druggable Sources,

comprising 47 databases. It provides information on the

associations between genes and their known or potential drug

interactions. DGIdb contains over 10,000 genes and 15,000 drugs

involved in over 50,000 drug-gene interactions or belonging to

one of 43 potentially druggable gene categories. Drugs targeting

specific genes may be closely associated with the development

and progression of cancer, and may even represent potential

anticancer drugs.

In this study, we examined the newly predicted

candidate driver genes using the DGIdb database. The

data were limited to the NCIt database in Drug Sources

and five databases in Interaction Sources (ChEMBL, CIViC,

DTC, PharmGKB, TTD). Among the 29 newly predicted

candidate driver genes, 19 were found to be associated

with drugs in the DGIdb database, with 7 found in the

NCIt database and 16 in the remaining five

databases (Figure 7).

According to the literature supported by the DGIdb

database, there is empirical evidence indicating the

relevance of newly discovered genes to the occurrence,

development, and treatment of cancer. For instance, van

Huis-Tanja et al. conducted a clinical correlation study and

found that specific genetic markers may influence the efficacy

of oral 5-fluoropyrimidine prodrug capecitabine in treating

metastatic colorectal cancer. In patients receiving single-agent

capecitabine therapy, the rs4702484 variant located near the

ADCY2 gene and the MTRR gene may be slightly associated

with a decreased progression-free survival (PFS) in

homozygous wild-type patients [58]. Additionally, the

transferrin receptor TfR, which is upregulated in certain

cancer cells, has emerged as a potential therapeutic target.

A targeted drug against TfR is Transferrin Receptor-Targeted

Anti-RRM2 siRNA CALAA-01 (NCI Thesaurus Code:

C78450). It is a proprietary nanoparticle formulation

targeted at the transferrin receptor, containing non-

chemically modified small interfering RNA (siRNA) against

the M2 subunit of ribonucleotide reductase (RRM2), with

potential anti-tumor activity. This drug binds to and releases

anti-RRM2 siRNA via the transferrin receptor (TfR), silencing

RRM2 expression, thereby inhibiting the assembly of

ribonucleotide reductase (RR) and resulting in cell

proliferation suppression. Furthermore, a targeted drug for

ACTC1, DEXAMETHASONE, is commonly used in cancer

treatment to alleviate side effects induced by cancer therapy,

control cancer-related inflammation and immune responses

as part of cancer treatment. However, several clinical studies

have found an association between the use of dexamethasone

and a decrease in overall survival rate in patients. Preclinical

studies in mouse glioma models have shown a reduction in

tumor-infiltrating lymphocytes after dexamethasone

treatment [59].2 https://www.dgidb.org/
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Multi-omics feature analysis

To further validate the reliability of utilizing multi-omics

features for identifying cancer driver genes, we systematically

compared driver genes selected from the CGC database with

neutral genes (NGs) obtained from DORGE [60] (3,417 genes in

total). We evaluated each feature across different cancer types to

assess whether there are significant differences between CGC and

NGs genes.

Specifically, we extracted four types of features from multi-

omics data and conducted a comparative analysis between CGC

and NGs based on these features. To evaluate the distributional

differences between the two groups of genes, we performed

Wilcoxon rank-sum tests and calculated p-values for each

feature to assess statistical significance. Typically, a p-value

less than 0.05 is considered significant. Using the CPDB

network as an example, we visualized the feature distributions

between CGC and NGs through a heatmap (Figure 8A), box

plots, scatter plots, and half-violin plots (Figure 8B). The analysis

results for other networks are provided in the Supplementary

Files S5-1, S5-2.

As shown in Figure 8, among the 64 features across 16 cancer

types, the majority of features exhibit p-values below 0.05,

indicating significant differences, with only six features failing

to reach significance. This demonstrates that the selected four

multi-omics features are effective in distinguishing CGC from

NGs. Among them, the MF and METH features show significant

differences across all 16 cancer types, whereas the GE feature fails

to show significance in the PRAD cancer type, and the CNA

feature does not achieve significance in CESC, KIRP, LUSC,

READ, and THCA cancer types. These findings suggest that most

features exhibit significant differences between CGC and NGs,

implying that these features may hold potential biological

relevance in the identification of cancer driver genes.

Discussion

In this study, we introduced MONet, an integrated

algorithm based on GCN and GAT, for the identification of

cancer driver genes. MONet combines four pan-cancer omics

data types (gene mutations, DNA methylation, gene

expression, and copy number variations) with PPI networks

to predict cancer driver genes. By integrating six PPI

networks, MONet identified 376 candidate cancer driver

genes. Among them, 184 were already known cancer driver

genes, while most of the remaining 192 newly predicted cancer

driver genes were supported by other datasets or research

methods. Among the 192 newly predicted genes, we compared

these genes with the driver genes identified by EMOGI,

MTGCN, GAT, and GCN across the six PPI networks. Our

analysis revealed that 37 genes were uniquely predicted by

MONet. Notably, 29 genes, including APOBEC2, GDNF, and

PRELP, have been confirmed by existing literature to be

associated with cancer development and progression.

We observed that approximately 85% (163/192) of the newly

predicted cancer driver genes were supported by evidence

suggesting their potential as cancer driver genes.

FIGURE 7
The results of the detection of candidate driver genes in the DGIdb database. (A) Left figure displays the number of candidate driver genes
retrieved from the five databases within Interaction Sources, the NCIt database, and those not found in the DGIdb database, along with their
proportions relative to the total number of candidate driver genes. (B) Right figure illustrates the overlap of candidate driver genes from the five
databases within Interaction Sources (ChEMBL, CIViC, DTC, PharmGKB, TTD).
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FIGURE 8
Analysis of multi-omics features in individual cancer types. (A) Wilcoxon rank-sum test p-values across 16 cancer types, with bold borders
highlighting squares where the p-value is greater than 0.05. (B) Box plots, scatter plots, and half-violin plots for theMF feature across 16 cancer types.
Each plot compares CGC and NGs, displaying the mean values for both groups and the p-values from the Wilcoxon rank-sum test.
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The innovation of this study lies in the effective integration of

GCN andGAT algorithms into a unified framework. TheMONet

model combines the complementary strengths of these two

algorithms: GCN excels at capturing global graph structures,

while GAT emphasizes the importance of local neighborhoods

through its attention mechanism. By integrating multi-omics

data with PPI networks to fully explore the potential information

of multi-omics features and gene interactions, thereby improving

the effectiveness of identifying cancer driver genes.

Results showed that the MONet model outperformed baseline

models in terms of the area under the receiver operating

characteristic (ROC) curve and the area under the precision-

recall (PR) curve, demonstrating excellent performance and

stability across different PPI networks. By conducting ablation

experiments on the multi-omics data used by MONet, we

verified that using multi-omics data can improve the prediction

performance of driver genes. Additionally, we provided evidence

support for newly predicted driver genes by comparing with

existing driver gene databases, performing KEGG enrichment

analysis and GO enrichment analysis, and consulting existing

literature. For genes that could not be validated, we conducted

survival analysis and drug target analysis to support their potential

as cancer driver genes. Definitive evidence indicates the

involvement of newly discovered genes to the occurrence,

development, and treatment of cancer. We ultimately confirmed

the reliability of the selected multi-omics data and can be used to

explore and identify novel cancer driver genes, which provides a

foundational assurance for our study.

Although this study has achieved significant results in

identifying cancer driver genes, there is still room for

improvement. For example, when constructing the graph

structure based on PPI networks, we did not consider the issue

of edge weights. Future research could incorporate edge weight

information to develop more accurate cancer driver gene

identification algorithms to further improve identification

effectiveness. Our study demonstrates that increasing the number

of PPI networks can enhance the performance of driver gene

identification; however, the marginal benefits gradually diminish.

Future research could focus on exploring optimal strategies for PPI

network combinations to achieve a better balance between

performance and resource utilization. Furthermore, as

biotechnology advances, higher-quality PPI networks will further

improve the reliability of driver gene identification, providing greater

possibilities and opportunities for optimization in future studies.
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Abstract

Attention deficit/hyperactivity disorder is a common neuropsychiatric disorder

that affects around 5%–7% of children worldwide. Artificial intelligence provides

advanced models and algorithms for better diagnosis, prediction and

classification of attention deficit/hyperactivity disorder. This study aims to

explore artificial intelligence models used for the prediction, early diagnosis

and classification of attention deficit/hyperactivity disorder as reported in the

literature. A scoping review was conducted and reported in line with the

PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-

Analyses Extension for Scoping Reviews) guidelines. Out of the

1994 publications, 52 studies were included in the scoping review. The

included articles reported the use of artificial intelligence for 3 different

purposes. Of these included articles, artificial intelligence techniques were

mostly used for the diagnosis of attention deficit/hyperactivity disorder (38/

52, 79%). Magnetic resonance imaging (20/52, 38%) were the most frequently

used data in the included articles. Most of the included articles used data sets

with a size of <1,000 samples (28/52, 54%). Machine learning models were the

most prominent branch of artificial intelligence used for attention deficit/

hyperactivity disorder in the studies, and the support vector machine was

the most used algorithm (34/52, 65%). The most commonly used validation

in the studies was k-fold cross-validation (34/52, 65%). A higher level of

accuracy (98.23%) was found in studies that used Convolutional Neural

Networks algorithm. This review provides an overview of research on

artificial intelligence models and algorithms for attention deficit/hyperactivity

disorder, providing data for further research to support clinical decision-making

in healthcare.

KEYWORDS

artificial intelligence, attention deficit/hyperactivity disorder, machine learning, deep
learning, review method
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Impact statement

At present, artificial intelligence is a hot topic, but it still

needs to be developed in the medical field, especially in pediatric

clinical research. We believe that the researchability of artificial

intelligence is sufficient. As we know, in the medical field, early

diagnosis and identification of a certain clinical disease is crucial

for clinical doctors, and the emergence of artificial intelligence is

likely to bring tremendous assistance to clinical diagnosis and

treatment work. In this study, we conducted scope evaluation

according to the PRISMA-ScR guidelines, and mainly

summarized AI models and algorithms for diagnosis,

prediction, and classification of attention deficit/hyperactivity

disorder. The hope is to provide clinical decisions that support

future research in healthcare.

Introduction

Attention-deficit/hyperactivity disorder (ADHD) is a

neurodevelopmental disorder caused by the interaction of genetic

and environmental factors that has a worldwide prevalence of 7.2%

in children [1, 2]. ADHD is characterized by a persistent and

impairing pattern of inattention and/or hyperactivity/impulsivity,

about 60% of children with ADHD have symptoms that persist into

adulthood [3], and 89% of ADHD patients are accompanied by

mental illness, representing a significant public health problem [4].

Therefore, early diagnosis of ADHD is critical to enable early

intervention and treatment.

At present, the diagnosis of ADHD mainly relies on the

judgment of psychiatrists, based primarily on reports from

parents and teachers, behavioral observations, and clinical

interviews, which are sensitive to subjective biases [5, 6]. Existing

studies have shown that ADHD is a highly heterogeneous disease

involving multiple etiological and risk factors, with different clinical

characteristics, development process and outcome, which brings

diagnostic challenges to clinicians, and false positive diagnosis or

misdiagnosis may occur in clinical practice [7, 8]. It has been shown

that a significant association between disease and trait does not

necessarily imply that it can be used for disease prediction.

Neuroimaging plays a vital role in the study of brain function by

visualizing the structure and activity of the brain, allowing

researchers to understand how different brain regions are

involved in various cognitive and behavioral processes [9]. The

brains of childrenwithADHDare different in terms of structure and

function, and these differences are also associated with

neurocognitive performance. Structural magnetic resonance

imaging (sMRI), functional MRI (fMRI), resting-state fMRI (rs-

fMRI) and diffusion tensor imaging (DTI) were used to characterize

the etiology and phenotype of ADHD from different dimensions

[10]. Genome-wide association studies have also revealed several

variants in ADHD [11, 12]. In addition, other studies have

attempted to use electrocardiogram (ECG) signals [13], eye

tracking [14], physiological signals, wearable device data [15],

and exercise data to help diagnose ADHD.

Artificial intelligence (AI) is a technology with great potential in

medicine, machine learning (ML) is a powerful tool for making

critical decisions by analyzing large data sets such as social behavior

patterns and various health conditions, deep learning (DL) is a

branch of ML [16]. Many neurological diseases are identified based

on subjective diagnostic criteria. Neuroimaging is a promising

objective diagnostic tool. The task of ML is to model the

relationship between features extracted from imaging data and

individual labels in the data set, which can be used for new or

invisible data sets. It creates broad prospects for disease diagnosis,

prognosis andmanagement in health care and enriches personalized

medicine [17]. With the increasing popularity of AI models, AI

technology has achieved satisfactory results in the diagnosis of brain-

related diseases such as Alzheimer’s disease, Parkinson’s disease,

autism spectrum disorder (ASD) [18], and ADHD is no exception.

AI can assist in ADHDdiagnosis, classification, prognosis, treatment

prediction, and the development of new therapeutic drugs.

A large number of articles have been published on AI

technologies for ADHD. Several reviews were conducted to

summarize previous studies; however, they had the following

limitations: First, they focused on studies of ADHD diagnosis

with machine learning methods using MRI data [19]; Second,

they focused on describing the efficacy ofML or DLmodels in the

diagnosis, classification, or prediction of ADHD, without

describing in detail the characteristics of the AI algorithms

used [20]. The available literature lacks a review that provides

an overview of the features of the AI algorithms used in ADHD.

Thus, this review aims to explore the characteristics of AI models

used for the diagnosis, prediction and classification to aid

scientists advance research on this field.

Materials and methods

Overview

In this scoping review, we conducted a systematic literature

search that reviewed research involving the use of AI for ADHD

prediction, classification, and diagnosis. To ensure the

transparency and reliability of this study, the literature search

was conducted according to the Preferred Reporting Items for

Systematic Review and Meta-Analysis Protocols Extension for

Scoping Reviews (PRISMA-ScR) guidelines [21]. The protocols

used in the scoping review are detailed in the following sections.

Search strategy

Search sources
Two authors (Bo Sun and Fei Cai) conducted an independent

search in February 2025 and screened abstracts and full texts,
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which were finally checked by the corresponding author (Bing

Wei). During this period, we searched four online databases,

including MedRXiv, BioRXiv, PubMed, and Science Direct. The

search focused on both medical and computer science databases.

Search terms
We used the following items as keywords: (“artificial

intelligence” OR “machine learning” OR “deep learning” OR

“supervised learning” OR “unsupervised learning” OR

“reinforcement learning”) AND (“attention-deficit/

hyperactivity disorder”) AND (diagnosis* OR detect* OR

predict* OR screen*). For more information on the exact

search terms used to search each database, see Multimedia

Supplementary Appendix S1.

Eligibility criteria

The studies included in this review mainly concerned AI

technologies for ADHD diagnosis and risk prediction. In other

words, we focus on AI models related to ADHD diagnosis. The

searchwas limited to original journal research articles in English.We

excluded articles (i.e., literature reviews, dissertations) outlining AI

approaches to ADHDas well as studies based purely on clinical trials

and experimental studies. Inclusion criteria include: (1) AI

technology; (2) the goal to diagnose or screen for ADHD; (3)

participants are children only; (4) the data is publicly available.

Exclusion criteria include: (1) inadequate details in terms of AI

models; (2) same raw data; (3) inappropriate article types (e.g., case

reports, reviews, papers, proposals, conference abstracts, editorials,

generic manuscripts, and reviews).

Study selection

Articles selected from each database were charted on

Microsoft Excel. At the same time, we imported all the

retrieved articles into the EndNote software, and the duplicate

check function was used to remove duplicate studies. Titles and

abstracts were carefully selected and screened, and articles were

searched for full text reading if they met the inclusion criteria.

Any disagreements were resolved through discussion among the

investigators. To measure agreement between investigators, we

calculated the Cohen kappa [22], where the screening result for

title and abstract was 0.976, while the screening result for full text

was 0.82. We documented the inter-investigator agreement

matrix in Multimedia Supplementary Appendix S2.

Data extraction

The investigators performed the data extraction process

using a pre-designed standardized form (Multimedia

Supplementary Appendix S3). The extracted data included: (1)

author, country, and year; (2) the age, number and health status

of the participants; (3) the source, setting, and availability of the

data used by AI; (4) algorithms, types, and features of AI models;

(5) outcomes of AI diagnosis of ADHD.

Results

Search results

We preliminarily identified 1994 articles using four open

online databases: PubMed (n = 613), Science Direct (n = 666),

BioRXiv (n = 542), and MedRxiv (n = 173). After that, we

excluded 557 duplicate articles. Of the remaining studies,

1,195 articles were removed after title and abstract screening.

In addition, 13 articles were not searchable, so 229 articles were

included in the full-text screening. As shown in Figure 1, after

reviewing the full text, we excluded 177 articles for a variety of

reasons. A total of 52 articles met our inclusion criteria and were

included in this scoping review.

Main characteristics of the
included articles

Characteristics of the included studies were shown in

Table 1. All of the studies we included were published in

peer-reviewed journals (52/52, 100%). Eligible studies were

published between 2012 and 2025, mainly in China (16/52,

31%), followed by Korea (9/52, 17%). The number of

participants mentioned in the included studies ranged from

10 to 238,696. Of these, 33 studies reported the proportion of

female participants, ranging from 2% to 50%. Furthermore,

88% (46/52) of the included studies only recruited participants

with ADHD, and 12% (6/52) of the studies included

participants with other medical conditions. Multimedia

Supplementary Appendix S4 showed the detailed

characteristics of the included studies.

Characteristics of AI techniques for ADHD

Of the included studies, 76.9% used only ML algorithms, 9.6%

used only DL algorithms, and 13.5% applied ML including DL

algorithms. In addition, we collated the AI models, algorithms, and

methods used in the included ADHD studies. The most commonly

used model was support vector machine (SVM, 34/52, 65%),

followed by random forest (RF, 17/52,33%). In the 52 studies, AI

algorithms were used for 3 different purposes. The most common

purposes were early diagnosis (38/52,79%) and risk predictions (10/

52, 14%; Table 2). Only 11 studies stated the programming

languages used to develop the models, and they were R (5/52,
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10%) and Python (6/52,12%).Multimedia Supplementary Appendix

S5 showed the characteristics of the AI techniques used in

each study.

Table 3 showed the different data categories used in the

included studies: 38% of the studies (20/52) involved brain

imaging, 25% (13/52) included demographic information, 19%

(10/52) used electroencephalogram (EEG), and so on. 60% of the

included studies used datasets from closed-source (i.e., data

collected directly from databases of study participants or

clinical settings) and 40% from open-source (i.e., publicly

available databases). The numbers of features used to develop

the models in the included studies ranged from 3 to 13,585,634.

And 25 studies (48%) did not exceed 100 features in developing

their model. We provided a detailed description of the number of

features and data categories of the included studies inMultimedia

Supplementary Appendix S6.

As shown in Table 4, the included studies used different

validation techniques in the development of AI models, mainly of

two. Among them, k-fold CV (34/52, 65%) is the more

commonly used method. Only 13% of studies (7/52)

mentioned confusion matrices, but all 52 studies mentioned

performance metrics for AI models. According to statistics,

the most commonly used performance measure was accuracy

(ACC, 45/52, 87%). In Table 5, 8 studies reported the precision of

AI algorithms, ranging from 80% to 95%, with an average of

92.53%; The area under the curve (AUC) in 26 studies ranged

from 57.6% to 99.64%, with a mean of 83.77%; The mean ACC of

the 45 studies was 83.06%, ranging from 53.2% to 98.23%;

35 studies reported specificities varying between 58.8% and

99.11%, with a mean of 84.08%; The F1-score valued in

11 studies ranged from 48.89% to 95%, with a mean of

85.21%. In addition, the sensitivity of the AI algorithms

reported in 35 studies ranged from 33% to 98.24%, with an

average of 74.67%.

Discussion

Principal findings

In this study, we explored the application of AI techniques in

the early diagnosis, prediction, and classification of ADHD. We

FIGURE 1
PRISMA-ScR flowchart of the study selection.
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TABLE 1 Characteristics of the included studies (n = 52).

Characteristics Studies n (%) References

Publication type

Journal articles 52 (100) [12, 13, 15, 23–28], [29–71]

Year of publication, n (%)

2025 1 (1.9) [26]

2024 9 (17.3) [26, 63, 64, 66–71]

2023 8 (15.4) [35, 42, 47, 50]

2022 7 (13.5) [23, 27, 33, 39, 45, 60, 61]

2021 4 (7.7) [12, 13, 24, 38]

2020 4 (7.7) [25, 37, 44, 52]

2012–2019 19 (36.5) [28–32, 34, 36, 40–44, 48, 54–56, 58, 59, 62]

Country of publication

China 16 (31) [12, 24, 28, 29, 39, 46, 54, 59, 61, 64, 66, 68–71]

Korea 9 (17) [15, 25, 30, 47, 49, 50, 55, 58]

United States 7 (13) [23, 32, 38, 40, 41, 52, 57]

Canada 2 (4) [31, 43]

Germany 2 (4) [34, 60]

Spain 3 (6) [48, 56, 63]

Australia 1 (2) [53]

Denmark 1 (2) [67]

Iran 1 (2) [33]

Israel 1 (2) [37]

India 1 (2) [42]

Italy 1 (2) [62]

Japan 1 (2) [44]

Minnesota 1 (2) [36]

Singapore 1 (2) [13]

Sweden 1 (2) [27]

Turken 1 (2) [35]

Türkiye 1 (2) [51]

United Kingdom 1 (2) [45]

Number of participants, n (%)

<99 17 (33) [25, 30, 34–36, 38, 47–49, 52, 56, 58, 62, 66, 69–71]

100–999 28 (54) [13, 15, 23, 26, 28, 29, 31, 33, 37, 39–44, 46, 50, 51, 54, 55, 59–61, 63–65, 67, 68]

>1,000 7 (13) [12, 24, 27, 32, 45, 53, 57]

Gender, range (%)

Female 2–50 [12, 13, 15, 24, 28, 30, 31, 33, 35–40, 42, 44–47, 52, 55–60, 62–65, 67, 69, 70]

(Continued on following page)
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searched articles published from January 2012 to February 2025,

and of the 1994 articles retrieved, 52 were eventually included in

our scoping review. Over the past 4 years, an increasing number

of studies have been published: 9 in 2024, 8 in 2023, 7 in 2022,

and 4 in 2021. Tracing its causes, the digital innovation process

has stimulated the increasing demand for telemedicine programs,

and healthcare systems have increasingly relied on AI technology

[72]. In the field of child and adolescent neuropsychiatry, the

development and use of online platforms for collecting case

histories, demographic, and behavioral information have been

steadily increasing [73]. The increase in available data has

provided new opportunities for cutting-edge methods such as

ML and DL, which used high-dimensional data to build

predictive models to capture non-linear relationships across

multiple data sources, traditional statistical methods could not

achieve [74]. The articles we included focused on AI being used

for three purposes in ADHD: early diagnosis, classification, and

prediction. None of the included articles were used for other

purposes, such as treatment response prediction, prognosis, drug

efficacy evaluation, and patient outcomes. Similar to the

application of AI in other mental disease, China, the

United States and South Korea (32/52, 61.54%) were the

countries with largest number of studies related to the use of

AI in ADHD.

The data available in the application of AI in ADHD could be

roughly divided into the following seven categories: demographic

characteristics (gender, age, race, ethnicity, parental education,

etc.); parent/teacher report questionnaire; neurocognitive

characteristics; brain imaging (fMRI, sMRI, DTI) [20]; genetic

data; EEG; eye tracking. Among them, 20 studies included MRI.

MRI has demonstrated the possible physiological basis of the

disease and is a potential predictor. ML or DL techniques may

help identify reliable features and use this as a classification or

diagnostic predictor [23]. Zhou, Lin [24] constructed a

multimodal ML framework combining Boruta-based feature

selection and multi-core learning, integrating sMRI, fMRI and

DTI data for early diagnosis of ADHD. Then they used SVM to

distinguish ADHD from healthy children. AUC of the model for

diagnosing ADHD was 69.8%, and the classification ACC was

64.3%. The reported ACC of existing ADHD classification

models varied, with most ranging between 60 and 90% [75].

Despite the success of MRI-based ML models, it has been found

that models that incorporated demographic characteristics and/

or parent/teacher questionnaires reported higher ACC in

classification or diagnosis. One study evaluated parent/teacher

ratings of executive function (from BRIEF’s Emergent

Metacognition Composite score), behavioral/cognitive

measures of executive function, measurements of cortical

thickness in frontal subregions, and thickness and volume in

the parietal cortex, two demographic characteristics (age and

child sex), as well as a complete model with four categories. The

results showed that the complete model with all the target

features achieved a performance ACC of 0.994 in predicting

ADHD diagnosis, with 0.926 derived from parent/teacher

reports, which was considered critical in classifying ADHD

[76]. ADHD was highly heritable (76% heritability) [77].

There was a study that combined multimodal MRI with

candidate genetic data [25], including cortical morphology,

diffusivity scalars, resting-state functional connectivity and

polygenic risk score from norepinephrine, dopamine and

glutamate genes. The integration of candidate single

nucleotide polymorphism (SNP) data into the best model did

not show a meaningful improvement in ACC. Existing studies of

modeling using AI technique have all incorporated MRI

diagnostic tools, in fact, it is important to acknowledge that

neuroimaging data yields very little power [78]. There is still a

need to focus on readily available behavioral/clinical data,

including demographic information, subjective symptom

ratings, and objective neuropsychological data. Integrated

modeling approaches could facilitate the development of new

approaches to ADHD classification and treatment. New types of

data, such as eye tracking, could also be considered in the future

in combination with clinical features.

Traditional ML and DL are two branches of AI. In this

review, we investigated the characteristics of AI techniques

present in the research. Most studies used ML, and the most

commonly used algorithm was SVM (34, 65%), followed by RF

(17, 33%). SVM by identifying the optimal hyperplane or by

mapping nonlinear data into high-dimensional space using

kernel functions to realize classification [79]. Its strength

resides in its proficiency in managing small sample sizes,

high-dimensional data, and nonlinear datasets efficiently, as

exemplified when utilizing EEG to analyze ADHD [26].

Nevertheless, it is hindered by significant computational

complexity and a heightened sensitivity to parameter

adjustments. Conversely, Based on the voting mechanism

of the integrated decision tree (DT), RF is good at

processing large-scale multimodal data (such as when

TABLE 1 (Continued) Characteristics of the included studies (n = 52).

Characteristics Studies n (%) References

Participants’ health conditions, n (%)

Only ADHD 46 (88) [12, 13, 15, 23–31, 34–39], [41–52, 54–60, 62–66, 68–71]

ADHD and OTHERS 6 (12) [32, 33, 40, 53, 61, 67]
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applying multi-center imaging and clinical data fusion to

characterize ADHD) [80], does not require feature selection

and is robust, and RF is known for its ability to perform well in

classification and regression tasks [81]. However, the high

complexity of the model leads to weak interpretability, and

overfitting may occur in extreme cases [82]. The application

TABLE 2 Types of AI techniques used for ADHD (n = 52 studies).

Types Studies n (%) References

AI type

ML 40 (76.9) [13, 15, 23–26, 28–34, 36, 38, 39, 41–49, 52–56, 58, 60, 62–65, 67–70]

DL 5 (9.6) [35, 50, 51, 61, 66]

ML and DL 7 (13.5) [12, 27, 37, 40, 57, 61, 71]

AI algorithms/models/methods a

SVM 34 (65) [12, 13, 23, 24, 28–34, 39–46, 48, 49, 52, 54–60, 62, 63, 67, 68, 70]

RF 17 (33) [12, 15, 24, 27, 32, 33, 36–38, 40, 42, 45, 53, 63, 69–71]

DT 10 (19) [13, 31, 32, 38, 52, 53, 63, 68, 69, 71]

Gradient boosting 7 (13) [15, 26, 27, 33, 63, 69, 70]

K-nearest neighbors (KNN) 7 (13) [27, 31, 38, 42, 43, 45, 68–70]

AdaBoost 6 (12) [13, 27, 36, 63, 69, 70]

LR 6 (12) [27, 32, 38, 42, 43, 45]

Convolutional neural network (CNN) 5 (10) [12, 35, 51, 56, 59, 61]

Naive bayes (NB) 5 (10) [12, 35, 51, 59, 61, 63]

Extreme learning machine (ELM) 3 (6) [30, 54, 55]

Multi-layer perceptron (MLP) 3 (6) [45, 59, 63]

Neural network (NN) 3 (6) [37, 40, 63]

Deep-learning neural network (DNN) 2 (4) [27, 66]

Linear discriminant (LDA) 2 (4) [32, 47]

Multinomial regression (MR) 2 (4) [40]

Recurrent neural network (RNN) 2 (4) [50, 71]

Categorical lasso 1 (2) [32]

Classification and regression tree (CART) 1 (2) [70]

Elastic net regularization (EN) 1 (2) [58]

Partial least squares (PLS) 1 (2) [40]

Purpose of AI algorithms

Early diagnosis 38 (79) [15, 24, 25, 28–43, 47, 49–57, 59–62, 65–67, 70, 71]

Predicting 10 (14) [12, 23, 26, 27, 44, 45, 58, 63, 64, 68]

Classification 4 (7) [13, 46, 48, 69]

Programming languages b

Python 6 (12) [23, 26, 27, 32, 53, 64]

R 5 (10) [25, 39, 41, 44, 47]

aSome studies used more than one model.
bOnly 9 studies reported the programming languages used to develop the model.
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scenarios of the two in the field of ADHD are significantly

different: SVM is suitable for accurate classification tasks with

limited data but complex features, while RF is more suitable

for mining potential patterns in large-scale data. The sample

size of ADHD research data is limited, so SVM is more

suitable. DT and logistic regression (LR) are rarely used

because they are difficult to cope with the high

dimensional, non-linear and heterogeneous characteristics

of ADHD data [27].

In contrast, DL was used 12 times (23.1%). K-fold CV was

used in 34 (34/52, 65%) studies for AI model testing. In the early

days, ML was widely used for its simplicity and high efficiency,

owing to its advantages over traditional analytical methods based

on mass-univariate statistics, especially considering the inter-

correction among regions [16]. DL is a particular subtype of ML

which is based on deep neural networks (DNNs). In contrast to

ML technology, which requires manual extraction of features

during image segmentation, DL employs artificial neural

networks (ANNS) that allow direct processing of raw data

and are particularly useful in identifying complex patterns in

high-dimensional fMRI data tomaximize model performance for

related tasks [83]. Although there are few DL studies, their results

are better than those of ML. There are several issues to be noted,

one is the limitation of data volume, due to cross-sample

reliability/validity and sensitivity and specificity limitations,

ADHD diagnosis is primarily based on parent/teacher reports,

neuroimaging is not yet part of the routine diagnosis process of

ADHD [84]. Most of the MRI data in the published studies come

from public databases, such as ADHD-200, the Study of

Cognitive Development in the Adolescent Brain (ABCD), and

Autism Brain Imaging Data Exchange (ABIDE), which have

limited sample size and limited reproducibility [6, 85], the

amount of data that is available is still not enough to meet

the needs of DL. Secondly, it is the lack of transparency in the

learning and testing process of DL that has led them to be called

black boxes, and the interpretability of medical algorithms may

have become a prerequisite for clinical adoption [86].

A large amount of the studies reported in this paper

employed CV methods (44,84.6%), especially k-fold CV.

CV, which is one input dataset split into parts, some of

which are used as training classifiers (training data), and

the remainder is used for validation (test data), this

method is relatively economical, and could deal with

overfitting and generalization problems to a certain extent

TABLE 3 Features and categories of data used in the included articles (n = 52 studies).

Features Studies n (%) References

Data category a

Brain imaging 20 (38) [23–25, 29–31, 33, 35, 37, 41–43, 46, 54–58, 65, 67]

Demographic information 13 (25) [28, 29, 37, 38, 41–45, 58, 60, 67]

EEG measurements 10 (19) [13, 26, 34, 39, 49, 51, 59, 61, 66, 71]

Parent/Teacher report questionnaire 9 (17) [32, 36, 45, 52, 53, 60, 63, 68, 71]

Neurocognitive features 7 (13) [36, 37, 44, 50, 52, 60, 62]

Eye tracking 3 (6) [48, 64, 66]

Genetic characteristics 3 (6) [12, 25, 58]

Behavioral data 2 (4) [69, 70]

Wearable data 2 (4) [15, 40]

Others 3 (6) [28, 47, 62]

Number of features

<99 25 (48) [13, 15, 26, 27, 32–34, 36, 40, 43, 45, 46, 52, 58–60, 62–65, 67–71]

100–999 10 (19) [23, 29, 30, 38, 42, 47, 54, 56, 57, 66]

>1,000 9 (15) [12, 24, 25, 31, 41, 49, 51, 53, 55]

Not reported 8 (15) [28, 35, 37, 39, 44, 48, 50]

Type of data set source

Closed 31 (60) [12, 13, 15, 23, 26, 34–40, 44, 49, 50, 52, 56–60, 62–71]

Open 21 (40) [24, 25, 27–33, 40–42, 44, 46–48, 51, 53–55, 61]

aMany studies used more than one data category.
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[87]. However, due to the unbalanced nature of the number of

features and the number of subjects in each study, as well as

the high heterogeneity of the study sample, the generalization

is still limited. Moreover, internal verification cannot

guarantee the quality of ML model, it has no extrapolation

[87]. Leave-one-out CV (LOOCV) is a special form of k-fold

CV, which divides the data set into N subsets (N is the total

number of samples). Only 1 sample is retained as the test set

each time, and the remaining N-1 samples are repeated for N

times. Finally, the average value of all test results is taken as

the model evaluation index [28, 88]. This verification method

can maximize the data utilization rate and is suitable for

capturing the heterogeneity among ADHD individuals (such

as the differences in neural markers of different subtypes).

However, due to the high computational cost, it is not

friendly to multi-modal high-dimensional data (such as

fMRI), and can only be used for small data sets [28, 89].

AI requires large datasets to train models in order to avoid

over-fitting and improve generalization. Only seven studies

used datasets with more than 1,000 data points, and

21 studies used open datasets. In order to reflect the actual

performance of the AI model in neuropsychiatric diseases,

the model needed to be tested on multiple data sets to ensure

its extrapolation [6]. AI models in future should be trained

and validated in larger datasets [90]. DL has no advantage

over ML in terms of classification and consumes more

resources. However, the emergence of DL will further

continue in the era of pediatric clinical studies because

TABLE 4 Validation approaches and performance measures (n = 52 studies).

Validation and statistics Studies n (%) References

Validation approach a

K-fold
CV

34 (65) [13, 24, 27–35, 37–39, 41–43, 45, 46, 48, 51, 53, 57–64, 68–71]

LOOCV 10 (19) [25, 26, 28, 47, 50, 52, 54, 56, 61, 62]

Not reported 11 (21) [12, 15, 23, 36, 40, 44, 49, 55, 65–67]

Confusion matrix

Reported 7 (13) [35, 36, 50, 51, 53, 61, 63]

Not reported 45 (87) [12, 13, 15, 23–34], [37–49, 52, 54–60, 62, 64–71]

Performance measures b

ACC 45 (87) [12, 13, 23–31, 33–43], [46–50, 52–54, 56–64, 66–71]

Sensitivity 35 (67) [12, 13, 15, 24, 26–29, 31, 33, 36–42, 44, 46, 47, 50–53, 55–57, 60–64, 67, 69, 71]

Specificity 35 (67) [12, 13, 15, 24, 26–29, 31, 33, 36–42, 44, 46, 47, 50–53, 55–57, 60–64, 67, 69, 70]

AUC 26 (50) [12, 15, 24, 25, 27, 29, 32, 35, 38, 40, 45, 46, 48, 49, 53, 54, 58–65, 69, 70]

F1-score 11 (21) [23, 26, 35, 45, 46, 50, 55, 61, 64, 68, 71]

Precision 8 (15) [26, 35, 45, 53, 55, 64, 68, 71]

Recall 5 (10) [35, 45, 55, 69, 71]

False-negative 3 (6) [36, 48, 50]

False-positive 3 (6) [36, 48, 50]

Negative predictive value 3 (6) [15, 27, 33]

Positive predictive value 2 (4) [15, 33]

Kappa 1 (2) [40]

J-statistic 1 (2) [46]

Positive predicted power 1 (2) [27]

True-negative 1 (2.4) [36]

True-positive 1 (2.4) [36]

aTotal number does not add up, as many studies used more than one validation method.
bTotal number does not add up, as many studies used more than one performance measure.
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of its lesser reliance upon the existence of engineered

features [91].

Comparison with previous studies

So far, we had retrieved five reviews on the use of AI in

ADHD. A summative review explored the complex interaction of

multiple cognitive, genetic and biological factors related to

ADHD underling the ML-based algorithm [5]. The authors

reported the significance of ML models in ADHD research.

Loh, Ooi [92] conducted a systematic review by following

PRISMA guidelines and focused on the diagnostic value of

AI-based, they identified existing diagnostic tools for ADHD

that are commonly used: EEG, MRI, questionnaires, exercise

data, performance tests, etc. From the perspective of each

diagnostic tool, the most commonly used features were

discussed. Pereira-Sanchez and Castellanos [93] provided a

brief narrative review of recent AI studies using sMRI and fMRI

in ADHD patients, focusing on meta-analyses, large analyses, and

proposed novel multimodal approaches. Periyasamy, Vibashan [20]

provided a literature review on the application of AI in ADHD. In

studies focusing on the use of MRI data, the feature extraction,

dimensionality reduction/feature selection, and classification

techniques were compared. Taspinar and Ozkurt [19] reported a

review focusing on the inclusion of studies using sMRI data. Our

scoping review focused on the role of AI techniques in the diagnosis,

classification, and prediction of ADHD, following PRISMA

guidelines. Provide the purpose and characteristics of all AI

technologies listed in the study by reviewing the data sources and

platforms used by the AI model. Hopefully, our findings will

contribute to further ADHD research.

Limitations

This study had the following limitations. This review did not

include articles related to the prognosis, treatment, and drug

discovery of ADHD. The review was limited to journal articles

written in English, while papers, review articles, conference abstracts,

and review reports were excluded to reduce the complexity of the

results. In fact, many research articles in the field of computers are

published in full through conferences. In addition to popular public

databases, half of the studies used private datasets, there was

heterogeneity between studies in the methods and datasets used

to generate assessmentmeasures, such as the number of participants,

data collection methods, and validation methods used. Finally, we

only searched four commonly used databases, and there may have

been omissions in some unsearched databases.

Conclusion

This scoping review is undertaken to support the existing

evidence on the role of AI techniques in ADHD.We summarized

AI models and algorithms for prediction, early diagnosis, and

classification. Research into the application of AI to ADHD is still

in its infancy, but early attempts to study ADHD using AI have

shown promising results. Translating research into clinical

practice still has a long way to go, and more explainable AI

research and public education initiatives are needed. We believe

that this review will help the scientific community better

understand the application of AI techniques in ADHD.
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Abstract

This research study was directed towards to assessing whether coenzyme Q10

(CoQ10) is linked to neuroprotection and induces anti-inflammatory and anti-

neuronal death responses in an Intracerebral hemorrhage (ICH) mouse model via

right caudate nucleus injection with collagenase VII. Autologous blood was injected

into mice to induce ICH. We found that FoxM1 was upregulated in the ICH-injured

animals. Moreover, CoQ10 treatment effectively ameliorated neurological deficits,

mitigated cerebral edema, andminimized hematoma inmodelmice, demonstrating

dose-dependent efficacy and promoting the functional recovery of the animals.

ELISA and real-time PCR assays of pro-inflammatory cytokines indicated that

CoQ10 was capable of alleviating neuroinflammation in ICH. In line with the part

of CoQ10 in attenuating the inflammatory response, CoQ10 also suppressed cell

apoptosis in the ICH-injured brain, which partly accounts for its neuroprotective

effect. Furthermore, our analysis of different inflammatory pathways indicated that

CoQ10 targeted the nuclear factor-kappa B signaling axis. Our findings suggest that

CoQ10 protects against ICH by mitigating neuroinflammatory responses and

preventing neuronal apoptosis, with the underlying mechanism possibly being

connected with nuclear factor-kappa B pathway regulation. Therefore,

CoQ10 holds significant potential as a therapeutic strategy for treating ICH.

KEYWORDS

intracerebral hemorrhage, coenzyme Q10, autologous blood injection,
inflammation, apoptosis

Impact statement

This study verified the function of CoQ10 in protecting against brain injury caused by

ICH and that its neuroprotective effect is in part due to its inhibition of pro-inflammatory

cytokine secretion and neuronal death. Moreover, CoQ10 was confirmed to suppress pro-

inflammatory cytokine secretion by inhibiting p65 phosphorylation.
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Introduction

Intracerebral hemorrhage (ICH), including the rupture of

cerebral blood vessel and blood leakage into the cerebral

parenchyma [1, 2], takes up 10%–15% in stroke cases and

exhibits a high incidence and mortality [3]. Cerebral

impairment resulting from ICH occurs in two stages. The

initial bleeding destroys the brain cell structure while the

hematoma induces elevated intracranial pressure, thereby

affecting blood circulation and causing brain herniation [4].

The second stage, which can be avoided, will continue for

several hours or days [5, 6] and includes local inflammation

[7], the generation of clotting components, and impairment of

the perihematomal tissues (such as the blood–brain barrier) [8].

Some proofs indicate that secondary injury may be triggered by

the generation of thrombin, hemoglobin, and iron [9–12].

Therefore, efficient treatment of hemorrhagic stroke-induced

secondary impairments is warranted.

Ubiquinone, also known as CoQ10, is a kind of lipophilic,

vitamin-like compound which plays a pivotal role in the

mitochondrial electron transport system and contributing to

ATP biosynthesis [13]. It is generally acknowledged that

CoQ10 exhibits potent antioxidant effects and also enhances

defensive effects of other antioxidative enzymes [14]. Aside from

protecting neuronal cells via its antioxidative activity, CoQ10 has

demonstrated the ability to improve brain-derived neurotrophic

factor (BDNF) levels and enhance its signaling pathway in the

brain, which accounts for its neuroprotective effects [15]. The

effects of CoQ10 have been proven in numerous neurological

diseases [16, 17]. Meanwhile, several reports have investigated

the neuroprotective impacts of CoQ10 in a variety of stroke

models, such as symptomatic vasospasm-triggered ischemic

brain lesions [18]. Moreover, CoQ10 administration has been

shown to ease venous ischemia/reperfusion injuries [19].

However, studies on the neuroprotective role of

CoQ10 during ICH development and pathogenesis are scarce.

Therefore, this research was designed to explore the

neuroprotective impacts of CoQ10 against neurological deficits

caused by ICH damage and the underlying

molecular mechanism.

Materials and methods

Laboratory animals

Male C57BL/6 mice, with a weight range of 18.0–20.0 g, were

acquired from Vital River Biotechnology Co., Ltd., China. All

animal-related experiment operations had obtained the approval

of Animal Care and Use Committee of Ruian People’s Hospital,

the Third Affiliated Hospital of Wenzhou Medical University, in

full accordance with the ARRIVE guidelines. Mice were raised in

individual cages under a 12-h light and dark cycle in controlled

temperature conditions, and provided sufficient food and water.

Experimental grouping

To examine the impacts of CoQ10 administration in an

animal model of ICH, 36 C57 mice were arbitrarily allocated

to six groups, consisting of a sham group (n = 6) and five ICH

subgroups (n = 30, successful ICH mode number). The five

subgroups that had been subjected to ICH injury were as follows

(each n = 6): ICH group (no treatment), ICH + vehicle group

(intragastric administration with phosphate-buffered saline at

day 0 post ICH), ICH + lCoQ10 group (intragastric

administration with low-dose CoQ10, 0.5 mg/g mouse weight

at day 0 post ICH), ICH + mCoQ10 group (intragastric

administration with medium-dose CoQ10, 5 mg/g mouse

weight at day 0 post ICH), and ICH + hCoQ10 group

(intragastric administration with high-dose CoQ10, 25 mg/g

mouse weight at day 0 post ICH).

One mouse from each of the six groups was decapitated on

day 1 following assessments of neurological function deficits

caused by ICH. Subsequently, on day 5, one mouse from each of

the six groups was used for neurological function deficit

assessments, whereas the remaining mice were decapitated.

Cerebral specimens were harvested from the sacrificed animals

for biochemical examination.

ICH model establishment

Following established protocols [20], the mice were given

sodium pentobarbital for anesthesia and subsequently positioned

in a stereotaxic frame. ICH model establishment was

implemented in accordance with a previously described

method [21]. In brief, through a 1 mm burr hole, infusion of

a solution containing 0.5 U of collagenase VII was given to the

right caudate nucleus at a rate of 0.4 μL/min, with the stereotaxic

coordinates set at 1.0 mm posterior to the pons, 3.0 mm to the

right, and 6.0 mm ventral to the skull. The sham group was

subjected to identical operations except for the intracerebral

injection. Upon awakening from the anesthesia, the mice were

raised in cages and furnished sufficient water and food.

RNA isolation and quantitative
PCR analysis

Cerebral specimens, kept at −80°C, were processed to isolate

total RNA using TRIzol reagent as the relevant instructions. The

synthesis of cDNA was carried out utilizing a PrimeScript RT

Master Mix (Takara, Dalian, China) as the relevant guidelines.
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qRT-PCR (model 7500 Real-Time PCR System; Applied

Biosystems) was implemented utilizing the SYBR Green kit

(Takara, Dalian, China) as the relevant guidelines. The

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene served

as a reference for data normalization. To quantify the expression of

target mRNA relative to GAPDH in each sample, the cycle threshold

(Ct) was utilized in the equation: expression = 2e−ΔCt, with ΔCt
representing the deference between Cttarget and CtGAPDH. The

sequences of primers applied in qPCR were detailed below:

Neurological deficit tests and
determination of brain tissue
water content

Corner and limb placement tests, components of neurological

deficit tests (NDTs), were performed on day 5 after ICH induction,

using previously described methods [22]. The NDTs were

conducted by a technician unaware of mouse grouping.

An electronic balance was employed for measuring ipsilateral

cerebral hemisphere wet weight. The brains were dried at 100°C

for 1 day, after which their dry weight was determined. The

formula applied for water content calculation: (wet weight – dry

weight)/wet weight × 100%.

Determination of neurological
severity score

The mice underwent evaluation utilizing the modified

neurological severity score (mNSS) test [23] which is similar

to human contralateral neglect test and includes balance,

movement, reflex, and sensory evaluations. The results were

graded on a point scale of 0–18.

Hematoxylin and eosin staining

Transcardial perfusion of the mice with saline, followed by

4% paraformaldehyde, was conducted 5 days after inducing ICH.

Subsequently, the brain was separated, post-fixed overnight,

immersed in sucrose solutions (15% and 30%, 1 day each) at

4°C, and then frozen. Slices of the frozen tissue, each 8 μm thick,

were prepared. Hematoxylin and eosin (H&E) staining was

implemented as the relevant guidelines.

ELISA

The pro-inflammatory cytokines (IL-1beta, IL-6, and TNF-alpha)

levels in culture supernatants and cerebral tissue homogenates (for

10 mg cerebral tissue, add 1 mL of ice-cold lysis buffer and

homogenize using electric homogenizer and stored in −80°C) were

measured utilizing ELISA kits (BMS224-2, EH2IL6, and BMS2034,

Invitrogen) in accordance with the manufacturer guidelines.

TUNEL assay

The TUNEL assay was utilized to assess cell death. In brief, the

frozen brain tissue was defrosted at ambient temperature and

underwent a 0.5-h fixation using 4%paraformaldehyde. Next, the

slides were soaked for 5 min in Triton X-100 (0.1%) and subjected

to 60-min incubation at 37°C using TUNEL reaction mixture.

Western blot assay

Whole-cell lysates were obtained utilizing RIPA buffer

(pH 8.0) added protease inhibitor cocktail, and their protein

concentrations were determined utilizing BCA kit. Using SDS-

PAGE, the proteins were separated and subsequently transferred

to PVDF membranes. After the vacant sites on each membrane

had been blocked, it was subjected to overnight incubation at 4°C

utilizing primary antibodies. Then, following a wash with Tween-

containing Tris-buffered saline (TBST), the membranes were

exposed to secondary antibodies for 1-h incubation at room

temperature. Finally, after rinsing with TBST several times, the

protein bands were revealed using a Maximum Sensitivity

Substrate Kit (Thermo Fisher Scientific, Waltham, MA,

United States). The information for used antibodies (all from

Abcam) is displayed here: Caspase-3 antibody (1:2000, ab4051),

Genes Forward Reverse

IL-1β 5′-CCA CAG ACC TTC CAG GAG AAT G-3′ 5′-GTG CAG TTC AGT GAT CGT ACA GG-3′

IL-6 5′-AGA CAG CCA CTC ACC TCT TCA G-3′ 5′-TTC TGC CAG TGC CTC TTT GCT G-3′

TNF-α 5′-CTC TTC TGC CTG CTG CAC TTT G-3′ 5′-ATG GGC TAC AGG CTT GTC ACT C-3′

GAPDH 5′-GCA CCG TCA AGG CTG AGA A-3′ 5′-TGG TGA AGA CGC CAG TGG A-3′

Bcl-2 5′-CAT TTC CAC GTC AAC AGA ATT G-3′ 5′-AGC ACA GGA TTG GAT ATT CCA T-3′

Bax 5′-AGC TGA GCG AGT GTC TCA AG-3′ 5′-GTC CAA TGT CCA GCC CAT GA-3′
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cleaved Caspase-3 antibody (1:500, ab2302), Caspase-9 antibody

(1:2000, ab25758), cleaved Caspase-9 antibody (1:500, ab2324),

Bax antibody (1:5000, ab53154), Bcl-2 antibody (1:5000,

ab59348), GAPDH antibody (1:5000, ab8245), p-NF-kappaB

antibody (1:1000, ab16502), p-STAT3 antibody (1:500,

ab30647), p-p38 antibody (1:500, ab4822), p-p52 antibody (1:

1000, ab227078).

Statistical analysis

The data are reported in the format of the mean ± SD. The

distinctions among different groups and between two groups

were examined utilizing one-way ANOVA and t-test,

respectively. P < 0.05 meant noticeable differences.

Results

CoQ10 administration restored
neurological functions and reduced the
brain water content in the ICH-
injured animals

To verify the functional outcome of CoQ10-mediated

neuroprotection in ICH, the mice in the ICH groups were

exposed to different doses of CoQ10, and a series of

neurobehavioral tests were performed. Neurological alterations

were detected 1 day prior to ICH induction and at intervals of 1,

3, 7, and 14 days thereafter. CoQ10 (0.5, 5, and 25 mg/g) was

injected 60 min following ICH induction. The high-dose

CoQ10 group demonstrated lower mNSSs compared with the

ICH + vehicle group at 7 and 14 days following ICH induction

(Figure 1A). To assess the role of CoQ10 in brain lesions in the

ICH-injured mice, water content in the brain was measured on

day 5 after injury induction. In contrast to the sham group, the

ICH model group demonstrated elevated brain water contents.

However, medium and high doses of CoQ10 decreased the brain

water contents in the ICH-injured mice (Figure 1B), attenuating

the brain edema in a dose-dependent manner.

CoQ10 treatment attenuated neurological
function deficits and brain impairment in
ICH-injured mice

Behavioral assessments were performed 5 days after ICH

induction. The ICH group exhibited markedly elevated right-

turn frequencies and decreased limb placement scores in contrast

to the sham group results. By contrast, the different doses of

CoQ10 restored the impaired neurological functions, especially

at the high dose (Figures 2A, B).

Furthermore, according to the findings of H&E staining of

the hematoma, histological differences existed between the ICH

and sham groups. However, in the high-dose CoQ10-treated

mice, the hematoma area was reduced than that in the ICH +

vehicle mice (Figure 3A). The findings indicated that

CoQ10 administration could ameliorate neurological

dysfunction and brain impairment in ICH-injured mice.

CoQ10 reduced the expression of pro-
inflammatory cytokines in ICH-
injured mice

To monitor the impact of CoQ10 on neuroinflammation in

the ICH-injured mice, qPCR and ELISA were performed to

examine the pro-inflammatory cytokine levels in the

FIGURE 1
Neurobehavioral test results and brain water content of intracerebral hemorrhage (ICH)-injured mice. (A) The mNSS test of CoQ10-treated
mice was conducted on days −1, 1, 3, 7, and 14 after ICH induction. (B) Brain water content was determined at day 5 after intracerebral hemorrhage
induction. *P < 0.05, **P < 0.01 vs. Sham; #P < 0.05, ##P < 0.01 vs. ICH.
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homogenate and supernatant of the brain tissue. As indicated by

their increased levels in the tissue homogenate, ICH modeling

markedly promoted the expression of cytokines, such as IL-1β,
IL-6, and TNF-α, whereas treatment with CoQ10 reduced the

expression of these three cytokines (Figure 3B). Furthermore, the

ELISA data confirmed that the administration of CoQ10 could

alleviate the inflammatory response in the ICH-injured

mice (Figure 3C).

FIGURE 2
Administration of CoQ10 improved neurological function and eased cerebral impairment in intracerebral hemorrhage-injured mice. (A, B)
Corner and forelimb placement tests were conducted at day 5 following intracerebral hemorrhage induction. **P < 0.01 vs. Sham; #P < 0.05 vs. ICH.

FIGURE 3
CoQ10 treatment attenuated pathological changes and neuroinflammation in intracerebral hemorrhage-injured mice. (A) H&E staining of the
hematoma area at day 5 following intracerebral hemorrhage induction. (B) ELISA results of pro-inflammatory cytokine expression levels homogenate
of the brain tissue. (C) qPCR results of pro-inflammatory cytokine mRNA expression in the homogenate of hematoma-affected brain tissue. ***P <
0.001 vs. Sham; ##P < 0.01 vs. ICH.
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CoQ10 reduced the death of brain cells in
ICH-injured mice

The levels of brain cell apoptosis in the ICH-injured mice were

assessed utilizing TUNEL, qPCR, and western blot (WB) assays.

Among them, TUNEL assay revealed that the ICH model group

exhibited an elevated number of apoptotic cells, whereas the CoQ10-

treated group showed a reduction (Figure 4A). The qPCR finding

revealed that the mRNA level of Bcl-2 was reduced, whereas that of

Bax was elevated, after ICH induction. However, CoQ10 treatment

reversed these Bcl-2 and Bax levels (Figure 4B). WB analysis of

expression of Bax, Bcl-2, cleaved caspase-3, and caspase-9 further

confirmed that CoQ10 treatment reduced apoptosis in the

perihematomal tissue of the ICH-injured animals (Figure 4C).

These results indicate that CoQ10 alleviates ICH-induced

neuronal cell apoptosis and neuroinflammation in vivo.

CoQ10 suppressed p65 phosphorylation
in the hematoma area of brain tissue in
ICH-injured mice

Since NF-κB, STAT3, p38, and p52 sensors are responsible

for inflammation, we examined whether these molecules are

regulated by CoQ10. The western blot findings indicated that

NF-κB, STAT3, p38, and p52 phosphorylation was promoted in

FIGURE 4
CoQ10 treatment inhibited neuronal apoptosis in intracerebral hemorrhage-injured mice. (A) TUNEL assay detection of apoptotic cells. (B)
qPCR results of Bcl-2 and Bax mRNA expression levels in hematoma-affected brain tissue. (C)Western blot results of Bcl-2, Bax, cleaved caspase-3,
and caspase-9 levels. *P < 0.05, **P < 0.01 vs. Sham; #P < 0.05, ##P < 0.01 vs. ICH.
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hematoma-affected tissue in response to ICH injury (Figure 5).

CoQ10 treatment markedly reduced the phosphorylation of p65,

but not that of STAT3, p38, and p52, suggesting that the

neuroprotective function of CoQ10 is attributed to NF-κB
deactivation.

Discussion

ICH, a prevalent and destructive brain disorder, has

higher incidence and mortality compared with those of

ischemic stroke [24]. ICH injury can trigger cell death

signaling, thereby causing a new stage of inflammation. The

immune system is stimulated by a set of signals released by

dead cells [25]. Although several investigations have

demonstrated the neuroprotective impacts of CoQ10 on

ICH [26], its definitive activity in protecting against this

type of hemorrhagic injury remains unverified. This study

is the first to confirm that CoQ10 can mitigate

neuroinflammation and neuronal cell death in the

perihematomal region as well as ameliorate neurological

dysfunction following ICH injury. The results revealed that

the inhibition of both pro-inflammatory cytokine secretion

and neuronal death was associated with the neuroprotective

effects of CoQ10 following experimental ICH injury.

In themitochondrial respiratory chain, CoQ10 acquires electrons

from complex I, transports protons through the inner mitochondrial

membrane, and subsequently transfers the electrons to complex II.

Furthermore, it facilitates ATP production, where it serves as a

cofactor in a set of redox reactions associated with ATP synthesis

in the electron transport chain [27]. CoQ10 deficiency is related to

most neurodegenerative diseases like Alzheimer’s, Huntington’s, as

well as Parkinson’s diseases [28–30]. It can also stabilize membranes

[31]. Several investigations have indicated that the drug may benefit

patients with cardiovascular, neuromuscular, and neurodegenerative

illnesses [31]. However, its effects on brain hemorrhage remains

unclear [32]. CoQ10 deficiency in ICH can result in neuronal

mitochondrial dysfunction and dysregulation of complexes I–III,

which further leads to free radical production and oxidative stress

[33], cell membrane injury caused by glutamate excitotoxicity [34],

elevations of edema and blood–brain barrier permeability [35],

neuroinflammation caused by glial cell overactivation [36], and

neuronal apoptosis [37]. Therefore, we specifically assessed the

impacts of CoQ10 on neuroinflammation and neuronal apoptosis

in mouse brain tissue after ICH induction. Our data showed that a

high dose of CoQ10 could alleviate neuroinflammation.

Inflammatory responses can worsen brain injury, which

typically follows an ICH event. Pro-inflammatory reactions

result in tissue injury, secondary edema, and eventual death of

brain cells [24]. Inflammatory activation triggers hematoma

enlargement, edema, and secondary neurological injury [25].

We provide the first evidence that CoQ10 can decrease pro-

inflammatory cytokine levels 1 day after ICH, thereby protecting

neurons from ICH-induced impairment. This research is also the

first to indicate that the neuroprotective role of CoQ10 is

mediated by anti-inflammatory reactions.

Given that apoptotic cell death is a dominant characteristic of

neurotoxicity in perihematomal areas of the brain, inhibiting

apoptosis would be a key strategy for reducing tissue damage and

brain edema and improving functional outcomes in ICH [38, 39].

Nevertheless, no existing reports have explored the impacts of

forkhead box protein M1 (FoxM1) gene knockdown or silencing

on apoptosis during ICH. In the present research, TUNEL

staining in vivo and flow cytometry in vitro were utilized to

determine apoptotic cell death in the absence of FoxM1. The

findings revealed marked decreases in the density of apoptotic

cells in FoxM1-knockdown mice after ICH induction and in the

proportion of apoptotic cells in FoxM1-silenced PCNs. Our data

FIGURE 5
CoQ10 treatment inhibited the phosphorylation of p65 in the hematoma area of ICH-injured mice. Western blot results of the NF-κB, STAT3,
p38, and p52 protein levels in the perihematomal brain area and in PCNs.
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also indicated that FoxM1 depletion attenuated apoptosis via the

upregulation of Bcl-2 and the downregulation of Bax expression.

Both proteins are executive molecules in the common apoptotic

pathway, playing essential roles in regulating both caspase-

dependent and -independent apoptosis. Collectively, the

findings demonstrate that FoxM1 plays an anti-apoptotic role

by elevating Bcl-2 and decreasing Bax expression in the

ICH model.

To sum up, our research verified the function of CoQ10 in

protecting against ICH-induced brain injury and that its

neuroprotective effect is in part due to its inhibition of pro-

inflammatory cytokine secretion and neuronal death.

Furthermore, we confirmed that the inhibition of pro-

inflammatory cytokine secretion by CoQ10 was modulated

through its inhibition of p65 phosphorylation.
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Abstract

This study aimed to explore the correlation between the deletion of the

CDKN2A/B gene and the prognosis of pediatric acute lymphoblastic

leukemia (ALL) patients. A total of 310 pediatric patients who were

diagnosed with acute lymphoblastic leukemia at our hospital from January

2020 to September 2023 were included in this study. Among them, 78 patients

with CDKN2A/B deletion were included in the final analysis. Additionally, 78 ALL

patients without CDKN2A/B deletion, who were diagnosed during the same

period, were randomly selected for comparison. A statistical analysis was

conducted to compare the clinical characteristics and prognosis between

the CDKN2A/B deletion group and the non-deletion group in ALL patients.

The results showed that pediatric ALL patients with CDKN2A/B deletion had

higher white blood cell counts and a greater proportion of immature cells in

peripheral blood at diagnosis. The age at diagnosis was older in the deletion

group, with a greater proportion in the >10-year-old group. CDKN2A/B deletion

occurred more frequently in pediatric patients with T-ALL than in pediatric

patients with B-ALL. Patients with CDKN2A/B deletion were more likely to have

positive BCR-ABL1 expression combined with IKZF1 deletion. The overall

survival (OS) rate was 89.7%, and the event-free survival (EFS) rate was 83.3%

in the CDKN2A/B deletion group, which was lower than the OS rate of 97.4%

and EFS rate of 93.6% in the non-deletion group. These results suggest that

CDKN2A/B deletion may be one of the factors affecting poor prognosis. It

provides a new perspective for clinical treatment, risk stratification, and

prognostic assessment in pediatric ALL patients.
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Impact statement

Research indicates that the CDKN2A/B gene is correlated

with the occurrence, development, and prognosis of some

tumors. However, there is no consensus or definitive

conclusion regarding the clinical characteristics, biological

manifestations, and prognosis of pediatric ALL patients with

CDKN2A/B deletion. Further analysis and discussion are needed

based on a large number of clinical samples and precise

experimental data to elucidate the significance of CDKN2A/B

deletion in the prognosis of pediatric ALL patients. This study

aimed to explore the association between CDKN2A/B deletion

and prognosis in pediatric ALL patients, with the goal of

providing a new perspective for clinical treatment, risk

stratification and prognostic assessment in pediatric

ALL patients.

Introduction

Acute lymphoblastic leukemia (ALL) is the most common

malignant tumor disease in children [1]. While the majority of

children with ALL can achieve a cure with conventional

chemotherapy, 20% of these children still experience leukemia

relapse. Relapsed ALL remains a leading cause of cancer-related

death in children [2, 3]. The current first-line treatment is

chemotherapy stratified by risk factors. With the development

of genetic sequencing technology, an increasing number of risk

factors associated with pediatric ALL have been identified to guide

the risk stratification and treatment of ALL. Next-generation

sequencing (NGS) technology is capable of detecting deeper

levels of single nucleotide variations (SNVs), small insertions

and deletions, and copy number variations (CNVs) [4]. The

application of NGS in pediatric leukemia is becoming

increasingly widespread [5]. When applied to leukemia

diagnosis, certain meaningful gene mutations related to

treatment, disease progression, prognosis, and risk factors of

relapse and refractory can be detected earlier and more

comprehensively than traditional gene detection methods [6].

This, in turn, provides better and timelier strategies and

precision treatment for pediatric ALL patients, with the

expectation of improving the therapeutic outcomes and

prognosis of children with ALL.

With the application of NGS detection technology,

numerous studies are being conducted to explore the

correlation between copy number variations and the prognosis

of pediatric ALL patients.

The cyclin-dependent kinase inhibitor 2A (CDKN2A)

gene and the cyclin-dependent kinase inhibitor 2B

(CDKN2B) gene are two adjacent tumor suppressor genes

that are collectively referred to as the CDKN2A/B. The

CDKN2A/B is located on the short arm, region 2, band

1 of chromosome 9 (9p21). The CDKN2A encodes two

proteins, p16INK4a (p16) and p14ARF (p14), whereas the

CDKN2B encodes p15INK4b (p15) [7, 8]. By encoding these

three proteins, they play crucial roles in the pathogenesis of

leukemia, regulation of the cell cycle, chemosensitivity, and

apoptosis. The presence of CDKN2A/B deletion (biallelic or

monoallelic) is associated with a lower EFS rate [9]. The

CDKN2A often accompanies the CDKN2B with copy

number abnormalities, most commonly deletions [10].

Research indicates that the CDKN2A is correlated with the

occurrence, development, and prognosis of some tumors, such as

ovarian cancer, pancreatic cancer, lung cancer, melanoma,

lymphoma, and malignant glioma, and has certain guiding

significance for the clinical prognosis and selection of clinical

medications for these tumors. In leukemia, studies byWang et al.

[11] demonstrated that deletion of the CDKN2A was associated

with poor prognosis in adult ALL patients. Kim et al. [12] found

that homozygous deletions of the CDKN2A (p16, p14) and the

CDKN2B (p15) was a factor indicating poor prognosis in adult

ALL patients, but it did not have a significant impact on

prognosis in pediatric ALL patients. Onizuka et al. [13]

demonstrated that copy number variations of the CDKN2A/B

was a prognostic factor associated with posttransplant relapse in

Philadelphia chromosome-positive ALL (ph + ALL). Feng et al.

[14] found that deletion of the CDKN2A/B was highly prevalent

in pediatric ALL patients and had a detrimental effect on the

prognosis of pediatric B-ALL patients, serving as an independent

risk factor for poor prognosis.

In summary, the current study [15–18] reveals that there is

no fully unified understanding or definitive conclusion

regarding the clinical characteristics, biological

manifestations, and prognosis of pediatric ALL patients

with CDKN2A/B deletion. Therefore, a substantial number

of clinical samples and precise experimental data are still

needed to analyze the significance of CDKN2A/B deletion

in the prognosis of pediatric ALL patients. The aim of this

study was to discuss the occurrence and clinical characteristics

of CDKN2A/B deletion in pediatric ALL patients, explore

whether CDKN2A/B deletion is related to the prognosis of

pediatric ALL patients, and provide a new insight for the

clinical treatment and prognostic assessment of pediatric

ALL patients.

Materials and methods

Between January 2020 and September 2023, data were

collected from 310 pediatric patients diagnosed with ALL at

our hospital and treated according to the CCLG-ALL2018

protocol. Among them, 78 patients with CDKN2A/B deletion

were ultimately included in the analysis. Additionally, 78 ALL

patients without CDKN2A/B deletion, who were diagnosed

during the same period, were randomly selected for

comparison. The basic data (age, gender, ethnicity), basic
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clinical information (immunophenotyping, risk stratification,

peripheral blood white blood cell count, hemoglobin, platelet

count, peripheral blood immature cell proportion), and

molecular biological data (chromosome karyotype, combined

abnormal genes) at diagnosis were collected. The detailed

results of MRD in bone marrow on day 15 and day 33 of

induction remission therapy were collected. The prognosis

and survival status of both groups of patients were

investigated. The cutoff date for follow-up was February 2024,

and the total duration ranged from 2 to 48 months. The

corresponding statistical methods were used to compare the

clinical characteristics, OS and EFS rates between the

CDKN2A/B deletion group and the non-deletion group.

Statistical analysis

SPSS 26.0 and GraphPad Prism 9.0 software were used for

statistical analysis. Independent sample t-test was used for data

that met the normal distribution, and non-parametric rank sum

test was used for data that did not meet the normal distribution.

Count data were expressed as n (%) and analyzed using Pearson’s

TABLE 1 Simplified overview of the CCLG-B-ALL2018 protocol.

Treatment plan Low risk (PEG × 4) Intermediate risk (PEG × 8) High risk (PEG × 13)

Remission Induction VDLP (DNR × 2)
(PEG-ASP × 2)

VDLP (DNR × 4)
(PEG-ASP × 2)

VDLP (DNR × 4)
(PEG-ASP × 2)

1 × CAM 2 × CAML (PEG-ASP × 2) 2 × CAML (PEG-ASP × 2)

Consolidation Randomized Control
4 × [HD-MTX 2 g/m2+6-MP]
4 × [HD-MTX 2 g/m2+VD]

Randomized Control
4 × [HD-MTX 5 g/m2+6-MP]
4 × [HD-MTX 5 g/m2+VD]

2 × (HR-1′, HR-2′, HR- 3′)
(PEG-ASP × 6)

Intensification VDLP (DNR × 3)
(PEG-ASP × 2)

VDLP (DNR × 4)
(PEG-ASP × 2)

VDLP (DNR × 3)
(PEG-ASP × 2)

1 × CAM 2 × CAML (PEG-ASP × 2) 1 × CAML (PEG-ASP × 1)

Maintenance 6-MP/MTX + VD (4-week Cycle) 6-MP/MTX + VD (4-week Cycle) 6-MP/MTX + VD (4-week Cycle)

Total Treatment Course Both Males and Females for 2 Years Females for 2 Years, Males for 2.5 Years Both Males and Females for 2.5 Years

TABLE 2 Basic clinical information and immunophenotype.

Category Group CDKN2A/B deletion
(N = 78)

Non-deletion of CDKN2A/B
(N = 78)

χ2 P

Age (year) — 6.75 (3.23, 11.17) 4.8 (2.92, 6.21) −2.636 0.008*

Age (year) <1 year 2 (2.6%) 3 (3.8%) 7.170 0.022*

1–10 years 51 (65.4%) 64 (82.1%)

>10 years 25 (32.1%) 11 (14.1%)

Sex Male 50 (64.1%) 41 (52.6%) 2.136 0.144

Female 28 (35.9%) 37 (47.4%)

Nationality Han 45 (57.7%) 52 (66.7%) 1.336 0.248

Non-Han 33 (42.3%) 26 (33.3%)

White Blood Cell (×109/L) — 43.56 (13.51, 131.22) 6.61 (3.58, 25.63) −5.238 <0.001*

Hemoglobin (g/L)a — 89.55 ± 27.376 80.79 ± 24.491 2.105 0.037*

Platelet (×109/L) — 57.50 (28.00, 87.00) 43.50 (22.75, 137.75) −0.399 0.690

Peripheral Blood Immature Cell
Proportion (%)

— 61.00 (21.50, 78.25) 30.00 (5.75, 56.50) −3.999 <0.001*

Immunophenotype B 47 (60.3%) 74 (94.9%) 26.853 <0.001*

T 31 (39.7%) 4 (5.1%)

aCompliance with a normal distribution, represented by mean ± standard deviation.

*: P < 0.05, statistically significant difference.
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chi-square test or Fisher’s exact test when necessary.

Measurement data with normal distribution were expressed as

mean ± standard deviation, and non-normal distribution were

expressed as M (P25, P75). P value <0.05 was considered

statistically significant. For survival analysis, the Kaplan‒Meier

method was used to analyze the overall survival (OS) and event-

free survival (EFS) of each group, and the corresponding survival

curves were plotted. For prognostic analysis, log-rank univariate

regression analysis was first used to screen for factors affecting

the prognosis of each group. Factors with P < 0.05 were included

in the multivariate Cox regression analysis. Ultimately, factors

with P < 0.05 were considered to have statistically significant

differences and were identified as prognostic risk factors.

Inclusion criteria

(1) Meeting the diagnostic criteria for ALL, patients met

the WHO 2016 bone marrow morphology standard,

with primitive and immature lymphocytes in the bone

marrow accounting for ≥20%, and were diagnosed with

ALL based on morphological-immunological-cyto-

genetic-molecular (MICM) classification.

(2) Received standardized chemotherapy according to the

CCLG-ALL2018 protocol.

(3) Pediatric ALL patients who were identified as CDKN2A/B

deletion through high-throughput sequencing for multigene

mutation detection in lymphoid tumors.

TABLE 3 Risk stratification and MRD positivity.

Category Group CDKN2A/B deletion (N = 78) Non-deletion of CDKN2A/B (N = 78) χ2 P

Risk Stratification Low 1 (1.3%) 4 (5.1%) 1.880 0.409

Intermediate 55 (70.5%) 55 (70.5%)

High 22 (28.2%) 19 (24.4%)

Day 15 MRD Positive 12 (15.4%) 10 (12.8%) 0.212 0.645

Negative 66 (84.6%) 68 (87.2%)

Day 33 MRD Positive 1 (1.3%) 2 (2.6%) △ 1.000

Negative 77 (98.7%) 76 (97.4%)

△Fisher’s exact test.

TABLE 4 Molecular biological characteristics.

Category Group CDKN2A/B deletion
(N = 78)

Non-deletion of CDKN2A/B
(N = 78)

χ2 P

Karyotype Normal Chromosomes 45 (57.7%) 32 (41.0%) 10.605 0.005*

Numerical Abnormalities 6 (7.7%) 21 (26.9%)

Structural Abnormalities 27 (34.6%) 25 (32.1%)

Concurrent Gene
Abnormalities

No Other Gene Abnormalities 10 (12.8%) 14 (17.9%) 4.065 0.254

With a Favorable Prognosis 7 (9.0%) 13 (16.7%)

With a Poor Prognosis 41 (52.6%) 38 (48.7%)

With Unclear Prognostic Impact 20 (25.6%) 13 (16.7%)

Several Common Genes TEL-AML1 7 (9.0%) 10 (12.8%) 0.594 0.441

E2A-PBX1 4 (5.1%) 4 (5.1%) 0.000 1.000

BCR-ABL1 11 (14.1%) 4 (5.1%) 3.614 0.057

Ph Like 26 (33.3%) 29 (37.2%) 0.253 0.615

SIL-TAL1 2 (2.6%) 0 (0%) △ 0.477

BCR-ABL1 Positivity Combined with
IKZF1 Deletion

8 (10.3%) 0 (0%) △ 0.011*

△Fisher’s exact test.

*P < 0.05, statistically significant difference.
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Exclusion criteria

(1) Patients who had incomplete MICM classification

information at diagnosis or who chose to forgo

chemotherapy after diagnosis.

(2) Patients diagnosed with acute mixed lineage leukemia.

(3) Patients who did not receive standardized chemotherapy

after diagnosis or were lost to follow-up.

(4) Patients whose complete genetic testing did not detect

deletion of the CDKN2A/B.

Chemotherapy regimen

Chemotherapy was conducted according to the CCLG-

ALL2018 (Chinese Children Leukemia Group-ALL2018)

treatment protocol. During the chemotherapy process, bone

marrow cell morphology and bone marrow minimal residual

disease (MRD) were dynamically monitored to assist in assessing

the efficacy of chemotherapy and the status of bone marrow

remission. Triple intrathecal injections (methotrexate-

cytarabine-dexamethasone) were used during the

chemotherapy process for the prevention and treatment of

central nervous system leukemia (For details, see Table 1).

Results

Basic clinical information and
immunophenotype at diagnosis

A total of 310 pediatric patients diagnosed with ALL who

were treated at our hospital under the CCLG-ALL2018 protocol

from January 2020 to September 2023 were included. Among

them, 78 patients had CDKN2A/B deletion, accounting for 25.2%

FIGURE 1
Relapse and mortality status.

FIGURE 2
Kaplan-Meier survival curves of OS.
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(78/310) of the total. Additionally, clinical data from 78 pediatric

patients diagnosed during the same period without detected

CDKN2A/B deletion were randomly selected for comparison.

The details are as follows: (These data are summarized

in Table 2).

Sex

CDKN2A/B deletion group: 50 male patients (64.1%, 50/78)

and 28 female patients (35.9%, 28/78), with a male-to-female

ratio of 1.8:1. CDKN2A/B non-deletion group: 41 male patients

(52.6%, 41/78) and 37 female patients (47.4%, 37/78), with a

male-to-female ratio of 1.1:1.

Age

CDKN2A/B deletion group: the median age was 6.75 years

(range, 3.23–11.17 years). CDKN2A/B non-deletion group: the

median age of the was 4.8 years (range, 2.92–6.21 years).

Nationality

CDKN2A/B deletion group: 45 Han individuals (57.7%, 45/

78) and 33 non-Han individuals (42.3%, 33/78), with a ratio of

Han to non-Han individuals of 1.4:1. CDKN2A/B non-deletion

group: 52 Han individuals (66.7%, 52/78) and 26 non-Han

individuals (33.3%, 26/78), with a ratio of Han to non-Han

individuals of 2:1.

Peripheral blood routine

CDKN2A/B deletion group: the median white blood cell

count: 43.56 × 109/L (range, 13.51–131.22) × 109/L; the median

platelet count: 57.50 × 109/L (range, 28.00–87.00) × 109/L; the

mean hemoglobin level: 89.55 ± 27.376 g/L; the median

proportion of peripheral blood immature cells: 61.00% (range,

21.50–78.25%). CDKN2A/B non-deletion group: the median

white blood cell count: 6.61 × 109/L (range, 3.58–25.63) × 109/

L; the median platelet count: 43.50 × 109/L (range,

22.75–137.75) × 109/L; the mean hemoglobin level: 80.79 ±

24.491 g/L; the median proportion of peripheral blood

immature cells: 30.00% (range, 5.75–56.50%).

Immunophenotype

CDKN2A/B deletion group: 31 T-ALL patients, accounting

for 39.7%, and 47 B-ALL patients, accounting for 60.3%.

FIGURE 3
Kaplan-Meier survival curves of EFS.

TABLE 5 Comparison of OS and EFS rates.

Category CDKN2A/B deletion (N = 78) Non-deletion of CDKN2A/B (N = 78) χ2 P

OS rate 70 (89.7%) 76 (97.4%) 3.924 0.048*

1-year OS rate 72 (92.3%) 76 (97.4%) 2.188 0.139

2-year OS rate 70 (89.7%) 76 (97.4%) 3.924 0.048*

3-year OS rate 70 (89.7%) 76 (97.4%) 3.924 0.048*

EFS rate 65 (83.3%) 73 (93.6%) 4.095 0.043*

1-year EFS rate 70 (89.7%) 75 (96.2%) 2.517 0.113

2-year EFS rate 70 (89.7%) 75 (96.2%) 2.517 0.113

3-year EFS rate 66 (84.6%) 73 (93.6%) 3.309 0.069

*P < 0.05, statistically significant difference.
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TABLE 6 OS rates for several factors in the CDKN2A/B deletion group.

Category Group Total number of
cases

Number of
events

OS
rate

χ2 P

Total — 78 8 89.7% — —

Age (year) <1 year 2 0 100.00% 1.226 0.542

1–10 years 51 4 92.16%

>10 years 25 4 84.00%

Sex Male 50 4 92.00% 0.673 0.412

Female 28 4 85.71%

Nationality Han 45 6 86.67% 1.038 0.308

Non-Han 33 2 93.94%

Immunophenotype B 47 5 89.36% 0.047 0.829

T 31 3 90.32%

Risk Stratification Low 1 0 100.00% 7.197 0.027*

Intermediate 55 3 94.55%

High 22 5 77.27%

Central Nervous System Infiltration Yes 3 1 66.67% 0.914 0.339

No 75 7 90.67%

White Blood Cell ( ×109/L) <4 7 0 100.00% 2.215 0.330

4–50 39 6 84.62%

>50 32 2 93.75%

Hemoglobin (g/L) <30 1 0 100.00% 5.301 0.151

30–60 7 2 71.43%

60–90 35 5 85.71%

>90 35 1 97.14%

Platelet (×109/L) <50 33 4 87.88% 0.857 0.651

50–99 27 3 88.89%

100–300 18 1 94.44%

>300 — — —

Karyotype Normal 45 5 88.89% 0.583 0.747

Numerical Abnormalities 6 0 100.00%

Structural Abnormalities 27 3 88.89%

Day 15 MRD Positive 66 7 89.39% 0.010 0.919

Negative 12 1 91.67%

Day 33 MRD Positive 77 8 89.61% 0.148 0.700

Negative 1 0 100.00%

Concurrent Gene Abnormalities No Other Gene
Abnormalities

10 1 90.00% 0.930 0.818

With a Favorable Prognosis 7 0 100.00%

(Continued on following page)
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CDKN2A/B non-deletion group: 4 T-ALL patients, accounting

for 5.1%, and 74 B-ALL patients, accounting for 94.9%.

Rank sum test was used to compare the differences in age,

white blood cell count, hemoglobin levels, platelet count, and the

proportion of peripheral blood immature cells between the two

groups. The results revealed no statistically significant difference

in the platelet count at diagnosis (P = 0.690), but statistically

significant differences were observed in age (P = 0.008), white

blood cell count (P < 0.001), hemoglobin level (P = 0.037), and

the proportion of peripheral blood immature cells (P < 0.001).

And the results indicated that the age of onset in the CDKN2A/B

deletion group was greater than that in the non-deletion

group. Both the white blood cell count and the proportion of

peripheral blood immature cells at diagnosis were greater in the

CDKN2A/B deletion group than in the non-deletion group,

suggesting that pediatric patients with CDKN2A/B deletion

had a greater tumor burden at diagnosis. The hemoglobin

level at diagnosis was slightly greater in the CDKN2A/B

deletion group than in the non-deletion group, indicating that

the degree of anemia in these patients was milder than that in the

non-deletion group.

The Pearson’s chi-squared test was used to compare the basic

information of age, sex, and nationality at diagnosis between the

two groups. The results revealed no statistically significant

differences in sex (P = 0.144) or nationality (P = 0.248), but

there was a statistically significant difference in age (P = 0.022).

These findings showed that the proportion of patients in the

CDKN2A/B deletion group was lower in the 1–10-year-old age

group, but was significantly greater in the >10-year-old age group
than in the non-deletion group.

The Pearson’s chi-squared test was used to compare the

immunophenotype distribution between the two groups, and the

results indicated a statistically significant difference (P < 0.001).

The proportion of T-ALL patients in the CDKN2A/B deletion

group was significantly greater than that in the non-deletion

group, suggesting that CDKN2A/B deletion occurred more

frequently in T-ALL patients than in B-ALL patients.

Risk stratification and MRD positivity

The CKDN2A/B deletion and the non-deletion groups of

pediatric ALL patients were monitored for MRD status and risk

stratification during the induction therapy phase on days 15 and

33. MRD positivity was defined as MRD >1 × 10−1 on day 15 or

MRD >1 × 10−2 on day 33. Pearson’s chi-squared test or Fisher’s

exact test was used to compare the risk stratification and positive

rates of MRD on days 15 and 33 between the two groups. There

was no statistically significant difference between the two groups

(P = 0.409, P = 0.645, P = 1.000), suggesting that CDKN2A/B

TABLE 6 (Continued) OS rates for several factors in the CDKN2A/B deletion group.

Category Group Total number of
cases

Number of
events

OS
rate

χ2 P

With a Poor Prognosis 41 4 90.24%

With Unclear Prognostic
Impact

20 3 85.00%

Concurrent TEL-AML1 Abnormalities Yes 7 0 100.00% 0.798 0.372

No 71 8 88.73%

Concurrent E2A-PBX1 Abnormalities Yes 4 1 75.00% 0.564 0.453

No 74 7 90.54%

Concurrent BCR-ABL1 Abnormalities Yes 11 2 81.82% 0.776 0.378

No 67 6 91.04%

Ph Like Yes 26 3 88.46% 0.012 0.914

No 52 5 90.38%

Concurrent SIT-TALL Abnormalities Yes 2 1 50.00% 3.271 0.071

No 76 7 90.79%

Concurrent BCR-ABL1 Positive Combined with
IKZF1 Deletion

Yes 8 1 87.50% 0.054 0.816

No 70 7 90.00%

*P < 0.05, statistically significant difference.
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TABLE 7 EFS rates for several factors in the CDKN2A/B deletion group.

Category Group Total number of
cases

Number of
events

EFS
rate

χ2 P

Total — 78 13 83.3% — —

Age (year) <1 year 2 1 50.00% 1.190 0.552

1–10 years 51 7 86.27%

>10 years 25 5 80.00%

Sex Male 50 8 84.00% 0.009 0.923

Female 28 5 82.14%

Nationality Han 45 9 80.00% 0.918 0.338

Non-Han 33 4 87.88%

Immunophenotype B 47 6 87.23% 1.235 0.267

T 31 7 77.42%

Risk Stratification Low 1 0 100.00% 9.164 0.010

Intermediate 55 6 89.09%

High 22 7 68.18%

Central Nervous System Infiltration Yes 3 2 33.33% 3.062 0.080

No 75 11 85.33%

White Blood Cell (×109/L) <4 7 1 85.71% 0.129 0.937

4–50 39 7 82.05%

>50 32 5 84.38%

Hemoglobin (g/L) <30 1 0 100.00% 5.705 0.127

30–60 7 3 57.14%

60–90 35 7 80.00%

>90 35 3 91.43%

Platelet (×109/L) <50 33 8 75.76% 3.238 0.198

50–99 27 4 85.19%

100–300 18 1 94.44%

>300 — — —

Karyotype Normal 45 9 80.00% 2.654 0.265

Numerical Abnormalities 6 0 100.00%

Structural Abnormalities 27 4 85.19%

Day 15 MRD Positive 66 12 81.82% 0.325 0.569

Negative 12 1 91.67%

Day 33 MRD Positive 77 13 83.12% 0.350 0.554

Negative 1 0 100.00%

Concurrent Gene Abnormalities No Other Gene
Abnormalities

10 1 90.00% 2.027 0.567

With a Favorable Prognosis 7 0 100.00%

(Continued on following page)
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deletion could not be considered to be associated with risk

stratification or the positive rate of day 15 MRD or day

33 MRD (These data are summarized in Table 3).

Central nervous system involvement
during chemotherapy

Cerebrospinal fluid (CSF) pathological results throughout

the chemotherapy process were collected for both groups, with

the presence of leukemic cells in the CSF considered central

nervous system infiltration (CNS) by leukemia. CDKN2A/B

deletion group: 3 patients CNS infiltration (3.8%, 3/78).

CDKN2A/B non-deletion group: 2 patients CNS infiltration

(2.6%, 2/78). Fisher’s exact test was used for comparison, and

the results revealed no statistically significant difference in the

incidence of CNS infiltration by leukemia during chemotherapy

between the two groups (P = 1.000), indicating that there was no

association between CDKN2A/B deletion and CNS infiltration.

Molecular biological characteristics
at diagnosis

78 pediatric patients with CDKN2A/B deletion were assessed

for bonemarrow karyotype and concurrent gene abnormalities at

diagnosis. Notably, because patients with chromosomal number

abnormalities in the CDKN2A/B deletion group were relatively

rare, they were not further classified into subgroups of

hypodiploid and hyperdiploid patients for comparison.

Instead, they were categorized into three groups based on

their bone marrow karyotype: normal chromosomes,

numerical abnormalities, and structural abnormalities. Given

the vast array of gene detection methods and the increased

positive rate of gene abnormalities in the context of next-

generation sequencing, numerous genes with unclear

prognostic significance for pediatric ALL patients have been

identified. Therefore, in this study, concurrent gene

abnormalities were classified into four groups based on their

prognostic impact: no other gene abnormalities aside from

CDKN2A/B deletion, genes associated with a favorable

prognosis, genes associated with a poor prognosis, and genes

with unclear prognostic impact. For the convenience of the study,

several common genes with a clear impact on prognosis were also

singled out for individual research.

The Pearson’s chi-squared test was used to compare the

prognostic impact of different concurrent gene abnormalities

between the two groups. There were no statistically significant

differences in the classification of patients with TEL-AML1 (P =

0.441), E2A-PBX1 (P = 1.000), BCR-ABL1 (P = 0.057), or Ph-

like-related genes (P = 0.615) or SIL-TAL1 gene abnormalities

(P = 0.477) between the two groups. A statistically significant

difference in bone marrow karyotype (P = 0.005) was detected

between the two groups, and showed that the proportion of

chromosomal number abnormalities in the CDKN2A/B deletion

group was significantly lower than that in the non-deletion

TABLE 7 (Continued) EFS rates for several factors in the CDKN2A/B deletion group.

Category Group Total number of
cases

Number of
events

EFS
rate

χ2 P

With a Poor Prognosis 41 7 82.93%

With Unclear Prognostic
Impact

20 5 75.00%

Concurrent TEL-AML1 Abnormalities Yes 7 0 100.00% 1.507 0.220

No 71 13 81.69%

Concurrent E2A-PBX1 Abnormalities Yes 4 1 75.00% 0.112 0.737

No 74 12 83.78%

Concurrent BCR-ABL1 Abnormalities Yes 11 2 81.82% 0.000 0.986

No 67 11 83.58%

Ph Like Yes 26 3 88.46% 1.213 0.271

No 52 10 80.77%

Concurrent SIT-TALL Abnormalities Yes 2 1 50.00% 1.674 0.196

No 76 12 84.21%

Concurrent BCR-ABL1 Positive Combined with
IKZF1 Deletion

Yes 8 1 87.50% 0.105 0.746

No 70 12 82.86%

*P < 0.05, statistically significant difference.
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TABLE 8 OS rates for several factors in the CDKN2A/B non-deletion group.

Category Group Total number of
cases

Number of
events

OS
rate

χ2 P

Total — 78 2 97.4% — —

Age (year) <1 year 3 0 100.00% 2.334 0.311

1–10 years 64 1 98.44%

>10 years 11 1 90.91%

Sex Male 41 0 100.00% 2.319 0.128

Female 37 2 94.59%

Nationality Han 52 2 96.15% 1.057 0.304

Non-Han 26 0 100.00%

Immunophenotype B 74 1 98.65% 10.274 0.001*

T 4 1 75.00%

Risk Stratification Low 4 0 100.00% 5.645 0.059

Intermediate 55 0 100.00%

High 19 2 89.47%

Central Nervous System Infiltration Yes 2 0 100.00% 0.042 0.837

No 76 2 97.37%

White Blood Cell ( ×109/L) <4 9 1 88.89% 4.346 0.114

4–50 18 0 100.00%

>50 51 1 98.04%

Hemoglobin (g/L) <30 1 0 100.00% 0.623 0.891

30–60 14 0 100.00%

60–90 38 1 97.37%

>90 25 1 96.00%

Platelet (×109/L) <50 60 1 98.33% 6.701 0.082

50–99 6 1 83.33%

100–300 10 0 100.00%

>300 2 0 100.00%

Karyotype Normal 32 0 100.00% 3.773 0.152

Numerical Abnormalities 21 0 100.00%

Structural Abnormalities 25 2 92.00%

Day 15 MRD Positive 68 1 98.53% 2.110 0.146

Negative 10 1 90.00%

Day 33 MRD Positive 76 1 98.68% 16.141 <0.001*

Negative 2 1 50.00%

Concurrent Gene Abnormalities No Other Gene
Abnormalities

14 0 100.00% 1.996 0.573

With a Favorable
Prognosis

13 0 100.00%

(Continued on following page)
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group. A statistically significant difference was also found in the

occurrence of BCR-ABL1 positivity combined with

IKZF1 deletion (P = 0.011) between the two groups, with

8 patients (10.3%) in the deletion group and none in the non-

deletion group. These findings suggested that pediatric ALL

patients with CDKN2A/B deletion were more likely to exhibit

BCR-ABL1 positivity in conjunction with IKZF1 deletion, and all

patients were BCR-ABL1 (p190 type) positivity combined with

IKZF1 deletion (IK16 type) positive (These data are summarized

in Table 4).

Relapse and mortality status

Of 78 patients with CDKN2A/B deletion, 9 cases of relapse

and 8 cases of mortality. 9 cases of relapse included:3 bone

marrow relapses, 5 central nervous system leukemia relapses, and

1 simultaneous relapse of both. 8 cases of mortality included:

4 treatment-related mortalities and 4 mortalities following

relapse (Figure 1).

Of 78 patients without CDKN2A/B deletion, 3 cases of

relapse, and 2 cases of mortality, both of which were

treatment-related mortalities. All 3 cases of relapse were bone

marrow relapses.

The Pearson’s chi-squared test was used to compare the

relapse and mortality rates between the two groups. The results

revealed no statistically significant differences (relapse: P = 0.071,

mortality: P = 0.050), suggesting that CDKN2A/B deletion could

not be considered to be related to relapse or mortality in pediatric

ALL patients.

Survival analysis

We further analyzed the overall survival (OS) and event-free

survival (EFS) of the two groups. For overall survival analysis, the

median time of follow-up in the CDKN2A/B deletion group and

non-deletion group was 21 months, 23 months respectively. For

event-free survival analysis, the median time of follow-up in the

CDKN2A/B deletion group and non-deletion group was

24 months, 23 months respectively. Kaplan-Meier analysis was

used to plot the survival curves (see Figures 2, 3).

We compared the OS and EFS rates between the two groups.

The Log-rank test showed significant differences in overall OS

rate (89.7% vs. 97.4%, P = 0.048), 2-year OS rate (89.7% vs.

97.4%, P = 0.048), and 3-year OS rate (89.7% vs. 97.4%, P = 0.048)

between the two groups, indicating that the OS rate of CDKN2A/

B deletion group was lower than that of the non-deletion group

(These data are summarized in Table 5). Kaplan-Meier analysis

was used to plot the survival curves (see Figure 2).

The Log-rank test showed no statistically significant

differences between the two groups in 1-year, 2-year, and 3-

year EFS rates (P > 0.05). However, a statistically significant

difference was observed in the total EFS rate (83.3% vs. 93.6%,

P = 0.043), indicating that the total EFS rate of the CDKN2A/B

deletion group was lower than that of the non-deletion group

TABLE 8 (Continued) OS rates for several factors in the CDKN2A/B non-deletion group.

Category Group Total number of
cases

Number of
events

OS
rate

χ2 P

With a Poor Prognosis 38 2 94.74%

With Unclear Prognostic
Impact

13 0 100.00%

Concurrent TEL-AML1 Abnormalities Yes 10 0 100.00% 0.310 0.578

No 68 2 97.06%

Concurrent E2A-PBX1 Abnormalities Yes 4 0 100.00% 0.103 0.748

No 74 2 97.30%

Concurrent BCR-ABL1 Abnormalities Yes 4 0 100.00% 0.103 0.748

No 74 2 97.30%

Ph Like Yes 29 2 93.10% 3.255 0.071

No 49 0 100.00%

Concurrent SIT-TALL Abnormalities No 78 2 97.44% — —

Concurrent BCR-ABL1 Positive Combined with
IKZF1 Deletion

No 78 2 97.44% — —

*: P < 0.05, statistically significant difference.
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TABLE 9 EFS rates for several factors in the CDKN2A/B non-deletion group.

Category Group Total number of
cases

Number of
events

EFS
rate

χ2 P

Total — 78 5 93.6% — —

Age (year) <1 year 3 0 100.00% 3.267 0.195

1–10 years 64 3 95.31%

>10 years 11 2 81.82%

Sex Male 41 3 92.68% 0.104 0.747

Female 37 2 94.59%

Nationality Han 52 4 92.31% 0.525 0.469

Non-Han 26 1 96.15%

Immunophenotype B 74 3 95.95% 15.091 <0.001*

T 4 2 50.00%

Risk Stratification Low 4 0 100.00% 3.030 0.220

Intermediate 55 2 96.36%

High 19 3 84.21%

Central Nervous System Infiltration Yes 2 0 100.00% 0.111 0.739

No 76 5 93.42%

White Blood Cell (×109/L) <4 9 1 88.89% 2.557 0.278

4–50 18 0 100.00%

>50 51 4 92.16%

Hemoglobin (g/L) <30 1 0 100.00% 1.528 0.676

30–60 14 0 100.00%

60–90 38 3 92.11%

>90 25 2 92.00%

Platelet (×109/L) <50 60 4 93.33% 2.279 0.517

50–99 6 1 83.33%

100–300 10 0 100.00%

>300 2 0 100.00%

Karyotype Normal 32 1 96.88% 1.191 0.551

Numerical Abnormalities 21 1 95.24%

Structural Abnormalities 25 3 88.00%

Day 15 MRD Positive 68 4 94.12% 0.266 0.606

Negative 10 1 90.00%

Day 33 MRD Positive 76 4 94.74% 6.345 0.012*

Negative 2 1 50.00%

Concurrent Gene Abnormalities No Other Gene
Abnormalities

14 0 100.00% 2.411 0.492

With a Favorable
Prognosis

13 0 100.00%

(Continued on following page)
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(These data are summarized in Table 5). Kaplan-Meier analysis

was used to plot the survival curves (see Figure 3).

Prognostic factor analysis

In the CDKN2A/B deletion group
The statistical results of the OS rates for several factors in the

CDKN2A/B deletion group (shown in Table 6) indicated that

risk stratification (P = 0.027) was a factor affecting the OS rates in

pediatric patients with CDKN2A/B deletion. Risk stratification

was included in the Cox regression analysis. The results of the

Cox regression analysis indicated that risk stratification (95%CI:

1.356~24.091, P = 0.018) was a significant factor affecting the OS

rate in pediatric patients with CDKN2A/B deletion.

The statistical results of EFS rates for several factors in the

CDKN2A/B deletion group (shown in Table 7) indicated that

risk stratification was a factor affecting the EFS rates in pediatric

patients with CDKN2A/B gene deletion (P = 0.010). Risk

stratification was included in the Cox regression analysis. The

results of the Cox regression analysis indicated that risk

stratification (95%CI: 1.567~14.290, P = 0.006) was a

significant factor affecting the EFS rate in pediatric patients

with CDKN2A/B gene deletion.

These findings suggested that the greater the risk

stratification of pediatric patients with CDKN2A/B gene

deletion, the greater the possibility of relapse or death.

In the CDKN2A/B non-deletion group
The statistical results of OS rates for several factors in the

CDKN2A/B non-deletion Group (shown in Table 8) indicated

that the immunophenotype (P = 0.001) and the positivity rate

of MRD on day 33 (P < 0.001) were factors affecting the OS

rates in pediatric patients without CDKN2A/B gene deletion.

The immunophenotype and positivity rate of MRD on day

33 were included in the multivariate Cox regression analysis.

The results of the Cox regression analysis indicated that

neither the immunophenotype (P = 0.977) nor the

positivity rate of MRD on day 33 (P = 0.965) were

significant factors affecting the OS rates in pediatric

patients without CDKN2A/B gene deletion.

The statistical results related to EFS rates for several factors in

the CDKN2A/B non-deletion Group (shown in Table 9)

indicated that the immunophenotype (P < 0.001) and the

positivity rate of MRD on day 33 (P = 0.012) were factors

affecting the EFS rates in pediatric patients without CDKN2A/

B gene deletion. The immunophenotype and positivity rate of

MRD on day 33 were included in the multivariate Cox regression

analysis. The results of the Cox regression analysis indicated that

the T-cell immunophenotype (95%CI: 1.728~162.834, P = 0.015)

was a significant factor affecting the EFS rate in pediatric patients

without CDKN2A/B deletion. These findings suggested that

pediatric patients without CDKN2A/B deletion had a greater

possibility of relapse or death when they were diagnosed

with T-ALL.

TABLE 9 (Continued) EFS rates for several factors in the CDKN2A/B non-deletion group.

Category Group Total number of
cases

Number of
events

EFS
rate

χ2 P

With a Poor Prognosis 38 4 89.47%

With Unclear Prognostic
Impact

13 1 92.31%

Concurrent TEL-AML1 Abnormalities Yes 10 0 100.00% 0.857 0.355

No 68 5 92.65%

Concurrent E2A-PBX1 Abnormalities Yes 4 0 100.00% 0.267 0.605

No 74 5 93.24%

Concurrent BCR-ABL1 Abnormalities Yes 4 0 100.00% 0.157 0.692

No 74 5 93.24%

Ph Like Yes 29 3 89.66% 0.937 0.333

No 49 2 95.92%

Concurrent SIT-TALL Abnormalities No 78 5 93.60% — —

Concurrent BCR-ABL1 Positive Combined with
IKZF1 Deletion

No 78 5 93.60% — —

*P < 0.05, statistically significant difference.
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Discussion

CDKN2A/B deletion rate and clinical
characteristics

In this study, the male-to-female ratio among pediatric ALL

patients was 1.8:1, slightly higher than the overall male-to-female

ratio of 1.5:1 reported in epidemiological studies of ALL in China.

Overseas studies indicated that the rate of CDKN2A/B deletion in

pediatric ALL patients is between 15% and 35% [16]. Several studies

have also reported a 44% overall frequency of CDKN2A/B deletion

in pediatric ALL patients [19]. In the study by Steeghs et al., the rate

of CDKN2A/B deletion was 33% [20]. In this study of 310 pediatric

ALL patients, 78 patients with CDKN2A/B deletion were detected,

accounting for 25.2%, slightly lower than the rates reported in the

studies mentioned above. This discrepancy may be related to the

smaller sample size or racial differences between countries, and

further research with an expanded sample size is needed for

confirmation. In this study, statistical analysis revealed a

significant difference in the occurrence of CDKN2A/B deletion

between the two groups in terms of immunophenotype (P <
0.001), with a greater proportion of T-ALL patients in the

CDKN2A/B deletion group than in the non-deletion group. The

proportion of patients with CDKN2A/B deletion in T-ALL patients

was greater than that in B-ALL patients. This was consistent with the

findings of studies byAgarwal et al. [21] and Sulong [22]. In terms of

age at diagnosis, the proportion of CDKN2A/B deletion group was

higher in the age >10 years than that in the non-deletion group (P =

0.022), which was consistent with the findings of Agarwal et al. [21]

that deletionwasmore likely to occur in older children. Additionally,

the white blood cell count and the proportion of peripheral blood

immature cells at diagnosis were greater in the deletion group than

in the non-deletion group. This finding was similar to the results of

Kathiravan et al. [19], suggesting that pediatric patients with

CDKN2A/B deletion had a greater tumor burden at diagnosis. In

summary, this study revealed that pediatric patients with CDKN2A/

B deletion generally present with the following clinical

characteristics: a greater proportion of T-ALL patients, a higher

median white blood cell count at diagnosis, and a greater proportion

in the age >10 years. T-ALL, a white blood cell count of ≥50 × 109/L,

age ≥1 year was classified as intermediate risk according to the risk

stratification of the CCLG-ALL2018 protocol. In this study, there

was a statistically significant difference in bone marrow karyotype

between the two groups, indicating that the proportion of

chromosomal number abnormalities in the CDKN2A/B deletion

group was significantly lower than that in the non-deletion

group. This finding was not consistent with the study by

González-Gil [16], which reported a relatively low frequency of

CDKN2A/B deletion in patients with a hyperdiploid karyotype,

which was associated with a favorable prognosis. Furthermore,

statistical analysis revealed that the CDKN2A/B deletion group

was prone to BCR-ABL1 positivity concurrent with

IKZF1 deletion, and all the patients were BCR-ABL1 (p190 type)

positivity concurrently with IKZF1 deletion (IK16 type) positive. No

cases of BCR-ABL1 positivity concurrent with IKZF1 deletion were

found in the non-deletion group. This finding was not entirely

consistent with the study by González-Gil [16], which suggested that

CDKN2A/B deletion was more frequently observed in high-risk

pediatric patients, especially those with BCR-ABL1 positivity.

However, both BCR-ABL1 positivity and IKZF1 deletion are

markers of poor prognosis. A larger sample size is needed to

further investigate whether CDKN2A/B deletion is associated

with BCR-ABL1 positivity combined with IKZF1 deletion and

how the coexistence of the three affects the prognosis of pediatric

ALL patients. Research by Williams et al. [23] indicated that in the

treatment of BCR-ABL1 positive B-ALL with imatinib, the presence

of ARF deletion at the p14 locus encoded by the CDKN2A can affect

sensitivity to imatinib, leading to drug resistance and poorer

treatment outcomes. However, the mechanism remains unclear.

The use of imatinib in combination with a JAK kinase inhibitor may

be beneficial for the treatment of B-ALL patients with BCR-ABL1

positivity combined with ARF locus deletion. Iacobucci et al. [24]

have shown that the presence of IKZF1 deletion combined with

deletion of the ARF locus encoded by the CDKN2A was associated

with poorer prognosis and higher risk of relapse and can lead to

resistance to TKIs targeted therapy in adults with BCR-ABL1

positive B-ALL. In pediatric ALL, more samples and relevant

experimental data are needed to explore whether deletion of the

CDKN2A/B or the encoded locus is related to resistance to TKIs in

BCR-ABL1-positive patients, and may be able to guide the selection

of targeted therapies for BCR-ABL1 positive pediatric ALL patients.

Survival analysis and prognostic
factor analysis

Under the CCLG-ALL2008 protocol in China, the 5-year OS

and EFS rates for pediatric ALL patients were reported to be

85.3% and 79.9%, respectively [25]. In this study, the overall OS

and EFS rates were 89.7%, and 83.3%, respectively. The 1-year OS

and EFS rates were 92.3% and 89.7%, respectively. The 2-year OS

and EFS rates were 89.7% and 89.7%, respectively. The 3-year OS

and EFS rates were 89.7% and 84.6%, respectively. These rates

were lower than those of the non-deletion group (For details see

Table 5). Statistical analysis revealed significant differences in the

overall OS rates, 2-year OS rates, 3-year OS rates, and overall EFS

rates between the two groups of pediatric ALL patients (P < 0.05),

indicating that CDKN2A/B deletion was associated with lower

OS and EFS rates. These findings were generally consistent with

the results of studies by Agarwal [21] and Kathiravan [19], which

revealed that pediatric ALL patients with CDKN2A/B deletion

had a greater risk and lower event-free survival rate. Owing to the

relatively short follow-up period in this study, further analyses with

more samples and extended follow-up time are needed. Statistical

analysis of prognostic factors revealed that risk stratification was a

significant factor affecting the OS and EFS rates in pediatric patients
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with CDKN2A/B deletion (P = 0.018, P = 0.06). For patients with

CDKN2A/B deletion, the higher the risk stratification level was, the

greater the possibility of relapse or death.

Currently, there is still variability in the prognosis of pediatric

ALL patients related to the CDKN2A/B, which may be due to the

deletion of the CDKN2A/B being associated with specific

genetics, with the frequency of CDKN2A/B deletion varying

significantly depending on combination of other genes [22].

In this study, CDKN2A/B deletion combined with a number

of risk stratification factors for intermediate risk, and it was easy

to combine BCR-ABL1 positivity and IKZF1 deletion, but there

was no statistical significance in risk stratification, which may be

related to the small sample size of this study. With the progress of

gene research in the field of leukemia and the further expansion

of sample size, CDKN2A/B deletion may be included as a

criterion for intermediate risk in the stratification of pediatric

ALL patients.

Conclusion

At diagnosis, pediatric patients with CDKN2A/B deletion

had higher peripheral blood white blood cell counts and

proportions of immature cells in the peripheral blood. The

age at diagnosis was older in the deletion group, with a

greater proportion in the age group over 10 years old.

Compared with that in pediatric patients with B-ALL,

deletion of the CDKN2A/B occurred more frequently in

pediatric patients with T-ALL.

CDKN2A/B deletion was more likely to result in BCR-ABL1

positivity combined with IKZF1 deletion.

Pediatric patients with CDKN2A/B deletion had lower OS

and EFS rates, indicating that CDKN2A/B deletion was one of

the factors influencing poor prognosis.
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Abstract

Blood-based biomarkers for motor neuron disease are needed for better

diagnosis, progression prediction, and clinical trial monitoring. We used

whole blood-derived total RNA and performed whole transcriptome analysis

to compare the gene expression profiles in (motor neurone disease) MND

patients to the control subjects. We compared 42 MND patients to 42 aged and

sex-matched healthy controls and described the whole transcriptome profile

characteristic for MND. In addition to the formal differential analysis, we

performed functional annotation of the genomics data and identified the

molecular pathways that are differentially regulated in MND patients. We

identified 12,972 genes differentially expressed in the blood of MND patients

compared to age and sex-matched controls. Functional genomic annotation

identified activation of the pathways related to neurodegeneration, RNA

transcription, RNA splicing and extracellular matrix reorganisation. Blood-

based whole transcriptomic analysis can reliably differentiate MND patients

from controls and can provide useful information for the clinical management

of the disease and clinical trials.

KEYWORDS

motor neuron disease, amyotrophic lateral sclerosis, RNA-seq, whole transcriptome,
gene expression profiling

Impact statement

The present study analysed the gene expression on the whole transcriptome scale in

the blood of motor neuron disease (MND) patients. We demonstrated that MND patients

have highly specific gene expression patterns or fingerprints, and many genes are

differentially expressed in the blood of MND patients. This finding significantly

impacts our understanding of the role of the differentially expressed genes in the
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pathogenesis of MND. These findings present the utility of RNA-

base blood biomarkers for neurological diseases and in precision

clinical management.

Introduction

Motor neurone disease (MND) is a group of chronic sporadic

and familial disorders characterised by progressive degeneration

of motor neurons [1]. The disease is caused by the degeneration

of the upper, lower, or both motor neurones. The prognosis of

MND depends upon the age at onset and the area of the central

nervous system affected [2]. Based on the site of origin and the

severity of neurological involvement, four main subtypes of

MND have been described: amyotrophic lateral sclerosis

(ALS), progressive bulbar palsy (PBP), progressive muscular

atrophy (PMA), and primary lateral sclerosis (PLS) [3].

ALS is the most common form of MND. ALS and MND are

commonly used interchangeably or as synonyms. ALS is also

known as Lou Gehrig’s disease or Charcot disease [1]. ALS is an

adult-onset, progressive, neurodegenerative disorder involving

the large motor neurons of the brain and the spinal cord. It

produces a characteristic clinical picture with weakness and

wasting of the limbs and bulbar muscles, leading to death

from respiratory failure within 5 years.

The degeneration of motor neurons is irreversible, and

apparently, it starts many years before the clinical features

emerge. Therefore, reliable biomarkers from easily accessible

tissues are needed for earlier diagnosis and better prediction

of the progression of the disease. The molecular pathology

underlying MND relies on genetic variants described in at

least 100 different genes to date and on the overlay of the

transcriptomic changes [4, 5]. The pathogenesis of the disease

involves oxidative stress, inflammation, ER stress with protein

aggregation, autophagy and aberrant RNA processing [5, 6].

Familial and sporadic forms of MND can be distinguished

based on the evidence of genetic variants and family history

[7]. However, only about 20% of MND cases can be explained by

known genetic variations [8].

In addition to the well-known genes and their variants, we

recently described an unexpectedly large number of exonisation

of SINE-VNTR-Alu repeats (SVAs) in the motor cortex [9].

SVAs are known to alter splicing, and several of these elements

have been associated with disease through such mechanisms [10,

11]. This indicates the significant role that noncoding or dark

genomes can play in the pathogenesis of complex diseases.

Moreover, analysis of the whole transcriptome gives an

excellent functional opportunity to explore the molecular

changes at different stages of diseases, making it a suitable

tool for biomarkers [10]. Indeed, transcriptomic analysis can

be performed from any biological material, like blood or

cerebrospinal fluid and can be used for different conditions

[5, 12, 13]. Transcriptomic analysis helps to understand the

effect of DNA variants, especially for the splicing-

altering variants.

Post-mortem tissue analysis for chronic diseases is always

an option to identify molecular patterns in the affected tissues,

and this can help to classify the different pathogenic

mechanisms [6]. However, using peripheral tissues, like

blood, skin, or saliva, allows molecular profiling during the

disease’s progression and real-life monitoring of pathogenic

changes [12, 14, 15]. In the case of MND, several previous

studies have been performed to analyse the transcriptomic

profile of the blood [16, 17]. In one example, whole blood-

derived RNA (PAXgene tubes) was used for microarray

analysis; in another, PBMC-derived RNA was used for RNA

sequencing. These studies have their limitations. In the case of

the microarray analysis, only a certain number of genes that are

printed in the microarray can be analysed, and while the

number is high (29,830 unique and suitable probes), the

TABLE 1 General characteristics of the study cohort.

Group Motor neurone disease (MND) Healthy controls (HC)

Total, na 42 42

Male, n 13 13

Female, n 29 29

Total mean age, y (sd) 65.6 (9.3) 65.7 (9.4)

Male mean age, y (sd) 64.6 (11.6) 64.3 (11.4)

Female mean age, y (sd) 66.2 (8.4) 66.2 (8.4)

MND duration, m (sd) 18.2 (19.2) —

Male duration, m (sd) 16.6 (24.5) —

Female duration, m (sd) 19.0 (16.8) —

an, number of subjects; y, years; m, months; sd, standard deviation.
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whole transcriptome sequencing gives information entire

transcriptome (60,230 elements) [17]. Moreover, RNA-seq

has a better dynamic range in detecting gene expression

therefore the power to detect differential expression is better.

PBMC-derived samples only include monocytes and do not

contain neutrophils, basophils, and eosinophils. While

basophils and eosinophils are only a small subset of all

immune cells (0–2% and 1–7%, respectively), neutrophils

make up a majority of circulating nucleated blood cells

(45–75%) [18]. Therefore, analysing PBMC samples will give

only partial information about the RNA changes in the blood

and this has been shown in many studies [18–20]. The present

study aimed to perform whole transcriptome analysis from the

whole-blood (Tempus tubes) derived RNA and to identify the

TABLE 2 Differentially expressed genes in the blood of MND patients compared to healthy controls. The top 30 genes are shown sorted by the FDR-
adjusted p-value.

Ensembl ID logFC p-adj Gene name Gene symbol

ENSG00000202354 6.49 1.25E-136 RNA, Ro60-associated Y3 RNY3

ENSG00000201098 7.26 4.63E-119 RNA, Ro60-associated Y1 RNY1

ENSG00000282885 3.29 3.44E-111 novel transcript lnc-NEMF-1

ENSG00000091986 −6.81 4.27E-101 coiled-coil domain containing 80 CCDC80

ENSG00000011465 −7.48 9.56E-99 decorin DCN

ENSG00000118523 −4.88 5.04E-97 cellular communication network factor 2 CCN2

ENSG00000164692 −7.26 1.58E-95 collagen type I alpha 2 chain COL1A2

ENSG00000108821 −6.43 1.04E-93 collagen type I alpha 1 chain COL1A1

ENSG00000128591 −5.83 8.20E-93 filamin C FLNC

ENSG00000138131 −5.55 1.70E-87 lysyl oxidase like 4 LOXL4

ENSG00000113739 −7.73 2.01E-86 stanniocalcin 2 STC2

ENSG00000199568 9.05 1.07E-80 RNA, U5A small nuclear 1 RNU5A-1

ENSG00000248527 3.20 6.12E-80 MT-ATP6 pseudogene 1 MTATP6P1

ENSG00000087245 −6.83 6.87E-80 matrix metallopeptidase 2 MMP2

ENSG00000186340 −7.55 2.94E-79 thrombospondin 2 THBS2

ENSG00000115414 −5.71 1.45E-78 fibronectin 1 FN1

ENSG00000150459 −0.79 3.01E-77 Sin3A associated protein 18 SAP18

ENSG00000212283 5.02 4.23E-77 small nucleolar RNA, C/D box 89 SNORD89

ENSG00000111799 −6.88 1.03E-75 collagen type XII alpha 1 chain COL12A1

ENSG00000199631 7.52 2.52E-73 small nucleolar RNA, C/D box 33 SNORD33

ENSG00000144810 −6.44 3.84E-73 collagen type VIII alpha 1 chain COL8A1

ENSG00000164761 −6.80 1.42E-72 TNF receptor superfamily member 11b TNFRSF11B

ENSG00000115963 −6.65 2.38E-70 Rho family GTPase 3 RND3

ENSG00000115461 −7.69 9.88E-70 insulin like growth factor binding protein 5 IGFBP5

ENSG00000126214 0.95 1.05E-63 kinesin light chain 1 KLC1

ENSG00000186660 −0.54 1.50E-63 ZFP91 zinc finger protein, E3 ubiquitin ligase ZFP91

ENSG00000142156 −2.90 1.73E-62 collagen type VI alpha 1 chain COL6A1

ENSG00000238961 5.94 3.17E-62 small nucleolar RNA, H/ACA box 47 SNORA47

ENSG00000166923 −7.07 2.09E-61 gremlin 1, DAN family BMP antagonist GREM1

ENSG00000281501 1.98 5.08E-61 SEPSECS antisense RNA 1 SEPSECS-AS1
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whole blood transcriptomic profile by comparing MND

patients to the age and sex-matched healthy controls.

Materials and methods

Study cohort

Between 2013 and 2018, a total of 84 participants (42 MND

patients and 42 healthy control patients without any chronic

diseases) were enrolled in the study and signed written informed

consent. Inclusion criteria for MND patients were the diagnosis

of probable or definitive MND based on El Escorial Criteria and

the absence of a positive family history.

For the healthy controls, we excluded patients with any chronic

diseases, especially any neurologic, rheumatological, haematological,

or oncological conditions. In addition, treatment with biologics or

chemotherapy was also excluded. A white blood cell (WBC) count

and C-reactive protein (CRP) weremeasured in every health control

to exclude any underlying inflammatory condition.

The blood samples were collected into Tempus Blood RNA

tubes and stored according to the manufacturer’s instructions.

The research was conducted with the approval of the University

of Tartu Research Ethics Committee, and all participants

provided written informed consent. The comprehensive

patient selection process leveraged hospital records,

neurologist consultations, and the Estonian Health Insurance

Fund’s national health data repository.

The whole blood was collected from 42 MND patients and

42 healthy controls using Tempus Blood RNA collection tubes

(Thermo Fisher Scientific). Neurologists recruited MND patients,

and the subtype of theMNDwas confirmed. Healthy controls were

recruited among the visitors referred to the blood analysis who did

not have chronic diseases. The control samples were ideal controls

without any neurological condition or major chronic illness and

were age- and sex-matched to the MND group (complete

information is given in Supplementary Table S1).

Whole transcriptome analysis and
functional annotation

The RNA was isolated from whole blood using a Tempus

Spin Isolation Kit (Thermo Fisher Scientific). After initial quality

control and quantification (A260/280 ratio, RIN number). RNA

was used for the total RNA sequencing necessary for the whole

transcriptome analysis.

Total RNA sequencing was performed in all 84 samples at the

Genomics Core Facility at Murdoch University, Perth, WA.

Illumina paired-end 2 × 100bp read length using NovaSeq 6000.

FIGURE 1
Heatmap of the 100 differentially expressed genes (FDR < 0.05, logFC > |0.07|) with the highest statistical significance. Before clustering,
z-scores of the normalised expression data were calculated and a complete method for hierarchical clustering using Euclidean distance. Samples
with “ALS” designate the MND group, and “KT” designate healthy controls.
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The NovaSeq Control Software v1.7.5 and Real-Time Analysis

(RTA) v3.4.4 performed real-time image analysis. RTA performs

real-time base calling on the NovaSeq instrument computer. The

Illumina DRAGEN BCL Convert 07.021.624.3.10.8 pipeline

generated the sequence data. The FASTQ files were analysed

using salmon 1.10.3 by using the reference genome

GRCh38 [21]. Salmon counts were imported to the R studio

using the tximeta package [22]. Differential whole transcriptome

analysis was performed with the DESeq2 package [23]. No fold-

change filtering was initially applied, but the False Discovery Rate

(FDR) was set at 0.05 to adjust for multiple testing, and this

corresponds to the 1.05 fold change threshold in our experiment.

The functional annotation of the differential gene expression

was performed with the packages ReactomePA, clusterProfiler and

DOSE [24–26]. Principal component analysis was performed by

using pcaExplorer and factoextra packages. The heatmap clustering

was performed with the ComplexHeatmap package based on the

z-scores of the normalised expression data and using Euclidean

distance for complete linkage agglomerative clustering.

Pair-wise analysis

To perform a pair-wise analysis of individual genes between

MND and healthy controls, we applied the two-tailed Wilcoxon

rank-sum test implemented in the function compare_means() of

the package ggpubr [27]. We generated a list of all known MND

genes using the OMIM catalogue and identified 97 genes that are

directly connected to the MND or its subtypes. This list extracted

normalised counts from the salmon quant files and made

boxplots with pairwise comparisons. Plots were generated

using ggplot2 version 3.5.1 and ggpubr version 0.6.0 packages.

Statistical analysis was performed with R software version

4.4.0 and RStudio Version 2023.06.0 + 421.

Results

Description of the study cohort

The general characteristics of the population are reported in

Table 1. The median age was 65.6 (standard deviation 9.3) years,

and most subjects were female (69%). No patient reported a

positive family history of MND; therefore, all the participants

had sporadic forms, and all patients received standard MND

therapy with riluzole. The most frequent clinical subtype was the

classic ALS (86%). Spinal symptoms were present the most

commonly (60%).

Whole blood RNA sequencing
RNA sequencing resulted in at least 50 million paired 150 bp

reads per sample, and all reads had Phred score higher than 30.

FIGURE 2
Volcano plot of the whole transcriptome data from the blood on controls and MND patients The default cut-off for log2FC is >|2|, and the
default for P-value is 10e-6. Dashed lines represent these values. Red dots represent genes meeting both cut-off criteria; green dots meet only the
log2FC cut-off, and blue dots indicate genes meeting only the P-value cut-off.
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Salmon was used to quantify transcript abundances from fastq

files. Tximeta was used to import the resulting quant files, and

gene-level summarisation was used for the DESeq2 workflow.

Healthy controls were compared to the MND RNA-seq results,

and we identified 12,972 genes differentially expressed (FDR <
0.05) in the blood of MND patients. The top 30 differentially

regulated genes are shown in Table 2. Out of these 12,972 genes,

8,008 were upregulated, and 4,964 were down-regulated

(Supplementary Table S2, sheet 1). A heat map with all

12,972 genes is shown as Supplementary Figure S1, and it

shows a clear separation of MND patients from the healthy

controls. A smaller heatmap with the top 100 genes is shown in

Figure 1, and a volcano plot is shown in Figure 2. The heatmap

with 100 genes shows a consistent and clear separation of the

MND from the healthy controls. This remarkable finding shows

that a disease highly specific to the central nervous system can be

differentiated from controls by the blood transcriptome profile.

When we used the FDR 0.05 filtering threshold, we detected

the genes Log2 FC 0.07 threshold, which transforms to an

expression difference of 1.05-fold change (20.07). We then

applied an additional fold change threshold to filter the

dataset further. When we applied FC threshold of 1.1

(log2 FC 0.13), we got 12,839 differentially expressed genes

(DEGs, Supplementary Table S2, sheet 2). With the FC

threshold of 1.5 (log2 FC 0.59), we got 6,403 DEGs

(Supplementary Table S2, sheet 3), and finally, applying the

threshold of FC 2.0 (log2 FC 1.0), we got 3,286 DEGs

(Supplementary Table S2, sheet 4).

The principal component analysis identified that disease

status, PC1 was responsible for 43.75% of the variance and gene

expression profiles clearly separated MND patients from

healthy controls (Figure 3A). The genes with the highest

differential expression (the lowest FDR values) had a very

high correlation with the PC1 (Figure 3B, “Dim.1” is PC1)

and the scree plot (Figure 3C) verified that most of the variation

in our study cohort is explained by three principal components,

PC1, PC2 and PC3. PC1 is disease status, and we were not able

to identify the essence of the PC2 and PC3. These are neither

the sex (Supplementary Figure S2, Panels A) nor age

(Supplementary Figure S2, Panels B and C) of the patients,

nor the type of the disease (Supplementary Figure S2, Panels D

and E). It could be that PC2 and PC3 are some other factors

reflecting the heterogeneity of the pathophysiology

of the MND.

FIGURE 3
A combined plot of principal component analysis. Panel (A) is the PC1 and PC2 plot showing good separation of study cohort by PC1 and the
highest impact of disease status (43.75% of variance). Panel (B) is a correlation plot of the expression of the top significant genes with PC1 (Dim.1),
these genes all are correlated with theMND/control status. Panel (C) is a scree-plot showing that in our study three components (PC1, PC2, and PC3)
were responsible for almost all the variance. Panel (D) shows the loading of different genes in the PC1.
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Pairwise analysis of known MND genes

In addition to the whole transcriptome analysis, we performed a

pairwise (MND versus healthy controls) study of 97 known MND

genes (a list of the genes is provided in Supplementary Table S3) and

30 top-regulated genes from the DESeq2 analysis. All results are

shown in Supplementary Figure S3, and partial results are in Figures

4, 5. Interestingly, some MND-related genes are upregulated (ALS2,

NEK1, ATXN2), while others are downregulated (SOD1, UBQLN2

aka ALS15) in patients. In addition, FUS and ANXA11 were

upregulated, and ANG was downregulated in patients (Figures

5A–F). Moreover, the DESeq2 top genes RNY3, RNY1, and

ENSG0000282885 were highly upregulated in patients with

almost no expression in control subjects (Figures 5G–I). At the

same time, other DESeq2 top genes, CCDC80, DCN, and CCN2,

were highly expressed in controls, and their expression was almost

missing in patients’ blood (Figures 5J–L). These examples indicate

that there are many high fold-change difference genes with almost

no expression in one group and very high expression in another, and

these genes have very high potential to be a transcriptional

biomarker for the MND.

The pairwise analysis of all 97MND genes indicated that some

well-known MND genes weren’t differentially expressed in the

blood (boxplots are in Supplementary Figure S3). Out of all

97 genes, 38 (39%) of them AMFR, AR, ATX3, BICD2,

C9orf72, CHRNA3, DAO, DCTN1, DNAJC7, ERBB4,

HNRNPA2B1, IGFALS, KIF5A, LGALSL, LRP12, MAPT,

MOBP, NEFH, OPTN, PAH, PON1, PON2, PON3, PRPH,

PSEN1, SARM1, SCYL1, SETX, SLC1A2, SLC52A3, SMN1,

SMN2, SQSTM1, TARDBP, TRPM7, TUBA4A, VRK1, VSX1,

were not differentially expressed between patients and controls.

Fourteen genes of these 38 genes were not expressed in blood.Most

of these genes that were not differentially expressed had excellent

expression levels in the blood. AMFR has an expression level of

1,800 normalised counts, C9orf72 has 1,500 normalised counts,

PSEN1 has an expression at 2,500 normalised counts,TARDBP has

an average gene expression of 1,600 normalised counts, SQSTM1

has an expression level of 3,100 normalised counts. Therefore, all

these genes are highly expressed in the whole blood, but their

expression level is not dependent on the disease status.

Functional annotation of differentially
expressed genes

Functional annotation of differentially expressed genes

indicated statistically significant activation of several human

disease pathways (Table 3, full version provided in

Supplementary Table S4). Remarkably, three

neurodegenerative diseases were at the top of the table of the

KEGG pathways: Parkinson’s disease, prion disease, and

amyotrophic lateral sclerosis (Figure 6). In addition, several

pathways involved in the pathogenesis of neurodegeneration

were also activated. These included protein processing in the

endoplasmic reticulum, proteasome, lysosome and ubiquitin-

mediated proteolysis.

FIGURE 4
A combined boxplot of five MND-related genes and their expression levels in the blood of MND patients and controls gives comparative blood
expression levels for these selected genes. Pairwise statistical comparisons are shown in Figure 5 and in Supplementary Figure S3.
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Reactome and GSEA analyses use more canonical pathways

(Supplementary Tables S5, S6). Reactome identified statistically

significant enrichment of the mRNA splicing and transcription-

related pathways in combination with cellular energetics

pathways (mitochondria and respiratory electron transport) to

be affected (Figure 7). GSEA analysis (Figure 8) identified

statistically significant enrichment of sensory perception,

olfactory signalling and many pathways related to the

extracellular matrix reorganisation (collagen degradation,

elastic fibre formation, assembly of collagen fibres).

In summary, KEGG pathway analysis found statistically

significant activation of the ALS pathway together with other

neurodegeneration pathways. The findings from Reactome and

GSEA added more details to the KEGG finding and identified

several cellular pathways that can give a mechanistic

understanding of the pathogenesis of MND.

Discussion

The current study presented a whole transcriptome

analysis of the whole blood RNA from MND patients

compared to age and sex-matched healthy controls

(Figure 9). As a main finding, we identified 12,972 genes

differentially expressed; 8,008 were upregulated, and

4,964 were downregulated in the blood of MND patients.

Most remarkably, the heatmap based on these 12,972 genes

was highly specific and separated MND from healthy controls.

Therefore, we can conclude that the identified differentially

expressed genes are specific for the MND status. This doesn’t

mean that all of these genes are directly related to the

pathogenesis of MND but instead reflects the complexity of

the disease, where pathogenic changes are mixed with

compensatory changes. However, this still shows that

MND, while a CNS-specific disease, has remarkable

changes in the blood transcriptomics, and blood could be a

perfect source for the diagnostic biomarkers for MND.

The number of differentially expressed genes seems to be

unreasonably high, but van Rheenen et al., used Illumina bead

chips with only 29,830 unique and suitable probes, and they

also identified 7,038 genes to be differentially expressed [17].

This number is very close to the one that we identified if we

take into account that in our study, we used RNA-seq that

analysed the expression of 60,230 genes, and our sample is

perfect sex and age-matched, which means more power. In

addition, in our own previous study, we identified

FIGURE 5
Pairwise comparison (Wilcoxon rank-sum test) and boxplots of six MND-related genes (A–F) and six of the most significant differentially
expressed genes (G–L) in the blood of MND patients and controls. The Y-axis shows gene expression in normalised counts.
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4,824 differentially expressed genes in the CSF of MND

patients [5]. Therefore, the number of differentially

expressed genes between MND patients and healthy

controls seems to be high, but also other studies have

found a similarly high number of differentially

expressed genes.

In addition, the number of differentially expressed genes

remains high even after applying different filtering criteria.

While we initially did not use any specific fold-change filtering,

the statistically significant FDR only detected genes with at least

a 1.05 fold change difference. When we applied more stringent

FC filtering thresholds, the number of differentially expressed

genes reduced, but it was still remarkable, with 6,403 genes for

FC 1.5 and 3,286 genes with the threshold of FC 2.0. This

indicates a robustly specific gene expression profile in the blood

of MND patients, making it a reliable source for potential RNA-

based biomarkers.

The genes that we identified differentially expressed

correlate quite well with the results of the previously

published similar studies. We identified all the genes found

TABLE 3 KEGG pathways that are enriched in the blood transcriptome of MND patients.

Category Subcategory ID Description Gene
ratio

Bg
ratio

P-adjusted

Human Diseases Neurodegenerative disease hsa05012 Parkinson disease 165/3,781 271/8,843 2.36E-07

Human Diseases Cardiovascular disease hsa05415 Diabetic cardiomyopathy 130/3,781 205/8,843 2.36E-07

Human Diseases Neurodegenerative disease hsa05020 Prion disease 167/3,781 278/8,843 3.14E-07

Human Diseases Neurodegenerative disease hsa05014 Amyotrophic lateral sclerosis 212/3,781 371/8,843 5.97E-07

Metabolism Energy metabolism hsa00190 Oxidative phosphorylation 92/3,781 138/8,843 5.97E-07

Organismal Systems Environmental adaptation hsa04714 Thermogenesis 143/3,781 235/8,843 5.97E-07

Genetic Information
Processing

Folding, sorting and degradation hsa04141 Protein processing in endoplasmic
reticulum

109/3,781 170/8,843 5.97E-07

Human Diseases Neurodegenerative disease hsa05022 Pathways of neurodegeneration - multiple
diseases

265/3,781 483/8,843 1.07E-06

Human Diseases Cancer: overview hsa05208 Chemical carcinogenesis - reactive oxygen
species

136/3,781 226/8,843 2.72E-06

Human Diseases Neurodegenerative disease hsa05010 Alzheimer disease 217/3,781 391/8,843 5.09E-06

Human Diseases Neurodegenerative disease hsa05016 Huntington disease 177/3,781 311/8,843 7.00E-06

Genetic Information
Processing

Translation hsa03013 Nucleocytoplasmic transport 72/3,781 108/8,843 1.14E-05

Genetic Information
Processing

Folding, sorting and degradation hsa03050 Proteasome 36/3,781 46/8,843 2.46E-05

Cellular Processes Transport and catabolism hsa04142 Lysosome 82/3,781 132/8,843 0.0001

Genetic Information
Processing

Folding, sorting and degradation hsa04120 Ubiquitin mediated proteolysis 87/3,781 142/8,843 0.0001

Genetic Information
Processing

Translation hsa03010 Ribosome 102/3,781 172/8,843 0.0002

Genetic Information
Processing

Chromosome hsa03082 ATP-dependent chromatin remodeling 73/3,781 117/8,843 0.0003

Cellular Processes Cell growth and death hsa04110 Cell cycle 94/3,781 158/8,843 0.0003

Genetic Information
Processing

Replication and repair hsa03030 DNA replication 28/3,781 36/8,843 0.0004

Human Diseases Infectious disease: bacterial hsa05132 Salmonella infection 138/3,781 251/8,843 0.0009

Metabolism Glycan biosynthesis and
metabolism

hsa00510 N-Glycan biosynthesis 37/3,781 53/8,843 0.0010

Human Disease Neurodegenerative disease hsa05017 Spinocerebellar ataxia 84/3,781 144/8,843 0.0016

Bg, background.
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in the paper by Garau et al, Table 5 [28]. In addition, we also

compared our genes to the study of van Rheenen et al and found

that many genes overlapped between these studies [17].

Therefore, our results are generally in very good

concordance with previously published studies.

Not all MND-specific genes were differentially expressed.

C9orf72 is a gene with the highest genetic impact in MND, but

it was not differentially expressed. C9orf72 is highly expressed

in the blood with an average normalised count of 1,500.

Therefore, the low expression level cannot explain the lack

FIGURE 6
KEGG pathway “Amyotrophic Lateral Sclerosis”with the blood RNA gene expression data. Genes in green are downregulated, and genes in red
are upregulated.
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of significant differences. A similar observation is true for the

SQSTM1, TARDBP, OPTN and PSEN1, all genes with high

expression in the blood, but no difference in expression

between MND and controls (Supplementary Figure S2). It

is hard to understand why these genes did not show

differential expression, but these genes have a mutation-

specific effect, and in our cohort, we may not have

mutations in these genes. This might be unlikely, as we

have identified pathogenic repeat polymorphism for

C9orf72 in one patient who has 1,000 repeats with a length

of over 6,000 bp.

We saw significant differences in many MND-related genes.

For instance, SOD1 was downregulated in MND patients.

Similarly, ANG and ACSL5 were significantly downregulated

in MND patients compared to controls. It is somewhat

surprising that SOD1 is downregulated in MND patients as it

is also assumed to form aggregates in sporadic patients [29–31].

At the same time, we couldn’t find a significant difference for the

OPTN gene, another gene that has clear implications in MND

pathology and had a very high expression level in blood. It is

remarkable that while its aggregates are common for familial and

sporadic MND forms, we could not detect significant differences

in the expression of OPTN [32].

Our study is certainly not the first to analyse MND

patients’ transcriptomes. One study analysed gene chips

from whole blood RNA, finding 2,943 genes differentially

expressed [17]. These authors did not find SOD1, C9orf72,

SQSTM1, TARDBP, or OPTN to be differentially expressed;

this study got similar results to ours. Other published studies

have used selected cell fractions, like PBMCs or

lymphoblastoid cells [16, 28, 33, 34]. The cell fractionation

studies identified a much smaller number of differentially

expressed genes, and their results are difficult to compare to

our results as the approaches are quite different. However, one

recent study used a machine learning approach to compare

brain and blood transcriptomic data and identified three

distinct clusters of the MND subtypes with potentially

different pathological mechanisms [6]. These three

pathogenic subtypes didn’t describe any particular MND

mutation but rather the biological pathways that involved

particular differentially expressed genes. The present study is

based on blood transcriptome, and we have identified similar

differentially expressed genes. While we couldn’t identify

three distinctive subtypes, the heatmap of the

12,972 differentially expressed genes separated MND

patients from controls. Moreover, for MND patients, we

saw at least two clusters with specific gene expression

profiles. Therefore, our study results seem to match the

results of the study by Marriott et al [6]. The main finding

is that gene expression profiles and RNA analysis could be

FIGURE 7
Dotplot of Reactome analysis based on the fold-change expression differences in the blood of MND patients. Top 15 the most significantly
upregulated pathways are shown.
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used as a source for biomarkers and can have clinical utility in

differentiating patients with distinctive pathogenetic

mechanisms.

We identified that the most up-regulated gene, with logFC 23,

inMNDblood is theAPOBEC3DE gene (Volcano plot in Figure 2).

APOBEC3DE is located at 22q13.1 and is a cytidine deaminase

gene family member. This gene is one of the APOBEC cluster

family on chromosome 22 [35, 36]. APOBEC proteins are part of

innate immunity, and they inhibit retroviruses by deaminating

cytosine residues in retroviral cDNA [37]. Interestingly,

APOBEC3DE also inhibits retrotransposition of the long

interspersed element-1 (LINE-1) by interacting with ORF1p, a

protein encoded by LINE-1 [38]. LINE-1 has been implicated in

the pathogenesis of MND, and therefore, APOBEC3DE finding

seems very relevant as they suppress LINE1 activity [39]. In

addition, APOBEC proteins can induce somatic mutations into

genomic DNA and promote the development of different diseases

[40].APOBEC proteins are also involved in the clearance of foreign

DNA from human cells, implicating their role in the cellular

defence system against mutations that make them very plausible

in connection with the MND [41, 42]. Loss of the nuclear TDP-43

due to the cytoplasmic aggregation of the TDP-43 is associatedwith

decondensation of the chromatin around LINE1 elements and

increased activation or LINE1 with their retrotransposition.

Upregulation of the APOBEC3DE might be an endogenous

defence mechanism as it is a part of the innate response to

retroviral activation [43].

Many differentially expressed genes are involved in splicing

and RNA processing: RNU5A-1, RNU1-1, RNY3, and RNY1, to

name some. Interestingly, these RNA synthesis and splicing-

related genes are all upregulated in MND samples and not

expressed in the blood of control samples at all. These are

genes that have a high potential to become a blood biomarker

for MND or help to predict the progression of the disease. While

it is not clear how these genes participate in the pathogenesis of

MND, splicing mutations and genes participating in splicing

involvement in MND have been shown in many previous studies

[44–46]. The results from blood transcriptomics were very

uniform and showed the upregulation of several genes related

to RNA synthesis and splicing, as also indicated in Figure 6.

The function of downregulated genes is more diverse, with

possible common denominators being the extracellular matrix

(ECM) organisation and remodelling (Figure 7). Reduced

expression of CCDC80, COL1A1, COL1A2, MMP2, and

TNFRSF11B indicates the ECM reorganisation also found

in GSEA enrichment analysis (Figure 2). The expression of

these genes was very low in MND samples and very high in the

blood of controls, showing a highly significant logFC for these

genes. Similarly, IGFBP5 almost lacked expression in the

MND group and had very high expression in the blood of

FIGURE 8
Dotplot of GSEA analysis based on the fold-change expression differences in the blood of MND patients. Top 15 the most significantly
upregulated pathways are shown.
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control subjects. Overexpression of the IGFBP5 in mice has

induced axonopathy and sensory deficits similar to those seen

in diabetic neuropathy [47]. The motor axon degeneration in

these mice resembled the pathology seen in MND [47].

IGFBP5 has been shown to promote neuronal apoptosis in

the experimental models and also in patients with spinal

muscular atrophy and ALS [48–50].

When discussing these results, we have to consider the effect of

MND itself on gene expression and not only the effect of genes on

the disease. Most likely, the genes that are significantly

downregulated and have very low expression levels in MND

patients are the genes that are affected by the MND condition.

The cluster of ECM organisation genes indicates the degeneration

of the neurones and are the genes directly impacted by the MND.

Stanniocalcin 2 (STC2) and thrombospondin 2 (THBS2) are genes

that are related to organogenesis and tissue differentiation [51–53].

Interestingly, the proposed function of these genes is related to

collagen genes and MMPs. Therefore, it seems that MND affects

tissue reorganisation, and the genes that are required for tissue

plasticity are downregulated. We can speculate that genes are not

causative for the disease but are affected by the chronic disease

condition and lead to enhanced degeneration of neurones.

Conclusion

We performed whole transcriptome analysis from the

whole blood RNA and identified 12,972 genes differentially

expressed between MND patients and controls. These gene

expression changes have the potential to be used as

biomarkers to diagnose MND and possibly to evaluate the

progression of the disease and drug responsiveness in clinical

trials. RNA-based biomarkers have excellent potential as they

are quickly responding biomarkers and can be analysed by

standardised methods. In conclusion, we were able to identify

the characteristic blood gene expression profile of

MND patients.
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Abstract

In recent years, the relationship between the immunosuppressive niche of the

bone marrow and therapy resistance in acute myeloid leukemia (AML) has

become a research focus. The abnormal number and function of

immunosuppressive cells, including regulatory T cells (Tregs) and myeloid-

derived suppressor cells (MDSCs), along with the dysfunction and exhaustion

of immunological effector cells, including cytotoxic T lymphocytes (CTLs),

dendritic cells (DCs) and natural killer cells (NKs), can induce immune escape

of leukemia cells and are closely linked to therapy resistance in leukemia. This

article reviews the research progress on the relationship between immune cells in

the marrow microenvironment and chemoresistance in AML, aiming to provide

new ideas for the immunotherapy of AML.

KEYWORDS

leukemia, immune cells, drug resistance, bone marrow, immunosuppressive
microenvironment

Impact statement

Over the past few years, tolerance to chemical therapy in leukemia has become a

significant challenge in treatment. The development of the leukemia immune niche

significantly contributes to resistance in leukemia. Our article discusses the key roles of

several immune cells in the immune microenvironment of AML in the development of

resistance. Abnormalities in the number and function of immune cells in the AML

immunemicroenvironment are vital in leukemia resistance. Therefore, immunotherapy is

an important strategy to combat acute myeloid leukemia resistance and improve

patient prognosis.
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Introduction

AML represents the most prevalent form of leukemia in

adults and ranks as the second most frequently diagnosed

leukemia in children. Currently, under conventional intensive

chemotherapy, the complete remission (CR) rate ranges from

60% to 85% in adults younger than 60 years, while it decreases to

40%–60% in elderly patients aged 60 years or older [1].

Nevertheless, the overall survival (OS) rate over 5 years is

only approximately 27% among patients with AML [2].

Although the CR rate of children with AML is high at

approximately 90% compared with that of adults, the 3-year

event-free survival (EFS) rate remains suboptimal at 45%, with

the OS rate also being only at 65%, and nearly half of the children

are resistant to relapse [3]. Therefore, relapse with drug resistance

continues to be a significant factor contributing to poor

prognosis among AML patients. The development for drug

resistance in AML patients may be associated with leukemia

cells evading immune responses and the progression of the

minimal residual disease (MRD) in the bone marrow (BM)

[4]. With the continuous proliferation of tumor cells, changes

in immunogenicity, the recruitment of inhibitory immune cells,

and the dysfunction and depletion of effector immune cells

induce the immune evasion of leukemia cells. Among them,

the strengthening of inhibitory immune cells and the weakening

of effector immune cells could serve as a key contributor to the

development of tumor cell resistance. Our review summarizes the

role of immune cells in the bone marrow microenvironment of

drug-resistant AML, helping to identify new therapeutic targets,

optimize chemotherapy regimens, and improve the prognosis for

AML patients.

Tregs and drug resistance in AML

Tregs, a specialized subset of T cells with immunosuppressive

properties, are essential for preserving immune tolerance and

facilitating the immune evasion of tumor cells. Tregs can be

divided into two categories based on their origin and function:

natural Tregs (nTregs) and induced Tregs (iTregs). nTregs,

characterized by the markers CD4+CD25+Foxp3+, originate

and mature in the thymus and possess intrinsic

immunosuppressive functions, primarily maintaining self-

tolerance and immune homeostasis by regulating effector

immune responses. Unlike nTregs, iTregs are induced from

CD4+ T cells through external signals in peripheral blood

(PB). Based on cellular phenotype and function, iTregs are

divided into Foxp3+ Treg, T helper 3 cell (Th3), and Type

1 regulatory T cell (Tr1). According to their

immunophenotypes, Tregs can be categorized into three types,

including CD4+ Tregs, CD8+ Tregs and double-negative Tregs

(DN Tregs, CD4−CD8− Tregs). There were slight differences in

the functions of Tregs with different phenotypes and their

specific roles in AML, as shown in Table 1. Additionally, DN

Tregs possess unique immunoregulatory capabilities that can

induce the functional inactivation of effector T lymphocytes

(Teffs) while also suppressing the immune response of NKs

via the secretion of perforin [11]. McIver et al. suggested that

DN Tregs are essential for immune tolerance after allogeneic

hematopoietic stem cell transplantation (allo-HSCT) by

regulating the diversity of the TCR repertoire and suppressing

the excessive proliferation of immune-reactive T cells, which is

especially critical for preventing graft-versus-host disease

(GVHD) [12]. Ford et al. revealed that LPS-activated

allogeneic antigen-presenting Cells (APCs) can promote the

expansion of DN Tregs, which in turn enhances their

immune-regulatory function by killing B cells through a

perforin-dependent pathway [13]. Studies have shown that re-

infusion of human DN Treg cells, after ex vivo expansion, can

effectively inhibits the growth of autologous T and B lymphocytes

and alleviate GVHD [14]. Additionally, pretreatment with

rapamycin (an mTOR inhibitor) further enhances their

immunoregulatory function, highlighting the potential clinical

application of DN Treg cells in therapeutic settings [14].

However, the role of DN Tregs in AML is still in the early

stages, requiring further investigation.

Cytokines secreted by Tregs are involved
in drug resistance in AML

A high frequency of CD4+CD25+Foxp3+ Tregs is closely

associated with immune tolerance and chemoresistance relapse

in AML. The transcription factor Foxp3, when highly expressed

in the nucleus, plays a vital role in triggering suppressive activity

of Tregs and stabilizes of their phenotype and functional

properties. [15], and its mechanism may be related to DNA

methyltransferases at the Foxp3 locus [16]. Foxp3+ Tregs

maintain immune tolerance by suppressing immune responses

through the secretion of inhibitory cytokines, including IL-10,

TGF-β, and IL-35, as well as the expression of immune regulatory

molecules [17, 18]. These molecules interact with receptors on

immune cells to exert potent immunosuppressive effects, making

Tregs key factors in facilitating immune evasion of tumors.

Studies have shown that the elevated levels of IL-35 are linked

to unfavorable outcomes in AML [19, 20]. TGF-β can cooperate

with IL-2 to upregulate the production of Foxp3 and promote the

transformation of naive CD4+ T lymphocytes to Tregs [21]

(Figure 1). IL-35 plays a dual role by suppressing the

proliferation of CD4+CD25− effector T cells while

simultaneously promoting the growth and preventing the

apoptosis of AML cells [22] (Figure 1). Compared with

healthy individuals, AML patients present significantly

elevated levels of Tregs in the PB and BM, which are

positively correlated with IL-35 expression [18, 23].

Conversely, the proportions of cytotoxic lymphocytes and
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B cells are relatively low [24]. It is closely related to recurrence

and drug resistance in AML. Elevated IL-10 levels and reduced

IL-6 levels are linked to OS rates in AML patients and could act as

potential biomarkers for predicting disease progression in AML

patients [25]. Furthermore, studies have shown that a high-

frequency single-nucleotide polymorphism (SNP) at

position −819 of IL-10 has been identified as a factor that

raises the risk of AML [26]. In AML patients, high expression

of TGF-β1 may inhibit the immune function of NKs by

phosphorylating SMAD and downregulating Natural Killer

Group 2 Member D Receptor (NKG2DR) expression [27]. In

addition, studies have demonstrated that TGF-β1 can suppress

the antitumor immunity of NK cells through enhancing the

SMAD3 signaling to induce CD96 expression on NK cells,

thereby reducing IFN-γ production [28]. Importantly,

transcriptomic analysis of HL60 cells (M3 subtype) revealed

that TGF-β/activin signaling represents a promising target to

overcome drug resistance in AML [29]. Studies indicate that

relapse after allogeneic hematopoietic stem cell transplantation

(allo-HSCT) may be linked to increased levels of TGF-β1, which
strongly suppress mTORC1 activity, mitochondrial oxidative

phosphorylation, cell proliferation, and cytotoxic functions of

NKs in the BM, leading to their functional impairment [30]. In

addition, Tregs promote the polarization of macrophages into

M2-type tumor-associated macrophages (M2-TAMs) by

secreting IL-10 and TGF-β. M2-TAMs exhibit tumor-

promoting functions, such as degrading the tumor

extracellular matrix, promoting angiogenesis, and recruiting

immunosuppressive cells, thereby facilitating tumor

progression and distant metastasis [31]. Research has

demonstrated that AML blasts recruit M2-TAMs and Tregs,

resulting in their high infiltration into the BM, which is linked to

poor prognosis [32]. To conclude, the inhibitory cytokines

secreted by Tregs can enhance immune tolerance and

immune escape by directly inhibiting the function of effector

immune cells, promoting differentiation and function of Tregs,

and regulating immune microenvironment.

Moreover, CD4+CD25+ Tregs possess high-affinity IL-2

receptor (CD25), which depletes IL-2, thereby suppressing the

proliferation of Teff cells and promoting their apoptosis

(Figure 1). IL-2 can stimulate the growth of NKs, however,

when Tregs and NKs are cocultured, Tregs can inhibit the

proliferation of NKs by competing with IL-2 [33, 34],

indicating that the affinity between Tregs and IL-2 may be

dominant, which can weaken the immune ability and facilitate

the escape of tumor cells (Figure 1). CD8+Foxp3- Tregs can

inhibit the function of Teffs through intercellular contact and

the release of suppressive cytokines like IL-10 and TGF-β [35].

TABLE 1 Phenotype and function of Tregs.

Type Origin Immunophenotype Main function Role in AML

CD4+Tregs Natural
Tregs

(nTregs)

Thymus CD4+, CD25+, Foxp3+ Tregs Suppress autoreactive T cells through
contact-dependent mechanisms and
inhibitory cytokines to maintain self-

tolerance

Promote immune escape by inhibiting
CD8+ T cells, DCs and NKs.

High levels in AML correlate with poor
prognosis.

Induced
Tregs
(iTregs)

Peripheral
tissues

Tr1 (CD4+, IL-10high) Secrete elevated amounts of IL-10 and
TGF-β, with minimal Foxp3 expression,
and release granzyme B and perforin to

mediate cytotoxicity [5]

Regulate the tumor microenvironment
through IL-10 and TGF-β, induce the

increase of Tregs, and indirectly promote
tumor immune escape while suppressing

the immune response
Th3 (CD4+, TGF-βhigh) Primarily secrete TGF-β, induce the

differentiation of CD4+ T cells into Tregs,
and upregulate Foxp3 expression [6]

CD4+, Foxp3+ Tregs Differentiated from CD4+T cells under the
induction of TGF-β and IL-2, inhibit
effector T-cell function, maintain
peripheral tolerance, and inhibit

autoimmune responses [7]

CD8+ Tregs Thymus or
Peripheral
tissues

CD8+ T cells, partially
expressing Foxp3

Secrete IL-10 and TGF-β to inhibits the
activity of CD4+ T cells and B cells, reduce
the release of inflammatory cytokines

through the CTLA-4 and PD-1 pathways,
directly induce target cells death via the

Fas/Fasl and perforin/granzyme B
pathways,thereby enhancing the anti-

tumor effect [8]

CD8+ Tregs exert their unique
therapeutic potential and advantages by
secreting immunosuppressive factors and
specifically regulating immune responses,

thereby alleviating GVHD while
maintaining the GVL effect. However,

research on CD8+ Tregs in AML is limited

CD4-CD8- Tregs Thymus and
peripheral
tissues [9]

Double negative T cells,CD4-,
CD8-

Express IFN-γ, TNF-α, Ly6A, FcRγ, and
CXCR5; acquire MHC-peptide complexes
from antigen-presenting cells; and exert
immunosuppression through Fas/Fas

ligand interactions [10]

mechanisms include suppression of
effector cells and promotion of a
tolerogenic microenvironment
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Therefore, Tregs mainly downregulate the quantity and

activity of Teffs by secreting different soluble negative

immune molecules and suppress the growth of Teffs and

NKs by competing with and depleting IL-2, which can

cause immune escape of tumor cells and induce drug

resistance in AML.

Surface molecules of Tregs and drug
resistance in AML

A variety of coinhibitory receptors (CIRs), including

cytotoxic T lymphocyte-associated protein 4 (CTLA-4), T-cell

immunoglobulin and mucin domain 3 (TIM-3), programmed

cell death protein 1 (PD-1), lymphocyte activation 3 (LAG-3,

CD223) and T-cell immunoglobulin and immunoreceptor

tyrosine-based inhibitory motif domains (TIGIT), expressed

on the surface of Tregs are critical for their

immunosuppressive activity. Studies have shown that the

highly expressed coinhibitory molecule CTLA-4 on Tregs

competes with CD28 on Teff cells to attach to CD80/86 on

the surface of APCs, resulting in the inhibition of Teffs and APCs

activation and increased apoptosis, thereby weakening the

immune killing effect of Teffs on tumor cells [36]. Compared

with those of healthy controls, AML patients exhibit significantly

higher levels of CTLA-4 and LAG-3, which is closely related to

poor prognosis [37, 38]. Interestingly, the CTLA-4 expression

level in individuals with APL is markedly higher compared to

those with non-M3 subtypes [39]. Research conducted by Davids

demonstrated that CTLA-4-specific antibody ipilimumab in

treating AML patients who relapsed following allo-HSCT can

promote the infiltration of cytotoxic CD8+ T lymphocytes and

the expansion of Teff subsets, suggesting that ipilimumab is

feasible for managing drug-resistant relapsed patients [40].

FIGURE 1
Cytokines secreted by Tregs and drug resistance in AML. TGF-β can cooperate with IL-2 to induce naive T lymphocytes to differentiate into
Tregs; CD25+ Tregs inhibit NK and Teff proliferation and induce apoptosis through competitive binding to IL-2; IL-35 can directly promote the
proliferation of leukemia cells. A schematic diagram is created by Figdraw (www.figdraw.com).
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Studies have shown that the combination of PD-L1 highly

expressed on AML cells and PD-1 on the surface of T

lymphocytes can induce them to differentiate and expand into

Tregs that highly express Foxp3 and PD-1, and these Tregs

release suppressive cytokines, including IL-10 and IL-35,

enabling tumor cell immune escape [41]. Moreover, PD-1 on

T lymphocytes interacts with PD-L1 on tumor cells, which can

also induce T lymphocyte apoptosis [42]. Chen et al. analyzed

The Cancer Genome Atlas (TCGA) database and verified

62 AML bone marrow samples and indicated that the

combined high expression of PD1, PD-L1, PD-L2 and CTLA-

4 was linked to reduce OS rates [43]. In patients with a high AML

cell burden, the bone marrow shows a significant increase in PD-

1+ Tregs and PD-1+ TIGIT+ Tregs. Interestingly, the elevated

PD-1 is closely linked to lactate secretion by AML blasts [44].

TIGIT is expressed only on lymphocytes, especially nTregs,

which can promote the differentiation of Tregs and combine

with CD112 and CD155 [45]. TIGIT+ Tregs mainly inhibit the

differentiation and proliferation of Th1 cells and Th17 cells via a

mechanism dependent on fibrinogen-like protein 2 (FGL2) [45].

Thus, TIGIT may be an important immunosuppressive molecule

related to the immunosuppressive function of Tregs, which are

involved in tumor immune escape and resistance. Relapse, the

primary cause of mortality in AML patients following allo-HSCT,

is strongly linked to elevated TIGIT expression on CD4+ T cells

[44]. LAG-3 shares high homology with CD4 [46], is highly

expressed on Tregs [47], and has a high affinity for major

histocompatibility complex class II (MHC II). The

combination of LAG-3 and MHC II on CD4+ T cells induces

an inhibitory pathway mediated by the activation of immune

body tyrosine kinase [48], inhibits the immunity of T cells so that

targeting the LAG-3/MHC II signaling pathway helps to promote

the immune effect of CD4+ T cells against tumors, indicating that

LAG-3 is critical for Treg-mediated immunosuppression and

may serve as a novel therapeutic strategy in AML. Research has

indicated that LAG3 not only can bind to MHC II [49] but can

also interact with soluble liver-secreted fibrinogen-like protein 1

(FGL-1), thereby inhibiting both autoimmune and antitumor

immunity [50]. Additionally, Tregs in AML patients express high

levels of LAG3, which can reduce the activation of CD8+ T cells

and is linked to poor outcomes [51]. In vitro experiments have

confirmed that anti-LAG3 antibodies can downregulate Tregs,

increase their cytotoxic activity against CD8+ T cells, reduce IFN-

γ secretion, and modulate the immune tolerance of AML cells.

Research has demonstrated that TIM3+ Treg cells exhibit

elevated expression of inhibitory molecules, including LAG-3,

PD-1, and CTLA-4, resulting in increased inhibitory function via

releasing more IL-10, granzymes and perforin [52]. Dama et al.

found that the high frequency of TIM-3+Tregs and Gal9+CD34-

leukemic cells in the BM can promote T-cell exhaustion and

induce immune escape in AML [53]. Therefore, targeting the

Gal9/Tim-3 axis may improve AML patient prognosis.

Additionally, research has indicated that functional single

nucleotide polymorphisms (SNPs) of TIM-3 are connected to

the risk prediction of AML [54]. The above studies revealed that

high expression of coinhibitory molecules on Tregs can cause the

dysfunction in APCs and effector T cells, promote their own

differentiation and expansion, and are crucial for promoting

immune escape and drug resistance in tumor cells (Figure 2). In

summary, monitoring these immune-related biomarkers can

help identify the immunosuppressive state in AML patients,

predict treatment response, and provide guidance for

personalized immunotherapy regimens.

Recently, the application of immune checkpoint inhibitors

(ICIs) that target Tregs has provided new therapeutic directions

and hope for overcoming resistance in AML. Widely studied and

considered potential therapeutic targets include PD-1, TIM-3,

LAG-3, and TIGIT. The clinical efficacy of ICIs is determined by

factors, including the targeted pathway, disease stage, and

combination with conventional therapies. Clinical studies have

shown that when nivolumab or pembrolizumab is combined

with azacitidine, the overall response rates (ORRs) are 33% and

55%, respectively, among individuals with relapsed/refractory

(R/R) AML. Especially, patients who had not previously received

hypomethylating agents (HMAs) had even higher ORRs [55–57],

which may be related to the ability of HMA to increase the levels

of PD-1/PD-L1 [58]. The combination of pembrolizumab with

high-dose cytarabine or decitabine demonstrated efficacy, which

was consistent with previous studies [59]. Other studies have

shown that nonresponders to the combination of nivolumab and

azacitidine primarily exhibit increased CTLA-4 expression on T

lymphocytes [55]. The combination of ipilimumab with

azacitidine and nivolumab for treating R/R AML

demonstrated superior efficacy compared with the

combination of nivolumab and azacitidine alone, along with

an improvement in overall survival [60]. Research suggests that

dual immunotherapy holds promising potential for clinical

application. Additionally, research indicates that the

application of ICIs targeting PD-1 (nivolumab) or CTLA-4

(ipilimumab) before stem cell transplantation (SCT) can

enhance the progression-free survival (PFS) of AML/MDS

patients post-transplant [61]. Clinical studies on the utilization

of PD-L1 inhibitors for treating R/R AML have shown

suboptimal therapeutic efficacy. For example, the combination

of avelumab with decitabine has not yielded promising results

[62]. The combination of atezolizumab with azacitidine has also

shown limited therapeutic efficacy for treating R/R AML [63]. An

earlier study showed that an anti-CTLA-4 mAb (MDX-010)

induced the expansion of Teffs by enhancing the activity of

DCs [64]. Research have demonstrated that the anti-TIGIT mAb

TGTB227 is capable of suppressing the immunosuppressive

function of Tregs by reducing the expression of Foxp3 in

Tregs. This mechanism may be associated with the CD25/IL-

2 signaling pathway [65]. Furthermore, an elevation in the

frequency of TIGIT+ CD8+ T cells is associated with R/R

AML and post-HSCT relapse. This effect is mediated
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primarily through the dysfunction of CD8+ T cells and

diminished cytokine production. Moreover, knockdown of

TIGIT can reverse the immunosuppressive effects induced by

its high expression [66]. Tiragolumab, a novel anti-TIGIT

monoclonal antibody, has demonstrated promising efficacy in

studies on solid tumors when combined with the immune

checkpoint inhibitor atezolizumab to overcome

immunosuppression and restore immune responses [67].

Research on its use in malignant hematological tumors is

limited. However, clinical studies on TIGIT inhibitors for R/R

AML are relatively rare, although TIGIT inhibitors represent

potential therapeutic targets for overcoming AML resistance.

Sabatolimab (MBG453), a monoclonal antibody targeting TIM-

3, has demonstrated the ability to enhance immune responses

against leukemia cells in vitro [68]. We hypothesize that

inhibiting the immune checkpoint TIM-3 may help alleviate

the immunosuppressive effects of Treg cells and restore the

antitumor immune activity of Teffs, making it a promising

therapeutic approach for R/R AML. Currently, a study is

underway to investigate whether sabatolimab, either as a

monotherapy or combined with azacitidine, can amplify the

graft-versus-leukemia (GvL) response in patients who achieve

complete remission and are MRD positive following allogeneic

stem cell transplantation (allo-SCT) [NCT04623216]. Relatlimab

(BMS-986016), a human IgG4 anti-LAG-3 mAb, is a LAG-3-

targeting drug that can enhance antitumor immune responses

[69]. The combination of relatlimab with azacitidine in immune

therapy for AML is currently under investigation

[NCT04913922]. While LAG-3 inhibitors appear to be

effective immunotherapeutic targets for treating R/R AML,

further research is needed to increase their clinical applicability.

Tregs also express inducible T-cell costimulatory molecules

(ICOSs) on their surface. Its binding to inducible T-cell

costimulatory ligand (ICOSL) on AML cells can maintain

overexpression of Foxp3 and CD25 and promote the

transformation and proliferation of Tregs [70] (Figure 2).

Moreover, the upregulation of IL-10 secretion by

CD4+CD25+ICOS+ Tregs indicated that the expansion of

Tregs in AML could be achieved through the ICOS/ICOSL

pathway, which enhances the body’s immunosuppressive

ability and induces leukemia cells to immune escape and drug

resistance (Figure 2). Experiments have demonstrated that

FIGURE 2
Surface molecules of Tregs and drug resistance in AML. The coinhibitory receptor on Tregs mainly induces immune escape of AML cells by
inhibiting APCs and depleting Teffs. The combination of the costimulatory receptor ICOS on Tregs and ICOSL on AML cells can induce the
transformation and proliferation of Tregs, produce more IL-10, and play a stronger immunosuppressive role. Treg-expressed chemokine receptors
promote their accumulation at the tumor site to exert an immunosuppressive effect. A schematic diagram is created by Figdraw (www.
figdraw.com).
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ICOS+ Tregs exhibit an increased suppressive effect on

CD4+CD25− effector T cells. Treatment of AML mice with

anti-ICOSL mAb can decrease the number of Tregs, thereby

slowing the progression of AML [70]. Thus, the strategy targeting

the ICOS/ICOSL signaling pathways is expected to become new

targets in drug-resistant AML. Elevated ICOS expression is

linked to reduced OS rates in AML patients, and the

coexpression of ICOS with PD-1 in non-M3 patients predicts

even lower OS rates. Additionally, ICOS/PD-1 has emerged as an

independent predictor of poor outcomes in AML [71]. Studies by

Wan et al. have demonstrated that the proportion of Tregs in the

BM of AML patients is greater than that observed in normal

individuals, mainly because regulatory B cells (Bregs) induce

CD4+CD25-T cells to transform into Tregs, and the chemokine

receptor CXCR4 highly expressed on Tregs facilitates the strong

migration and aggregation to the BM [72] (Figure 2). In addition,

other chemokines, CCR1 and CCR5, expressed by Tregs can also

cause Tregs to accumulate at the tumor site to mediate

immunosuppression, promote immune evasion by cancer

cells, and promote drug resistance recurrence. Animal

experiments have confirmed that blocking the CXCL12-

CXCR4 and CCL3-CCR1/CCR5 axes can inhibit the

recruitment of Tregs in the bone marrow microenvironment

and delay the progression of leukemia [73] (Figure 2), therefore,

targeting the CXCL12-CXCR4 and CCL3-CCR1/CCR5 signaling

pathways may become targets of leukemia immunotherapy.

Moreover, AML cells can also effectively recruit Tregs by

expressing CCL2, which binds to CCR2 receptors on Tregs

[74]. These interactions help create an immunosuppressive

microenvironment that enhances the survival and drug

resistance of AML cells. Studies have shown that ICOSL,

which is overexpressed on AML cells, interacts with ICOS+

Tregs, which enhances their ability to secrete IL-10,

potentially inducing AML cell proliferation by triggering the

Akt, Erk1/2, p38, and STAT3 signaling cascades. Additionally, it

directly promotes the expansion of Tregs [70]. The upregulation

of hypoxia-inducible factor (HIF) expression triggered by

hypoxia in the AML microenvironment is associated with

resistance to doxorubicin, possibly because HIF-1α enhances

the expression of the YAP gene in AML cells, which stabilizes

the binding of HIF-1α to its target genes [75]. Regulating the

glycolytic pathway is associated with promoting Treg

proliferation [76], further assisting in the evasion of immune

surveillance by AML cells. Early studies have shown that

leukemia-derived microvesicles (MVs) in AML patients

suppress NKs cytotoxicity through TGF-β1, and this

inhibition is mediated via the SMAD signaling pathway [27].

AML cell-derived extracellular vesicles (EVs) inhibit the activity

of CD4+ T cells by carrying immune suppressive factors, such as

PD-L1, TGF-β1 or miRNA, thereby promoting immune evasion

in leukemia [77]. Research reported that leukemia cell-derived

exosomes can stimulate bone marrow stromal cells (BMSCs) to

secrete IL-8. IL-8 not only enhances the drug resistance of AML

cells (e.g., etoposide) and promotes the survival of leukemia cells

[78], but also interacts with the CXCR1 and CXCR2 on Tregs,

facilitating the migration of Tregs to the tumor site and thereby

suppressing effector T cells in the immune microenvironment.

Hong et al.’s research indicated that EVs isolated from patients

with relapsed/refractory AML can inhibit the antileukemic

cytotoxicity of NK-92 cells [79]. These findings suggest that

leukemia cells can induce the accumulation of Tregs at the

tumor site and inhibit the antitumor immune response by

changing the tumor immune microenvironment, thus

affecting the outcome of chemotherapy and leading to drug

resistance.

Over the past few years, substantial advancements have been

achieved inAML immunotherapy, with the identification ofmultiple

critical immune targets on AML cells that have been utilized for drug

development. Among these, CD33 is a widely studied target, and its

antibody‒drug conjugate, gemtuzumab ozogamicin, was approved

in 2017 for use in treating newly diagnosed and relapsed or refractory

CD33-positive AML patients [80, 81]. CD123, a marker of leukemia

stem cells, has been targeted by drugs such as flotetuzumab (a

CD123/CD3 bispecific antibody) and IMGN632 (an antibody‒drug

conjugate), both of which have demonstrated therapeutic potential in

R/R AML patients [82, 83]. The SIRPα-αCD123 fusion antibody

targets both CD123 and CD47, with a specific focus on AML

leukemia stem cells (LSCs). This dual-targeting approach

significantly enhances immune clearance while reducing off-target

toxicity, offering a novel strategy for achieving long-term remission

and improved survival in AML patients [84]. These studies not only

provide new strategies for the treatment of AML but also offer hope

for improving patient survival rates and quality of life in the future.

Other immune cells and drug
resistance in AML

Dendritic cells (DCs)

DCs originate from hematopoietic stem cells (HSCs) in the

BM and are the most powerful APCs in the body. DCs are mainly

categorized into conventional DCs (cDCs) and plasmacytoid DCs

(pDCs). Mature cDCs, characterized by high expression of MHC

II, the costimulatory molecules CD80/86 and CD40, and

intercellular adhesion molecule 1 (ICAM-1), effectively present

antigens, stimulate T cells, trigger adaptive immune responses, and

fight tumors. pDCs also have the ability to process and present

antigens, but their main function is to generate substantial

amounts of type I interferon (IFN-I) and other

proinflammatory factors, contribute to the antiviral innate

immune response, and participate in the initiation and

progression of tumors. Research have suggested that the

expansion of pDCs is closely associated with the progression of

AML [85]. The drug Tagraxofusp, which targets the pDC surface

marker CD123, has shown significant efficacy in clearing pDCs
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[86]. Research by Wenbin et al. reported that the frequent

occurrence of RUNX1 mutations is crucial for the

differentiation and expansion of pDCs [86]. Therefore, CD123-

targeted immunotherapy may represent a potential therapeutic

approach for RUNX1-mutated AML. Importantly, Zhu et al.

reported that patients with pDC infiltration in AML-M4/

M5 patients had lower chemotherapy sensitivity and longer

durations of CR and OS than those without pDC infiltration

did, indicating that pDCs can be used for AML-M4/M5 risk

stratification and to guide treatment [87]. Ocadlikova et al.

reported that doxorubicin and cytarabine can induce the

upregulation of CD39 or CD73 on DCs. The large amounts of

ATP released by AML cells during exhaustion can be broken down

by CD39 and CD73 into adenosine, which stabilizes the immune

activity of Tregs, promoting the formation of an

immunosuppressive microenvironment and inducing resistance

[88]. ATP can bind to the P2X7 receptor on DCs to induce the

upregulation of IDO1, depleting tryptophan and promoting the

production of kynurenine, which inhibits T-cell proliferation and

function [88–91]. Furthermore, Tregs release IL-10 and TGF-β,
driving DCs and macrophages to adopt an immune-tolerant or

protumor phenotype, further dampening the immune response

[92, 93]. Other research has revealed that differentiation and

proliferation of DCs rely on the FLT3/FLT3L signaling

pathway, with FLT3 mutations being the most common in

AML [94], and approximately 25% of patients harbor

FLT3 mutations, which is linked to an unfavorable prognosis

[95]. In recent years, with the development of tumor

immunotherapy, DCs presenting tumor-specific antigens have

been developed as vaccines, through which DCs present tumor

antigens to T cells to induce adaptive immune responses to fight

tumors and prevent drug resistance recurrence. However, the

effectiveness of DC vaccination in inducing the anti-tumor

response of immune system is relatively limited [96], and

combined treatment with chemotherapy and radiotherapy may

enhance the anti-tumor effect [97, 98]. Pepeldjiyska et al. reported

that the increase in the frequency of leukemia-derived DCs

(DCleu) derived from bone marrow primitive leukemia cells in

AML patients can downregulate Tregs and activate specific T cells

and NKs, promoting anti-tumor immune response [99], thus, the

heightened frequency of induced DCleu helps to increase the

body’s antitumor immunity and reverse tumor resistance.

Natural killer cells (NKs)

NKs are lymphoid innate immune cells and are the key effector

cells in immunotherapy [100], which are related to the occurrence,

progression and recurrence of AML [101]. The killer cell

immunoglobulin-like receptor (KIR) expressed on the surface of

NKs can be divided into two types, inhibitory and activating [102],

which can specifically recognize and bind target cell surface

molecules and play important antitumor roles [103]. NKs

express different immunophenotypes at the immature, mature,

and hypermature stages and can migrate, release cytokines, and

destroy target cells [104]. A study reported that the ratio of NK cells

in the BM of newly diagnosed AML patients may forecast patient

outcomes. In comparison to healthy individuals, the proportion of

NKs in the BMof R/R patients is the lowest [105], and their function

is impaired, suggesting that a reduced NK cell ratio correlates with a

worse prognosis in AML patients [106, 107]. NK-based

immunotherapy can significantly improve the outcomes of

patients with advanced or high-risk AML [108]. Studies have

shown that the overexpression of heme oxygenase 1 (HO1) in

AML patients induces NK dysfunction [109], thus, targetingHO1 to

restore NK cell function may be a promising anti-AML

immunotherapy strategy. Dai et al. reported that the myeloid cell

leukemia-1 (MCL1) is negatively correlated with that of NKs and

that the combined action of MCL1 inhibitors and NKs can

significantly exhaust primary AML cells and cell lines.

Interestingly, the proportion of NKs in the BM can affect the

effect of MCL1 inhibitors [105], indicating that the proportion

and abnormal function of NKs play important roles in the drug

resistance of AML leukemia cells. Chajuwan et al. observed that

elevated TIM-3 expression in NKs correlated with CR status after

induction therapy, indicating that TIM-3 in NKs may be a

prognostic marker for AML [110]. Bou-Tayeh et al. reported

that NKs from mice with leukemia express IL-15/mTOR

signaling, and this pathway can induce NK metabolism and

functional failure in leukemic mice [111]. Compared with that in

healthy controls, AML patients showed reduced levels of the NK-

activating receptors NKG2D, NKp46, and NKp30 in their

peripheral blood, while there was an upregulation in the

expression of inhibitory receptors such as TIM-3, ILT-4, ILT-5,

and PD-1. At the same time, the expression of Siglec-7 in NK cells

was notably reduced in AML patients [101], suggesting that

Siglec7 is an indicator of NK cell function and could potentially

be targeted to improve NK cell activity, thereby boosting the

antitumor immune response. Disruption of the NKG2D/

NKG2DL pathway, which is crucial for NK cell-mediated tumor

cell killing, can lead to immune escape in AML, resulting in drug

resistance [112]. Furthermore, NKs can release cytokines like IFN-γ
and perforin/granzyme, and express TNF-related apoptosis-

inducing ligand (TRAIL) and Fas Ligand (FasL) to activate

apoptotic pathways in tumor cells [113]. The loss of these

functions may represent a key mechanism through which

tumors escape killing mediated by NK cells. The

immunosuppressive tumor microenvironment created by TAMs,

MDSCs, and Tregs is a major obstacle to NK cell-mediated

antitumor activity. They drive NKs exhaustion and facilitate

tumor immune escape by depleting activation factors like IL-2,

releasing immunosuppressive molecules such as TGF-β and IL-10,

and activating inhibitory receptors on NK cells, including PD-1 and

TIGIT. Studies have shown that NK cells recognize ligands like

PDL1, Gal-9, and CD112/CD155 on AML cells through their

surface receptors PD-1, TIM3, and TIGIT, triggering inhibitory
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signaling pathways. This activation affects NK cell function via the

PI3K, ERK, and PKCθ pathways, thereby facilitating tumor immune

evasion [114, 115]. Moreover, the high expression of CD200 on

leukemia cells, through binding to CD200R, inhibits the cytotoxicity

of NK cells, inducing immune evasion of leukemia cells, which is

associated with the recurrence and progression of AML [116, 117].

NKs exhibit strong anti-tumor activity. Restoring the antitumor

properties of NK cells may represent a promising approach for

treating relapse. Notably, AML cells can evade the immune

recognition of NKs via gene mutation, fusion and epigenetic

modification, though the exact mechanism remains uncertain

[118]. Research has shown that the hypomethylation agent

(HMA) decitabine can upregulate the level of ICAM-1(CD54)

and CD48 on AML cells, thereby activating NKs to kill leukemia

cells while reversing immune evasion by leukemia cells [118, 119].

This suggests that the combination of HMA and NK cells infusion

may serve as a promising new approach for AML treatment.

The immune exhaustion of effector immune cells poses a critical

challenge in cancer treatment. Current strategies to reverse T cells

and NKs exhaustion primarily include ICIs, activation receptor

enhancement, and the application of genetically engineered CAR-

T/CAR-NK cells. ICIs targetmolecules such as PD-1, CTLA-4, TIM-

3, TIGIT, and LAG-3, blocking the interaction of checkpoint

molecules to relieve the inhibition of effector immune cells,

enhance their activity, reverse immune exhaustion, and overcome

immune resistance. IL-2 and IL-15 are critical cytokines that

promote the growth and activation of T cells and NK cells [120,

121]. Local or systemic administration of recombinant IL-2 or IL-15

can enhance the proliferation and function of immune cells, thereby

reversing immune exhaustion. Additionally, a study on CD33-

targeted CAR-T-cell therapy for AML demonstrated a transient

reduction in CD33+ leukemic blasts (lasting only 7 days),

accompanied by adverse effects such as leukopenia [122].

CD123-targeted CAR-T-cell therapy can achieve CR in AML

patients, but it is linked to notable adverse effects [123, 124].

NKG2D is a type II transmembrane receptor, and its signaling

induces cytolytic effector functions [125]. In a study involving

22 AML patients, repeated infusions of NKG2D CAR-T cells

resulted in a 4.5% probability of achieving a morphologic

leukemia-free state (MLFS) [126]. CAR-T-cell therapy for AML

remains under study but has demonstrated significant potential.

Owing to the potent antitumor properties of NK cells, CAR-NK cells

can also specifically target tumor cells [127], and CAR-NK cells offer

several advantages, including immediate availability, inducible

proliferation, and a longer lifespan [128]. However, when donor-

derived NKs are used, GVHD may occur [129].

Cytotoxic T lymphocytes (CTLs)

CD8+ T cells are activated, proliferate, and differentiate into

CTLs in peripheral immune organs and can accumulate at tumor

sites under the action of chemokines. The surface of CD8+ T cells

highly expresses lymphocyte function-associated antigen-1 (LFA-1)

and CD2, which can interact with the expression of ICAM-1. LFA-3

binds to target cells and kills target cells efficiently. Early research has

demonstrated that the accumulation of Tregs in the AML

progression model can suppress the expansion of CTLs [130],

potentially through the secretion of the inhibitory cytokines IL-10

and TNF-β. Leukemic progenitor cells and leukemic stem cells

(LPCs/LSCs) are currently believed to be responsible for disease

relapse after intensive therapy, and targeting LPCs/LSCs through

specific CTLs may be an option to prevent AML relapse [131]. The

application of anti-PD-1 antibody (nivolumab) in AML significantly

increases T-cell-directed immune response targeting leukemia-

associated antigen (LAA), particularly in the context of targeting

LPCs [131], thus, the nivolumab could a candidate immunotherapy

for those who are resistant. However, Rakova reported that ICIs

targeting PD-1 and CTLA4 exhibit limited clinical effectiveness in

AML [132]. InAMLwith TP53 genemutations, TIM-3 expression is

significantly increased, and CTLs exhibit characteristics of

exhaustion/dysfunction, indicating that the antitumor immune

response of TP53-mutated AML is insufficient, which presents a

new strategy for overcoming drug resistance in AML [133]. Studies

have suggested that IFN-I can promote the recruitment of tumor-

specific CTLs; therefore, stimulator of interferon genes (STING)

agonists have a killing effect on AML leukemia cells [134]. In

conclusion, CTLs specifically kill target cells, and immunotherapy

to restore and enhance the cytotoxic function of CTLs is an effective

treatment to combat tumor drug resistance.

A clinical study demonstrated progress in treating relapsed

AML patients with tumor-associated antigen-specific cytotoxic T

lymphocytes (TAA-CTLs), showing that some patients achieved

MRD negativity with a reduced incidence of relapse [135], but the

study involved a limited sample size, leading to lack statistical

significance and reliability. However, some studies have revealed

that immunotherapeutic approaches with TAA-CTLs are less

reliable at eradicating the disease, potentially because of the

immunosuppressive tumor microenvironment [136]. Studies

indicate that LAA-CTLs (such as CG1-CTLs or PR1-CTLs)

combined with pembrolizumab are more effective in eliminating

AML cells than LAA-CTLs alone without increasing toxic side

effects or the risk of GVHD [136, 137]. Chapuis et al. used adoptive

transfer of WT1-specific allogeneic TCR-T cells in a clinical trial to

treat high-risk AML patients, achieving good therapeutic outcomes

and helping to prevent disease relapse (NCT01640301) [138]. In

addition, an additional clinical study of autologous WT1-specific

TCR-T cells aimed to evaluate their therapeutic effects on high-risk

bone marrow malignancies, which showed significant efficacy and

excellent safety (NCT02550535) [139].

T helper 17 (Th17) cells

The primary function of Th17 cells is to induce neutrophils to

phagocytose and kill pathogens, primarily by secreting IL-17, IL-

Experimental Biology and Medicine
Published by Frontiers

Society for Experimental Biology and Medicine09

Zhang et al. 10.3389/ebm.2025.10235

87

https://doi.org/10.3389/ebm.2025.10235


21, and IL-22 to exert their immune effects. Among these

cytokines, IL-21 can amplify Th17 function through autocrine

signaling, stimulate CD8+ T-cell and NK proliferation and

differentiation, and have antitumor immune effects (Figure 3).

IL-17 has both tumor-promoting and antitumor effects. The

tumor-promoting properties of AML are mediated mainly by

angiogenesis, which stimulates endothelial cells to release

chemokines (CXCL1, CXCL2) and growth factors (GM-CSF) to

recruit neutrophils, and induces epithelial cells and fibroblasts to

release monocyte chemoattractant protein 1 (MCP-1) to recruit

monocytes to tumor sites to differentiate into TAMs [140],

whereas TAMs lose their antitumor immune properties and are

linked to unfavorable outcomes [141] (Figure 4). The antitumor

effect of IL-17 is synergistic with that of IFN-γ, which stimulates

tumor cells to release the chemokines CXCL9 and CXCL10 to

recruit NKs and CTLs into tumor sites [140, 142] (Figure 3). In

addition, Th17 cells can also recruit DCs by releasing CCL20,

which may enhance the immune response at the tumor site [140]

(Figure 3). Studies have confirmed that the proportion of

Th17 cells and the concentration of IL-17 in the bone marrow

of patients with newly diagnosed and relapsed AML are

significantly increased and that there is no notable distinction

between these patients and healthy controls in the CR and disease-

free survival (DFS) stages [143]. Ren et al. reported that the

overexpression of beta-1,4-galactosyltransferase 1 (B4GALT1) in

AML may be linked to poor patient outcomes, and the proportion

of Th17 cells shows a positive correlation with B4GALT1 levels

[144]. In newly diagnosed AML patients, peripheral blood CD4+

T cells (mainly Th17 cells) secrete abundant TNF-α, which binds

to TNFR2 on the surface of Tregs, inducing Treg expansion and

enhancing their function [145]. An in vitro study confirmed that

IL-1β, IL-6 and IL-23 can promote naive CD4+ T cells to

differentiate into Th17 cells. High levels of Th17 cells can

promote the proliferation and poor prognosis of AML patients

through IL-17-mediated activation of the PI3K/AKT and JAK/

STAT3 pathways. In addition, high levels of Th17 cells can inhibit

Th1 cell and IFN-γ production through the secretion of IL-17 and

IL-22 [146]. Another clinical study indicated that the cytokines IL-

23 and IL-17 secreted by Th17 cells are also positively correlated

with poor clinical outcomes in AML [147].

This novel epigenetic therapy shows safety and efficacy in

managing early relapse in non-APL AML patients following

transplantation, with Th1/Th17 ratio modulation offering both

immunological benefits and potential as a biomarker for relapse

FIGURE 3
Targeting effect of Th17 cells on AML cells. Th17 cells induce the differentiation and proliferation of CTLs and NKs by secreting IL-21; IL-17
secreted by Th17 cells and IFN-γ secreted by NKs act on AML cells together, which can induce tumor cells to secrete CXCL9/CXCL10, accumulate
NKs and CTLs, and kill tumor cells. Th17 cells also recruit DCs by releasing CCL20 to enhance the immune response at the tumor site. A schematic
diagram is created by Figdraw (www.figdraw.com).
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monitoring [148]. The traditional stimulator of interferon genes

pathway can effectively improve antitumor immunity. However,

owing to its easy degradation and membrane transport difficulties,

its antitumor effect is blocked. Emerging bioinspired nanomedicines

can enhance the STING pathway to target AML cells systemically,

and the mechanism may be related to the increased proportion of

Th1/Th17 cells, the concentration of IFN-I and proinflammatory

cytokines, and the decreased proportion of Th2 cells [149]. Elevated

expression of the immunoregulatory transcription factor ZEB1 is

related to poor overall survival, and the underlying mechanism may

involve the promotion of Th17 cell development, increasing the

secretion of IL-17 and TGF-β, and the expression of suppressor of

cytokine signaling 2 (SOCS2) [150]. Therefore, ZEB1 may be a

promising therapeutic target for AML.

Myeloid-derived suppressor cells (MDSCs)

MDSCs are composed mainly of granulocyte myeloid-

derived suppressor cells (G-MDSCs, CD66b+CD15+HLA-DR-

cells), monocyte MDSCs (M-MDSCs, CD14+CD11b+CD33+HLA-

DR-/lo cells) and immature myeloid cells (IMCs,

CD11b+CD33+CD14-HLA-DR-CD34+ cells) [151]. An increase

in the number of MDSCs in myeloid malignancies results in a

significant immunosuppressive effect, which may induce immune

escape of tumor cells and promote tumor development [152].

MDSCs can inhibit Teffs by releasing arginase 1 (Arg1), nitric

oxide synthase 2 (NOS2), reactive oxygen species (ROS),

cyclooxygenase 2 (COX2), TGF-β, etc. [153–155], thereby

promoting the progression of various cancers. In addition,

MDSCs can indirectly upregulate Tregs [156]. In AML, MDSCs

can suppress potent antitumor immune responses [157] and can

suppress the function of CD8+ T cells via high expression of

Arg1 and indoleamine-2,3-dioxygenase 1 (IDO) [158]. Among

them, IDO1 can decompose tryptophan, and a decrease in

tryptophan and the accumulation of its metabolites can suppress

the proliferation of antigen-specific T cells and trigger their apoptosis

[159]. Arginase II induces T-cell apoptosis and autophagy by

depriving T cells of the ability to metabolize the essential amino

acid arginine [160], thereby reducing the immune effect of T cells on

cancer cells. MDSCs and Tregs are complex, as they can enhance

their interactions through soluble mediators (such as IL-10 and

TGF-β), metabolic cooperation (such as Arg-1, iNOS, and CD73),

and intercellular communication (such as PD-L1/PD-1, CD80/

FIGURE 4
Tumor-promoting effects of Th17 cells. The tumor-promoting effect of Th17 cells is mainly to induce angiogenesis and TAM differentiation.
TAMs lose their antitumor properties, have immunosuppressive effects, induce immune escape of tumor cells, and are linked to a poor prognosis in
AML. A schematic diagram is created by Figdraw (www.figdraw.com).
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CTLA-4, and CD40/CD40L), establishing a complex

immunosuppressive feedback mechanism [161]. Ren et al.

reported that high levels of M-MDSCs, which possess potent

immunosuppressive capabilities, can predict poor prognosis in

AML patients [162]. In addition, Tohumeken et al. reported that

AML-derived EVs can induce conventional monocytes to

differentiate into MDSCs, obtain a CD14+HLADRlow

phenotype, and upregulate IDO to inhibit effector T-cell

immunity. The Akt/mTOR pathway plays a critical factor in the

phenotype and functional transformation of monocytes induced by

AML-released EVs [163], and MDSCs also significantly inhibit the

proliferation of NKs [164], indicating that an increase in MDSCs

facilitates tumor cell immune escape. Research by Bai et al. revealed

that the mechanism of AraC-induced AML resistance may involve

the amplification of TNF-α, which activates the IL-6/STAT3 and

NF-KB pathways, enhancing the function and survival of MDSCs

and thereby mediating the immune evasion by tumors and drug

resistance [165], suggesting that chemotherapy combined with

TNF-α-targeting therapy may be an effective strategy to inhibit

MDSC-induced immune escape. Additionally, Pyzer et al. reported

that AML induces the release of the c-Myc protein through MUC1-

C signaling, which inhibits the expression of miR34a, driving the

proliferation of MDSCs, the levels of PD-L1, and

immunosuppressive functions [166]. These findings highlight the

potential of targeting the MUC1-C/c-Myc pathway as an approach

for AML immunotherapy. Au et al. reported that the accumulation

of immunosuppressive cells, including Tregs, MDSCs (mainly

G-MDSCs) and TAMs, in the BM of AML patients is connected

to CD34+ AML progenitor cells [32], which promotes the immune

evasion of AML blasts. Research has demonstrated that MDSC-like

progenitor cells can induce Tregs expansion and cause CTLs

dysfunction and exhaustion [158, 167], further reinforcing the

tumor-suppressive microenvironment, which is closely associated

with relapse following allo-HSCT in AML [168]. VISTA inhibits the

activity of CD8+ T cells via high expression on MDSCs from AML

patients, and its synergistic effect with PD-1 suggests that combined

inhibition of VISTA and PD-1 pathways may be a new strategy to

enhance AML immunotherapy [169]. In vitro studies have shown

that an IDO1 inhibitor (INCB024360) can induce the proliferation

of CTLs, reduce Tregs, and decrease the immunosuppressive activity

of MDSCs [170]. However, a phase II trial in MDS patients revealed

that INCB024360 had no significant therapeutic effect [171].

Currently, research on INCB024360 (epacadostat) in AML is

relatively limited. Research conducted by Masahiro et al. showed

that DC vaccines loaded with Wilms’ tumor 1 (WT1) enhance

immune surveillance by reducing the number of MDSCs and

downregulating their immunosuppressive functions, particularly

the arginase 1 and IDO pathways, offering new hope for

immunotherapy in AML [172]. Miner et al.’s study revealed that

myeloid leukemia cells (including AML and MDS cells) can inhibit

T-cell function through the STAT3 and arginase pathways [173].

These findings suggest that therapeutic strategies targeting

STAT3 and arginase inhibitors may increase the effectiveness of

leukemia immunotherapy and improve immune evasion

mechanisms.

Summary

We conducted a detailed exploration of the immune

mechanisms responsible for resistance to treatment in AML,

with an emphasis on immune cells in the bone marrow

microenvironment. Research indicates that Tregs contribute

significantly to immune evasion and chemoresistance by

releasing inhibitory cytokines and expressing immune

checkpoint molecules, with elevated Treg levels being associated

with poor prognosis. AML cells further promote tumor survival

and evade immune surveillance by releasing immunosuppressive

molecules and altering the bone marrow microenvironment. DCs,

NKs, and CTLs also contribute significantly to immune regulation

in AML, with impaired DC function, suppressed NK activity, and

reduced CTL antitumor capacity closely linked to drug resistance.

Moreover, myeloid-derived suppressor cells exacerbate immune

suppression by secreting metabolic inhibitory molecules and

increasing Treg activity. We also summarize recent advances in

immunotherapy, including ICIs, CAR-T and CAR-NK cell

therapies, and treatments targeting AML-specific antigens, all of

which have potential in enhancing immune function and

overcoming drug resistance. We emphasize the need for future

research to optimize immunotherapy protocols, integrate

chemotherapy and other treatments, improve patient outcomes

and increase survival rates.
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Abstract

More complex surgeries are being performed in increasingly sicker patients,

resulting in a greater burden of postoperative morbidity. Delineating the

metabolic and bioenergetic changes that occur in response to surgical

stress may further our understanding about how humans respond to injury

and aid the identification of resilient and frail phenotypes. Skeletal muscle

biopsies were taken from patients undergoing hepato-pancreatico-biliary

surgery at the beginning and end of the procedure to measure

mitochondrial respiration and thiol status. Blood samples were taken at the

same timepoints tomeasuremarkers of inflammation and systemic redox state.

A sub-group of patients underwent cardiopulmonary exercise testing prior to

surgery, and were assigned to two groups according to their oxygen

consumption at anaerobic threshold (≤10 and >10 mL/kg/min) to determine

whether redox phenotypewas related to cardiorespiratory fitness. No change in

mitochondrial oxidative phosphorylation capacity was detected. However, a

26.7% increase in LEAK (uncoupled) respiration was seen after surgery (P =

0.03). Free skeletal muscle cysteine also increased 27.0% (P = 0.003), while

S-glutathionylation and other sulfur and nitrogen-based metabolite

concentrations remained unchanged. The increase in LEAK was 200%

greater in fit patients (P = 0.004). Baseline plasma inflammatory markers,

including TNF-⍺ and IL-6 were greater in unfit patients, 96.6% (P = 0.04)

and 111.0% (P = 0.02) respectively, with a 58.7% lower skeletal muscle nitrite

compared to fit patients. These data suggest that oxidative phosphorylation is

preserved during the acute intraoperative period. Increase in free cysteine may

demonstrate themuscle’s response to surgical stress tomaintain redox balance.

The differences in tissue metabolism between fitness groups suggests

underlying metabolic phenotypes of frail and resilient patients. For example,
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increased LEAK in fitter patients may indicate mitochondrial adaptation to

stress. Higher baseline measurements of inflammation and lower tissue

nitrite in unfit patients, may reflect a state of frailty and susceptibility to

postoperative demise.

KEYWORDS

cardiopulmonary, mitochondrial respiration, redox, antioxidants, perioperative

Impact statement

Improved access to surgery has increased the global burden

of postoperative pathology. Understanding the mechanisms that

drive postoperative demise, and identifying at-risk patients are

paramount to the advance of perioperative medicine. This study

provides new insight into the body’s responses to acute surgical

stress, demonstrating that the initial response to injury does not

solely release markers of cell/tissue damage, but also markers of

adaptation, with evidence of mitochondrial bioenergetic

alterations and the maintenance of sulfur and nitrogen-based

metabolites. Our study also provides phenotypic profiles of

patients representing perioperative resilience and frailty. The

association of reduced baseline aerobic capacity with increased

levels of cyclic guanosine monophosphate, inflammation, and

intraoperative mitochondrial uncoupling, is indicative of a

biochemical phenotype for deconditioned and frail patients.

The identification of such responses to major surgery and

their variability brings us closer to personalised and

stratified medicine.

Introduction

As surgical technology advances, we are performing more

complex procedures in frailer and more multi-morbid patients

than ever before, and the consequences of undergoing surgery

can be life changing. Whilst the intention, particularly in cancer

surgery, is to provide a cure, complications can occur, resulting in

a proportion of these patients being left with deficits for months

or years to come. Characterising the metabolic and bioenergetic

changes that occur after acute surgical stress may further our

understanding of how the human body responds to injury and

how these responses differ between individuals. Identifying a

physiological and biochemical phenotype that characterises

resilience and protection is an important step for making

progress in perioperative medicine.

The pivotal role that mitochondria play in cellular

bioenergetics is well established, but their role in redox

metabolism, including the production and scavenging of

reactive oxygen species (ROS) and reactive nitrogen species

(RNS) which can promote a state of oxidative and/or

nitrosative stress, is being recognised only more recently. In

addition, reactive sulfur species (e.g., hydrogen sulfide and

per/polysulfides) and sulfur-containing compounds such as

thiols have potent antioxidant capacity and can produce a

wide array of oxidation products. When combined, these

redox metabolic reactions can be conceptualised using the

“reactive species interactome” framework [1].

Altered mitochondrial function, in conjunction with

oxidative stress, has been linked to the pathogenesis of

multiple chronic conditions and to the mechanisms that

underlie frailty and physical fitness [2]. Physical fitness is

associated with many health benefits, including reductions in

occurrence of metabolic and cardiovascular diseases and cancer

[3], increased longevity and a reduction in the development of

age-related illnesses [4, 5]. Cardiopulmonary exercise testing

(CPET) provides a direct measure of cardiorespiratory fitness

where oxygen consumption (VO2) and carbon dioxide

production (VCO2) in response to increasing levels of physical

activity provide an indirect yet integrative measure of tissue

respiration and hence mitochondrial function. Data from CPETs

are used as predictor of a patient’s physiological response to the

stress of surgery. Lower levels of preoperative aerobic fitness

[peak VO2 and VO2 at anaerobic threshold (AT)] have

repeatedly been associated with postoperative morbidity [6, 7].

The contributions of altered mitochondrial respiratory

function with oxidative stress in an acute surgical setting are

less well established and described. They have been reported in

one animal study and one human study (of skeletal muscle

biopsies) to date [8, 9]. Both studies observed markers of

altered mitochondrial respiration after surgery. In addition,

greater release of ROS was associated with a loss of

mitochondrial membrane potential [10]. In the perioperative

setting, an AT of <11 mL/kg/min, has been associated with

increased levels of preoperative markers of inflammation [11].

Peak VO2 levels have been positively correlated with

mitochondrial respiratory capacity, and in particular of

oxidative phosphorylation [12]. However, the links between

fitness, redox metabolism, mitochondrial respiration and the

effects of surgery have not yet been addressed.

We conducted a single-centre, prospective exploratory study

of patients undergoing major hepato-pancreatico-biliary (HPB)

surgery at the Royal Free Hospital (London, UK). Results from

the main study have been previously reported [13]. A subgroup

of patients from the main study underwent additional

investigations. We hypothesized that less fit patients would

display a greater degree of perturbation to whole-body redox
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balance with greater systemic oxidative stress and early changes

in mitochondrial respiratory function in skeletal muscle

following surgery. Specifically, we were interested to learn: 1)

how major abdominal surgery affects mitochondrial respiration

and redox status of skeletal muscle under conditions of

systemically increased oxidative stress, and 2) whether those

changes differ between fit and unfit individuals.

Materials and methods

Participants

Patients for this sub-study were selected from a larger study

of the effects of major abdominal surgery on circulating redox

markers [13]. All patients were approached up to 1 month prior

to scheduled surgery to seek their agreement to participate.

Inclusion criteria included: major (intra-cavity) inpatient

surgery; age ≥18 years; planned general anaesthesia; calculated

morbidity risk ≥40% (Portsmouth Physiological and Operative

Severity Score for the enUmeration of Mortality and

morbidity – P-POSSUM). Exclusion criteria included:

mitochondrial disease; emergency surgery; lack of capacity;

prisoners. In addition, patients in the sub-study were required

to undergo skeletal muscle biopsies at the beginning and end of

surgery and (if feasible) a cardiopulmonary exercise testing

prior to their surgery (see Supplementary Figure S1

CONSORT diagram).

The study was designed and reported according to the

Strengthening the Reporting of Observational Studies in

Epidemiology (STROBE) Guidelines [14]. Ethical approval

was obtained from the West London Research Ethics

Committee and Human Research Authority [214019]. All

patients provided written informed consent prior to surgery.

Cardiopulmonary exercise testing

CPET took place on a cycle ergometer according to a local

protocol, which followed the perioperative CPET consensus

clinical guidelines [15]. Exercise was conducted on an

electromagnetically braked cycle ergometer (Lode BV medical

technology), following a protocol of: 3 minutes rest; 2 minutes of

freewheel pedalling; ramped incremental cycling until the patient

could no longer continue; and a 5-min recovery period of

freewheel pedalling. Ventilation and gas exchange were

measured through use of a metabolic cart (Metalyzer 3B,

Cortex Biophysics GmbH) and the data was analysed using

the Metasoft 3.9 software. The ramp gradient was set to

10–25 W/min based on the participant’s self-reported level of

activity. Resting flow-volume loops were used to derive measures

of forced expiratory volume over one second. AT was estimated

in the conventional manner, involving the use of the three-point

discrimination technique (identification of excess VCO2 relative

to VO2; identification of hyperventilation relative to oxygen;

hyperventilation excluded relative to carbon dioxide). Two

separate reviewers determined the AT values independently

and the average of the measurements was taken as the final

AT. When there was disagreement of >10%, a third reviewer was

invited to be the final adjudicator, and the average of the two

measurements within 10% was taken as the final AT. Peak VO2

was averaged over the last 30 s of exercise.

Anaesthetic and surgical techniques

For details of anaesthesic and surgical techniques the reader

is referred to the methodology section of the main study

published elsewhere [13] and the supplementary section of the

present paper.

Blood collection

Samples of venous blood were collected at baseline (after

induction of anaesthesia but prior to the first surgical incision)

and at the end of surgery (EoS) after wound closure. Samples

were immediately placed on ice and centrifuged at 2000 × g for

15 min at 4°C. Plasma and serum samples were divided into

aliquots for storage at −80°C.

Blood analysis

The following markers were chosen on the basis of their

relationship within the “reactive species interactome” framework

to include lipid oxidation products such as malondialdehyde

(MDA), 4-hydroxynonenal (4-HNE) and 8-iso-prostaglandin

F2⍺ (8-isoprostanes); markers of total reducing capacity

(TRC), total free thiols (TFTs) and ferric reducing ability of

plasma (FRAP); as well as markers of NO production,

metabolism and availability including cyclic guanosine

monophosphate (cGMP), nitrite, nitrate and total nitroso-

species (RXNO). Interleukin-6 (IL-6) and tumour necrosis

factor alpha (TNF-⍺) were also measured to evaluate

inflammation. Pristine (first thaw from −80°C) serum samples

were used throughout; for details of method of analysis please

refer to reference 1313 and the Supplementary Material.

Skeletal muscle biopsy

Vastus lateralis muscle was biopsied at two separate

timepoints under general anaesthesia, which was coupled with

blood sample extraction; at baseline and EoS, using previously

described methods [16]. Biopsies were taken from the mid-thigh
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using Tilley-Henckel forceps under local anaesthesia (1%

lidocaine) of the skin and superficial muscle fascia. A 5 mm

incision was made, and 100 mg wet-weight tissue was collected.

The sample was divided, with 50 mg allocated for immediate

respirometric analysis and the remainder snap frozen in liquid

nitrogen and stored at −80°C until later analysis. The muscle

sample was divided into aliquots, the sample for high-resolution

respirometry (HRR) was immediately placed in ice-cold biopsy

preservation medium (BIOPS): [CaK2EGTA (2.77 mM),

K2EGTA (7.23 mM), MgCl2.6H2O (6.56 mM), taurine

(20 mM), PCr (15 mM), imidazole (20 mM), DTT (0.5 mM),

MES (50 mM) and Na2ATP (5.77 mM) at pH 7.10], which was

filtered and stored at −40°C until use to prevent bacterial growth.

The aliquots for muscle metabolomics were snap frozen in liquid

nitrogen and subsequently stored at −80°C for later analysis.

Sample preparation and high resolution
respirometry

Skeletal muscle fibre bundles were prepared from the

respirometry-designated sample according to previously

described methods [17]. After permeabilisation of the

sarcolemmal membrane using saponin (50 μg/mL, in ice cold

BIOPS, rocked for 20min at 20 rpm), fibre bundles were rinsed in

respiration medium (MiR05, outlined below) blotted on filter

paper and weighed using a microbalance (Mettler-Toledo).

Respiration of fibre bundles was then measured in

mitochondrial respiration medium (MiR05) containing EGTA

(0.5 mM), MgCl2.6H2O (3 mM), K-lactobionate (60 mM),

taurine (20 mM), KH2PO4 (10 mM), HEPES (20 mM),

sucrose (110 mM) and defatted BSA (1g.L-1) at pH 7.4, using

the substrate-uncoupler-inhibitor titration (SUIT) protocol

described below. All assays were performed, in duplicate,

using an Oxygraph O2K (Oroboros Instruments, Innsbruck),

at 37°C with oxygen concentrations kept between 250 and

400 µM and constant stirring to prevent diffusion limitation

of respiration. Respirometry was performed by the same operator

throughout the study.

Oxygen consumption of permeabilised muscle fibres were

measured using a fatty acid oxidation (FAO)-mediated SUIT

protocol. In brief, mitochondrial respiratory states were recorded

following stepwise titrations. Addition of malate and

octanoylcarnitine supported LEAK respiration (LEAKFAO),

with oxygen consumption not coupled to oxidative

phosphorylation (OXPHOS); addition of adenosine

diphosphate (ADP) resulted in OXPHOS supported by fatty

acid oxidation (FAOOXPHOS); addition of pyruvate

reconstituted the Krebs cycle (MOPOXPHOS), and glutamate

produced OXPHOS supported by complex I (CIOXPHOS).

Addition of succinate stimulated OXPHOS supported by

complexes I and II, with a further titration of ADP to

achieve maximum complex I and II-mediated OXPHOS

(MAX OXPHOS). Titration of the protonophore, carbonyl

cyanide p-trifluoro-methoxyphenyl hydrazone (FCCP),

resulted in maximal electron transfer system (ETS) capacity,

unlimited by the phosphorylation system (CI + IIETS). The

relative contribution of complex II was assessed by addition of

the complex I inhibitor, rotenone (CIIETS). For further

information refer to Supplementary Table S1.

Metabolomic analysis of skeletal muscle

Muscle biopsies were accurately weighed and mixed with

300 µL of homogenisation buffer (10 mM phosphate-buffered

saline with 10 mM N-ethylmaleimide (NEM) and 2.5 mM

EDTA) and homogenised by 8 up-and-down strokes under

ice-cooling using a Kimble all-glass tissue grinder attached to

a GlasCol GT Series stirrer. Tissue homogenates were then split

and treated depending on the markers to be analysed, as detailed

below. One 100 µL aliquot of the muscle homogenate was

deproteinised by precipitation with ice-cold methanol (1:1, v:

v) and centrifugation at 16,000 × g for 20 min. Clear supernatants

were analysed for nitrite (NO2
−) and nitrate (NO3

−) using a

dedicated high-performance liquid chromatography system for

NOx analysis (ENO-30 with AS-700 autosampler, Eicom/

Amuza), and data were processed using the Clarity software.

The remainder of the muscle homogenates was utilised to

evaluate thiol redox status using an ultra-high performance

liquid chromatography tandem mass spectrometry (UPLC-

MS/MS) method described in detail elsewhere [18]. A 100 µL

supernatant of the muscle homogenates was mixed 1:1 with

internal standards before centrifugation and injection onto the

LC-MS/MS system (Aquity/XEVO-TQS, Waters). The method

was used to separate and quantify biological aminothiols such as

reduced and oxidized glutathione (GSH, GSSG), cysteine (Cys/

cystine) and homocysteine (HCys/homocystine) as well as sulfide

(HS−). In addition to the free thiols, total thiol concentrations

(free + protein-bound forms and disulfides) were determined

after sample pre-processing with dithiothreitol (DTT). For this

purpose, an additional 50 µL aliquot of muscle homogenate was

subjected to reduction by DTT (50 mM, 1:1, v:v) followed by

incubation for 30 min at room temperature before addition of

400 µL of 100 mM NEM for derivatization of liberated thiols.

After 15 min incubation at room temperature, derivatized

samples were spiked with internal standards, subjected to

ultrafiltration for protein removal and injected onto the LC-

MS/MS system.

Clinical data collection and sample size
determination

Clinical data were collected prospectively throughout the

perioperative admission and entered into a database.
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Statistical analysis

Data were assessed for normality by visual examination of

histograms and using the Shapiro-Wilk test. Data were presented

as median and interquartile range (IQR). Wilcoxon signed-rank

sum was used for paired tests and Mann-Whitney U for two

independent samples for non-normally distributed data.

Changes in intraoperative concentrations of metabolic indices

(calculated as EoS concentration – baseline concentration) was

used to reflect intraoperative trajectory/dynamics of the

metabolic profile. AT was chosen as a discriminatory measure

of cardiopulmonary fitness. A cut-off point of 10 mL/kg/min was

chosen to dichotomise the patients into two groups, labelled “fit”

and “unfit.” This threshold was chosen because it was found to be

specifically associated with outcomes after HPB surgery [6]. The

linear relationships between non-normally distributed

continuous data were assessed using Pearson’s correlation.

Missing values were excluded from the analysis. All tests were

two-tailed and P < 0.05 was selected as the threshold for statistical

significance. In view of the exploratory nature of the study, a

decision was made not to correct for multiplicity. Whilst this

increased the risk of generation of a type-1 error, it

simultaneously reduced the risk of generation of a type-2

error, which was considered important in work of this nature.

Statistical analyses were carried out using IBM SPSS version

26 software and graphs were created using GraphPad

Prism 8 software.

Results

Clinical data

37 patients underwent paired (baseline and EoS) muscle

biopsies, 33 sets were used for HRR and 37 sets of samples

TABLE 1 Baseline patient data. Baseline patient demographics and co-
morbidities with absolute numbers and percentages, unless
otherwise stated and presented as median and IQR.

Characteristics

Age (years) 67.0 (58.0–69.5)
Median (IQR)

Gender (male: female) 24:10 (70.6:29.4)

BMI (kg/m2) 24.3 (22.7–28.6)
Median (IQR)

Ethnicity [n (%)]

White 32 (94.1)

Asian 1 (2.9)

Black 1 (2.9)

Smoking status [n (%)]

Yes 4 (11.8)

No 19 (55.9)

Ex-smoker 11 (32.4)

Alcohol [n (%)]

Yes 11 (32.4)

No 23 (67.6)

Consumption (units per week) 2 (2–6.5)

ASA [n (%)]

I 3 (8.8)

II 19 (58.8)

III 11 (32.4)

IV 0 (0.0)

Comorbidities [n (%)]

Cardiovascular 19 (55.9)

Hypertension 12 (35.3)

Ischaemic heart disease 4 (11.8)

Heart failure 0 (0.0)

Arrythmia 3 (8.8)

Valvular heart disease 0 (0.0)

Cerebral vascular disease 1 (2.9)

Peripheral vascular disease 2 (5.9)

Respiratory 6 (17.6)

COPD 3 (8.8)

Asthma 2 (5.9)

OSA 1 (2.9)

Other 0 (0.0)

Endocrine and metabolic 16 (44.4)

Diabetes 9 (26.2)

Hypercholesterolaemia 5 (14.7)

Other 2 (5.9)

Renal disease 0 (0.0)

Rheumatological 4 (11.8)

Other systemic disease 2 (5.9)

(Continued in next column)

TABLE 1 (Continued) Baseline patient data. Baseline patient
demographics and co-morbidities with absolute numbers and
percentages, unless otherwise stated and presented as median
and IQR.

Characteristics

Diagnosis [n (%)]

Pancreatic cancer 12 (35.3)

Liver metastasis 10 (29.4)

Cholangiocarcinoma 5 (14.7)

Hepatocellular carcinoma 4 (11.8)

Neuroendocrine tumour 1 (2.9)

Ampulla and duodenal cancer 1 (2.9)

Other 1 (2.9)

Neo-adjuvant chemoradiotherapy within the last
year [n (%)]

7 (20.6)
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were used for metabolomic analyses. A sub-group of 23 patients

underwent CPET prior to surgery.

Patient demographics and baseline preoperative data can be

found in Table 1. For detailed intraoperative and postoperative

clinical data refer to Supplementary Tables S2, S3. Of the

37 patients, 34.3% had pancreatic surgeries, 45.7% hepatic

resections, and 20.0% palliative procedures. CPET

measurements are summarised in Table 2. Participants had a

median AT of 11.5 mL/kg/min and VO2 peak of 16.5 mL/kg/min.

The median number of days on ICU and in hospital were 2.7

(1–2.8) and 9.0 days (6.2–14.8) respectively.

Changes in skeletal muscle mitochondrial
respiratory capacity and redox
metabolome between baseline and end
of surgery

Skeletal muscle respiratory function measured by HRR

revealed a 26.7% increase in LEAKFAO respiration from

baseline to EoS (P = 0.03). No difference in any other

measured respiratory state, including maximal oxidative

phosphorylation capacity, was detected between these two

timepoints (Figure 1). While the intramuscular concentrations

of nitrite and nitrate as well as those of free and total thiols

(aminothiols and sulfide) did not differ between baseline and end

of surgery, a 27.0% increase in free cysteine content was observed

after surgery (Figure 2).

Perioperative differences in blood and
skeletal musclemarkers based on patients’
cardiorespiratory fitness

Baseline levels of circulating antioxidant, lipid oxidation, NO

and inflammation status were compared in the fit and unfit

patient groups. No differences between the groups were detected

in serum markers of antioxidant capacity (TRC) or lipid

oxidation. Plasma cGMP was found to be 81.6% higher in the

unfit group compared with the fit group (P = 0.006). Serum levels

of inflammatory markers IL-6 and TNF-⍺ were 111.0% and

96.6% higher in the unfit group compared with the fit group (P =

0.04 and P = 0.02 respectively). No significant differences were

detected between these two groups in skeletal muscle

mitochondrial respiration capacity or thiol status at baseline.

However, muscle nitrite was 58.7% lower in unfit patients

compared to fit patients (P = 0.003), with no baseline

differences in nitrate (Table 3).

We then compared the magnitude of intraoperative changes

(EoS-baseline) in the concentrations of circulating serum redox

and inflammatory markers as well as skeletal muscle

mitochondrial function and muscle metabolites between the fit

and unfit groups to explore the effects of the surgery on these

parameters. No differences were detected between groups in

terms of intraoperative changes in serum TRC, lipid oxidation

or nitrosative stress. The intraoperative reduction in serum TNF-

⍺ levels in the fit group was 65.2% less than that reported in the

unfit group (P = 0.03). No between-groups difference was

detected in terms of changes in IL-6 (Supplementary Table S4).

The increase in intraoperative skeletal muscle mitochondrial

LEAKFAO was 200% higher in fit compared with unfit patients

(P = 0.004). No other differences were observed between the two

groups (Supplementary Table S4).

Peak VO2 was found to correlate with baseline blood

measurements of TNF-⍺ (r = 0.491, P = 0.045, n = 17),

baseline skeletal nitrite levels (r = 0.492, P = 0.045, n = 17)

and with the degree of intraoperative changes in mitochondrial

LEAK respiration (r = 0.730, P = 0.003, n = 14).

Discussion

This sub-study aimed to improve our understanding of how

major abdominal surgery affects mitochondrial respiration and

redox status of skeletal muscle under conditions of systemically

increased oxidative stress (results of main study reported

elsewhere [13]), and whether these changes differ between fit

and unfit individuals. The key findings include no intraoperative

change in mitochondrial respiratory capacity, (FAOOXPHOS,

CIOXPHOS and MAX OXPHOS), suggesting that oxidative

phosphorylation is preserved during this hyper-acute

intraoperative period. However, an increase in respiration not

coupled to oxidative phosphorylation (LEAKFAO respiration)

was detected by the end of surgery, along with an increase in

skeletal muscle free cysteine levels. These changes were related to

the patient’s cardiopulmonary fitness (as assessed by CPET): the

intraoperative increase in LEAK respiration was greater in fit

patients (and LEAK respiration also correlated positively with

peak VO2?). In addition, baseline differences in inflammatory

profile were detected in the fit and unfit groups, with plasma

inflammatory markers (cGMP, IL-6 and TNF-⍺) found to be

greater in less fit patients along with a lower level of skeletal

muscle nitrite.

Our findings invite several plausible explanations that

warrant further experimental investigation and, at this stage,

are essentially hypothesis-generating. The increase in skeletal

muscle LEAKFAO respiration may be a sign of mitochondrial

adaptation to rising systemic oxidative/nitrosative stress;

explanations for a potential underlying mechanism are

discussed below. The flexibility of skeletal muscle to increase

LEAKFAO respiration was also associated with increased physical

fitness, where fitter patients demonstrated greater increases in

LEAKFAO intraoperatively than those with lower ATs. Moreover,

baseline measurements of cGMP, IL-6 and TNF-⍺ were higher in

unfit patients, who also had less nitrite in their skeletal muscle.

The dichotomy in NO-related metabolites between skeletal
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muscle and circulating concentrations observed in the present

study appears to be counter-intuitive insofar as the capacity to

raise circulating nitrite concentrations (secondary to stimulation

of endothelial NO synthase) in healthy individuals is typically a

direct function of muscle mass and cardiorespiratory fitness [19].

However, whole-body regulation of these molecules in health is

likely to differ from that in ill-health. Importantly, nitrite is not a

passive oxidative breakdown product of NO but a reactive species

and a signalling molecule in its own right [1, 20]. This includes

the modulation of mitochondrial function [21] with complex

interactions between endogenous NO production, dietary NOx

intake and oral microbiome [22], cross-talk between nitrite and

sulfide/persulfide-related (NO-independent) pathways [23, 24],

oxygen-dependent tissue processing [25], and physical activity-

dependent inter-organ exchange processes [20, 21]. Moreover,

associated redox metabolism/signalling are subject to

considerable alterations under inflammatory conditions [26,

27], making it difficult to predict the outcome of these

interactions in the context of mitochondrial function and

systemic inflammation. In any case, the differences in muscle

nitrite observed in the present study may reflect either greater

tissue utilization or leakage of nitrite from muscle into blood in

frail patients. Why circulating cGMP levels were higher in less fit

patients is similarly unclear but may be a reflection of higher

iNOS expression and formation of peroxynitrite in either

vasculature or circulating blood cells and linked to chronic

inflammation.

Skeletal muscle free cysteine levels increased during the

intraoperative period, with no change in glutathione

concentrations. Since neither free cystine nor homocystine

were detected (and levels of oxidized glutathione were

vanishingly small), the differences between total and free thiol

concentrations measured in skeletal muscle largely reflect the

level of protein-bound thiols (i.e., the extent to which protein

thiols are cysteinylated, homocysteinylated, glutathionylated and

persulfidated). The differences in cysteine levels observed may be

a sign of the muscle’s ability to elevate this sulfur-containing

amino acid to maintain levels of glutathione in this tissue, in

particular under conditions of increased oxidative stress. Since

glutathione is of importance for much more than cellular

antioxidant protection including, for example, mitochondrial

function [24] it is tempting to speculate that the observed

differences in cysteine concentrations in skeletal muscle before

and after surgery may be linked to the ability of skeletal muscle to

withstand major stress, thus reflecting biological resilience.

Regardless of these considerations, our findings suggest that

cardiopulmonary fitness correlates more closely with intrinsic

inflammatory levels than with oxidative/nitrosative stress in this

cohort of patients with cancer. The raised baseline inflammatory

state may also be a reflection of the cancer burden [28, 29], and

the reduction in cardiopulmonary fitness may be the phenotypic

expression of a state of functional loss and cachexia in cancer

patients. In addition, raised systemic baseline IL-6 and reduced

nitrate was found in patients who went on to develop severe

morbidity [13]. These metabolic observations may reflect the

complexity of metabolic regulation and response to surgical

stress at the whole-body level [30] but are consistent with

clinical observations that unfit patients are more likely to

develop greater postoperative morbidity, which may be

secondary to increased baseline inflammation, greater ROS

production and a consecutively reduced bioavailability of NO

(a powerful antioxidant) [31]. Skeletal muscle plays a vital role in

inter-organ exchange of building blocks, redox regulation and

metabolic flexibility. Sarcopenia, which is a hallmark of ageing

and a measure of frailty, has been associated with chronic

exposure to oxidative stress, inflammation and reduction in

antioxidant capacity [32–34]. Raised levels of IL-6, which is

independent of body composition, have been associated with

reduced physical activity and increasing frailty [35, 36]. These

findings may form part of the notion that fitter individuals have a

lower baseline inflammatory state, which renders them to be

more resilient and better able to adapt to stresses intraoperatively

through mitochondrial protective mechanisms.

LEAK respiration is the dissipative component of

mitochondrial respiration, which is independent of oxidative

phosphorylation. The main contributor to this is proton leak,

TABLE 2 Baseline CPET data. CPET data of the main test group, and divided into unfit and fit groups based on AT (cut-off ≤10 mL/kg/min).

Fitness indices derived from CPET Total
Median (IQR)

Unfit (n = 6)
Median (IQR)

Fit (n = 17)
Median (IQR)

AT (mL/kg/min) 11.5 (4.3) 9.0 (2.0) 13.5 (3.5)

VO2 peak (mL/kg/min) 16.5 (8.0) 15 (1.5) 22.9 (9.0)

VE/VCO2 29.0 (4.3) 31.4 (6.9) 27.9 (3.4)

Peak HR (bpm) 131 (39) 142 (22) 125 (21)

O2 pulse at peak VO2 (mL) 10.5 (6.5) 9 (1.9) 11.6 (6.60)

Work ramp rate (W) 15 (5) 20 (5) 15 (5)

Work rate at peak VO2 (W/min) 115.0 (94) 105 (31) 126 (69)
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FIGURE 1
Perioperative changes in skeletal muscle mitochondrial respiratory states. Differences between baseline and after surgery in I, LEAKFAO; II,
FAOOXPHOS; III, MOPOXPHOS; IV, CIOXPHOS; V, CI + IIOXPHOS; VI, CI + IIETS; and VII, CIIETS (median and IQR). Pairwise comparisons were performed using
the Wilcoxon signed ranks test (n = 33).
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FIGURE 2
Perioperative changes in skeletal muscle sulfur (free and total thiols) and nitrogen-based metabolites. Differences in concentrations between
baseline and after surgery in Free, I, Cysteine; II Homocysteine; III, Sulfide; IV, GSH; and V, GSSG; and total, I, Cysteine; II Homocysteine; III, Sulfide; IV,
GSH; as well as V, the ratio of reduced over oxidized glutathione, GSH:GSSG. Nitrite and nitrate, I, Nitrite; II Nitrate. (median and IQR). Pairwise
comparisons were performed using the Wilcoxon signed ranks test (n = 37).
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TABLE 3 Baseline metabolic differences according fitness. A comparison of baseline serum oxidative/nitrosative markers, skeletal muscle
mitochondrial respiratory capacity and redox-related tissue metabolites of unfit and fit patients.

Unfit median (IQR) Fit median (IQR) Sig.
P value

Baseline serum redox and inflammatory markers

Adjusted
TFT (µmoles/g protein)

4.21 (2.31) 4.94 (0.90) 0.30

FRAP (µM) 839.05 (726.17) 869.70 (563.23) 0.92

TBARS (µM) 7.50 (8.55) 4.32 (3.49) 0.11

HNE (ng/mL) 6.29 (5.74) 10.02 (5.76) 0.10

Isoprostanes (pg/mL) 251.31 (164.67) 228.90 (127.27) 0.41

cGMP (pg/mL) 154.49 (57.92) 85.03 (39.22) 0.006

Nitrite (µM) 0.17 (0.17) 0.17 (0.21) 0.45

Nitrate (µM) 33.25 (24.06) 33.60 (23.81) 0.92

RxNO (nM) 44.48 (90.01) 27.48 (12.59) 0.11

IL-6 (pg/mL) 4.77 (16.32) 2.26 (2.76) 0.04

TNF-a (pg/mL) 0.59 (0.56) 0.30 (0.25) 0.02

Baseline skeletal muscle mitochondrial respiratory capacity

LEAKFAO (pmoles−1 mg−1) 10.21 (8.64) 5.68 (4.41) 0.25

FAOOXPHOS (pmoles−1 mg−1) 18.92 (15.57) 14.68 (6.94) 0.68

MOPOXPHOS (pmoles−1 mg−1) 26.66 (20.44) 22.76 (5.05) 0.86

CIOXPHOS (pmoles−1 mg−1) 28.55 (23.60) 26.57 (7.84) 0.95

MAX OXPHOS (pmoles−1 mg−1) 64.27 (43.73) 72.04 (28.23) 0.99

CI + IIETS (pmoles−1 mg−1) 79.81 (14.14) 77.42 (30.86) 0.76

CIIETS (pmoles−1 mg−1) 47.08 (23.00) 59.35 (33.15) 0.72

Baseline skeletal muscle metabolites free concentration

Cysteine (nmoles/kg) 35.37 (15.45) 35.47 (37.85) 0.65

Homocysteine (nmoles/kg) 2.31 (5.69) 1.40 (0.69) 0.72

Sulfide (nmoles/kg) 1.22 (1.43) 1.99 (2.22) 0.27

GSH (mmoles/kg) 2.75 (3.30) 2.55 (0.82) 0.44

GSSG (nmoles/kg) 4.56 (47.48) 2.19 (5.13) 0.65

Baseline skeletal muscle metabolites total concentration

Cysteine (nmoles/kg) 57.30 (33.14) 66.33 (30.15) 0.28

Homocysteine (nmoles/kg) 8.59 (14.48) 7.74 (3.71) 0.88

Sulfide (nmoles/kg) 62.11 (66.71) 51.26 (39.13) 0.80

GSH (mmoles/kg) 2.06 (1.99) 1.82 (0.86) 0.24

GSH:GSSG 1,159.00 (2069.10) 1,233.00 (1,344.50) 0.57

Skeletal muscle NO metabolites

Nitrite (µmoles/kg) 11.95 (11.56) 16.83 (12.90) 0.19

Nitrate (µmoles/kg) 276.90 (1,028.30) 260.80 (203.30) 0.86
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whereby a proportion of protons leak across the inner

mitochondrial membrane through a route that is not coupled

to formation of ATP, with this having both basal

(i.e., unregulated) and inducible components [37]. The

increased LEAK respiration observed here following surgery

could therefore indicate increased proton leak, which might be

mediated by protein-dependent or independent mechanisms.

Mild uncoupling has been shown to lower ROS production in

cellular models, at the expense of ATP production [38, 39]. In our

study, the observation of increased LEAK respiration may

therefore reflect an adaptive response to acute surgical stress

at the muscular end-organ level.

In response to sepsis, upregulation of uncoupling protein 3

(UCP3) has been seen in mouse skeletal muscle [40, 41], whilst

UCP3 expression is also elevated in human muscle in response to

redox stress following shorter-term hypoxic exposure [16, 42].

Although the short timeframe of the intraoperative acute stress

exposure in this study makes altered UCP expression unlikely, an

alternative explanation could involve post-translational

modification. For example, the glutathionylation of UCP3 has

been shown to activate uncoupling [39]. Although we saw no

change in overall GSH levels, our measure is reflective of skeletal

muscle overall and not specifically the mitochondrial

compartment. A UCP3-dependent mechanism might not,

however, explain the greater increase in LEAK respiration

seen in fit compared with less fit individuals in our study,

since UCP3 expression (relative to mitochondrial content) is

typically lower in the skeletal muscle of more trained individuals,

in conjunction with enhanced mechanical efficiency [43].

Moreover, the physiological significance of any UCP3-

mediated uncoupling is unclear, since in a mouse model of

sepsis, survival rates were not different between wild-type and

UCP3 knockout mice [41].

Instead, a non-UCP mediated mechanism might underpin

our finding of a surgery-induced increase in LEAK; for example,

in a hypoxic environment, NO can cause mild membrane

depolarisation [44, 45]. Alternatively, the adenine nucleotide

translocases (ANTs) have been proposed to be major fatty

acid-inducible mediators of proton leak in many tissues,

including skeletal muscle [46, 47]. Expression of the

ANT1 isoform increased in human skeletal muscle in

response to endurance training, and this was associated with

greater sensitivity for fatty acid-mediated uncoupling [48]. This

mechanism has been proposed to be protective against the

development of insulin resistance in the event of fatty acid

overload [48], but deserves further investigation in the

contexts of redox stress, sepsis and surgical stress.

Comparison of the results of the present investigation to

previous studies is challenging as the combinations of biological

sampling sites, analytes and fitness measures using CPET in a

surgical setting has not been undertaken before. Mitochondrial

respiratory changes in skeletal muscle in a pig model after surgery

have been investigated. Altered mitochondrial respiration was

found when muscle fibres were biopsied 24 h apart and studied

using HRR [8]. Increased fatty acid-mediated LEAK respiration

was seen, which was directly comparable to our findings, along

with evidence of no change in ADP-stimulated respiration with

glutamate. Similarly, no reduction in ADP-stimulated respiration

with pyruvate, was measured in our study. In a separate study,

human skeletal muscle biopsies were taken before and after

major abdominal surgery in patients with pancreatic cancer

and benign disease. Muscle mitochondria were isolated and

used to measure pyruvate dehydrogenase complex activity

along with maximal ATP production, using bioluminescence.

This study demonstrated reduced pyruvate dehydrogenase

complex activity and a decreased rate of mitochondrial ATP

production supported by palmitoyl-carnitine, and complex I and

complex I&II-mediated substrates post-surgery [9]. Whilst we

did not see a decreased capacity for O2 consumption supported

by octanoyl-carnitine, or complex I and complex I&II substrates

in combination in the oxidative phosphorylation state, the lower

ATP production reported by Atkins and colleagues, might be

explained by greater uncoupling as a result of proton leak

(i.e., less ATP production per O2 consumed), and this would

be in accordance with our findings and those of Hagve and

colleagues in the porcine model.

Changes in tissue thiol levels have been observed previously,

with skeletal muscle concentrations of cysteine and GSH

remaining unchanged immediately after surgery, and GSH

levels subsequently falling at 24 h [49], a timescale not

measured in our study. Exercise and fitness-based studies,

however, have demonstrated a positive correlation between

levels of cGMP and fitness; physical training has been

associated with increased circulating cGMP levels, for

example, in hypertensive individuals [50]. The opposite was

observed in this study, where less aerobically fit individuals

demonstrated increased levels of cGMP. Evidence of increased

inflammation and low CPET fitness has been previously reported

in a study measuring preoperative CPET with neutrophil-

leukocyte ratio as a measure of level of systemic

inflammation, AT was found to be independently associated

with neutrophil-leukocyte ratio [11]. In the context of our study

of unfit patients with malignancy, multifactorial inflammatory

mechanism may be contributing to the increased IL-6 and TNF-

⍺ observed.

This study highlights several areas for potential further

investigation, particularly in phenotyping patients to better

understand the biology of resilience under acute surgical

stress. This includes exploring the role of increased

mitochondrial LEAK in preoperative fitness, the mechanisms

underlying this process, and the function of skeletal muscle

cysteine—specifically whether its presence serves a protective

role during surgical stress. While this study focused on the acute

intraoperative period, examining later physiological responses

(e.g., on days three, five, and seven)—when postoperative

complications commonly arise—could provide additional
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insights into protective metabolic responses and favorable

characteristics for recovery.

Study limitations

Our study was not initially designed to be powered to detect

mitochondrial and metabolic changes in skeletal muscle. In

addition, CPET was not part of the patients’ routine

preoperative work-up. The voluntary performance of CPET

could be a major confounder in this study, since the sub-group

of patients investigated may have been physically fitter than the

main study cohort. The lack of difference in oxygen consumption

(in absolute terms) between the respiratory states during the

perioperative period may partly be attributable to the short time-

frame between biopsy extractions, since protein translational

responses may not have occurred. Secondly, the vastus lateralis

is remote from the site of surgical injury, so the tissue exposure to

inflammatory changes may not have been as exaggerated as that

experienced intra-abdominally or within the circulation.

Conclusion

This sub-study offers novel insights into mitochondrial, redox,

metabolic and inflammatory changes at a systemic and end-organ

level before and acutely after surgery. Higher preoperative systemic

inflammation levels, reduced tissue nitrite and blunted

intraoperative LEAK respiration in unfit individuals may be

hallmarks of inferior resilience, with overall preservation of

mitochondrial respiratory capacity and GSH in skeletal muscle

reflecting the whole-body ability to withstandmajor surgical stress.

The exemplary approach taken in the present study may be suited

to phenotype patients into subgroups of lesser or greater resilience

or susceptibility to postoperative complications.
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